1
|
Abdellateif MS, Zekri ARN. Stem cell therapy for hepatocellular carcinoma and end-stage liver disease. J Egypt Natl Canc Inst 2023; 35:35. [PMID: 37926787 DOI: 10.1186/s43046-023-00194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide, especially for patients who are suffering from end-stage liver disease (ESLD). The ESLD is considered a great challenge for clinicians due to the limited chance for liver transplantation, which is the only curative treatment for those patients. Stem cell-based therapy as a part of regenerative medicine represents a promising application for ESLD patients. Many clinical trials were performed to assess the utility of bone marrow-derived stem cells as a potential therapy for patients with liver diseases. The aim of the present study is to present and review the various types of stem cell-based therapy, including the mesenchymal stem cells (MSCs), BM-derived mononuclear cells (BM-MNCs), CD34 + hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and cancer stem cells.Though this type of therapy achieved promising results for the treatment of ESLD, however still there is a confounding data regarding its clinical application. A large body of evidence is highly required to evaluate the stem cell-based therapy after long-term follow-up, with respect to the incidence of toxicity, immunogenicity, and tumorigenesis that developed in many patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11976, Egypt.
| | - Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
2
|
De Pablo-Moreno JA, Miguel-Batuecas A, Rodríguez-Merchán EC, Liras A. Treatment of congenital coagulopathies, from biologic to biotechnological drugs: The relevance of gene editing (CRISPR/Cas). Thromb Res 2023; 231:99-111. [PMID: 37839151 DOI: 10.1016/j.thromres.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Congenital coagulopathies have, throughout the history of medicine, been a focus of scientific study and of great interest as they constitute an alteration of one of the most important and conserved pathways of evolution. The first therapeutic strategies developed to address them were aimed at restoring the blood components lost during hemorrhage by administering whole blood or plasma. Later on, the use of cryoprecipitates was a significant breakthrough as it made it possible to decrease the volumes of blood infused. In the 1970' and 80', clotting factor concentrates became the treatment and, from the 1990's to the present day, recombinant factors -with increasingly longer half-lives- have taken over as the treatment of choice for certain coagulopathies in a seamless yet momentous transition from biological to biotechnological drugs. The beginning of this century, however, saw the emergence of new advanced (gene and cell) treatments, which are currently transforming the therapeutic landscape. The possibility to use cells and viruses as well as specific or bispecific antibodies as medicines is likely to spark a revolution in the world of pharmacology where therapies will be individualized and have long-term effects. Specifically, attention is nowadays focused on the development of gene editing strategies, chiefly those based on CRISPR/Cas technology. Rare coagulopathies such as hemophilia A and B, or even ultra-rare ones such as factor V deficiency, could be among those deriving the greatest benefit from these new developments.
Collapse
Affiliation(s)
- Juan A De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - Andrea Miguel-Batuecas
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - E Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Autonomous University of Madrid), Spain
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain.
| |
Collapse
|
3
|
Soroka AB, Feoktistova SG, Mityaeva ON, Volchkov PY. Gene Therapy Approaches for the Treatment of Hemophilia B. Int J Mol Sci 2023; 24:10766. [PMID: 37445943 DOI: 10.3390/ijms241310766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In contrast to the standard enzyme-replacement therapy, administered from once per 7-14 days to 2-3 times a week in patients with severe hemophilia B, as a result of a single injection, gene therapy can restore F9 gene expression and maintain it for a prolonged time. In clinical research, the approach of delivering a functional copy of a gene using adeno-associated viral (AAV) vectors is widely used. The scientific community is actively researching possible modifications to improve delivery efficiency and expression. In preclinical studies, the possibility of genome editing using CRISPR/Cas9 technology for the treatment of hemophilia B is also being actively studied.
Collapse
Affiliation(s)
- Anastasiia B Soroka
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Sofya G Feoktistova
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Olga N Mityaeva
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| | - Pavel Y Volchkov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, 141700 Dolgoprudniy, Russia
| |
Collapse
|
4
|
Roman G, Stavik B, Lauritzen KH, Sandset PM, Harrison SP, Sullivan GJ, Chollet ME. "iPSC-derived liver organoids and inherited bleeding disorders: Potential and future perspectives". Front Physiol 2023; 14:1094249. [PMID: 36711019 PMCID: PMC9880334 DOI: 10.3389/fphys.2023.1094249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The bleeding phenotype of hereditary coagulation disorders is caused by the low or undetectable activity of the proteins involved in hemostasis, due to a broad spectrum of genetic alterations. Most of the affected coagulation factors are produced in the liver. Therefore, two-dimensional (2D) cultures of primary human hepatocytes and recombinant overexpression of the factors in non-human cell lines have been primarily used to mimic disease pathogenesis and as a model for innovative therapeutic strategies. However, neither human nor animal cells fully represent the hepatocellular biology and do not harbor the exact genetic background of the patient. As a result, the inability of the current in vitro models in recapitulating the in vivo situation has limited the studies of these inherited coagulation disorders. Induced Pluripotent Stem Cell (iPSC) technology offers a possible solution to overcome these limitations by reprogramming patient somatic cells into an embryonic-like pluripotent state, thus giving the possibility of generating an unlimited number of liver cells needed for modeling or therapeutic purposes. By combining this potential and the recent advances in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, it allows for the generation of autologous and gene corrected liver cells in the form of three-dimensional (3D) liver organoids. The organoids recapitulate cellular composition and organization of the liver, providing a more physiological model to study the biology of coagulation proteins and modeling hereditary coagulation disorders. This advanced methodology can pave the way for the development of cell-based therapeutic approaches to treat inherited coagulation disorders. In this review we will explore the use of liver organoids as a state-of-the-art methodology for modeling coagulation factors disorders and the possibilities of using organoid technology to treat the disease.
Collapse
Affiliation(s)
- Giacomo Roman
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benedicte Stavik
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut H. Lauritzen
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sean P. Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Gareth J. Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Eugenia Chollet
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
6
|
Tang LV, Tao Y, Feng Y, Ma J, Lin W, Zhang Y, Zhang Y, Wu T, Cai Y, Lu H, Wei J, Corral J, Hu Y. Gene editing of human iPSCs rescues thrombophilia in hereditary antithrombin deficiency in mice. Sci Transl Med 2022; 14:eabq3202. [PMID: 36449603 DOI: 10.1126/scitranslmed.abq3202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hereditary antithrombin deficiency is caused by SERPINC1 gene mutations and predisposes to recurrent venous thromboembolism that can be life-threatening. Therefore, lifelong anticoagulation is required, which has side effects and may not be effective. In this study, peripheral blood mononuclear cells from a patient with severe antithrombin deficiency were reprogrammed into induced pluripotent stem cells (iPSCs). The mutation was corrected using CRISPR-Cas9 and Cre/LoxP genome editing. iPSCs were differentiated into hepatocytes, which were injected into the spleen of antithrombin knockout mice to restore the activity of antithrombin and reduce the thrombophilic state. Human iPSC-differentiated hepatocytes colonized mice and secreted antithrombin stably, normalizing antithrombin in plasma (activity: from 46.8 ± 5.7% to 88.6 ± 7.6%, P < 0.0001; antigen: from 146.9 ± 19.5 nanograms per milliliter to 390.7 ± 16.1 nanograms per milliliter, P < 0.0001). In venous thrombosis model, the rate of thrombosis in mice treated with edited hepatocytes, parental hepatocytes, and wild-type mice were 60, 90, and 70%, respectively. The thrombus weight was much lighter in mice treated with edited hepatocytes compared with parental hepatocytes (7.25 ± 2.00 milligrams versus 15.32 ± 2.87 milligrams, P = 0.0025) and showed no notable difference compared with that in wild-type mice (10.41 ± 2.91 milligrams). The activity and concentration of antithrombin remained high for 3 weeks after injection. The liver and kidney function markers showed no obvious abnormality during the observation period. This study provides a proof of principle for correction of mutations in patient-derived iPSCs and potential therapeutic applications for hereditary thrombophilia.
Collapse
Affiliation(s)
- Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanyi Tao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanzheng Feng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiewen Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuyang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wei
- iRegene Therapeutics Co. Ltd., Wuhan 430070, PR China
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Ronda de Garay S/N, 30003 Murcia, Spain
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Luce E, Steichen C, Abed S, Weber A, Leboulch P, Maouche-Chrétien L, Dubart-Kupperschmitt A. Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells. Int J Mol Sci 2022; 23:ijms231810861. [PMID: 36142774 PMCID: PMC9504404 DOI: 10.3390/ijms231810861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that simian iPSCs (siPSCs) could be used as a new source of liver cells to be used as a large animal model for preclinical studies. We first differentiated siPSCs into a homogenous population of hepatoblasts (siHBs). We then separately differentiated them into hepatocytes (siHeps) and cholangiocytes (siChols) expressing respective specific markers and displaying epithelial polarity. Moreover, we showed that polarized siChols can self-organize into 3D structures. These results should facilitate the deciphering of liver development and open the way to exploring co-culture systems that could be assessed during preclinical studies, including in autologous monkey donors, for regenerative medicine purposes.
Collapse
Affiliation(s)
- Eleanor Luce
- Unité Mixte de Recherche (UMR_S) 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire Hépatinov, Hôpital Paul Brousse, F-94800 Villejuif, France
- Correspondence: (E.L.); (A.D.-K.)
| | - Clara Steichen
- Unité Mixte de Recherche (UMR_S) 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire Hépatinov, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - Soumeya Abed
- Division of Innovative Therapies, Institute of Biology François Jacob, INSERM, Paris-Saclay University, CEA Fontenay aux Roses, F-92260 Fontenay-aux-Roses, France
| | - Anne Weber
- Unité Mixte de Recherche (UMR_S) 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire Hépatinov, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - Philippe Leboulch
- Division of Innovative Therapies, Institute of Biology François Jacob, INSERM, Paris-Saclay University, CEA Fontenay aux Roses, F-92260 Fontenay-aux-Roses, France
- Genetics Division, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Leila Maouche-Chrétien
- Division of Innovative Therapies, Institute of Biology François Jacob, INSERM, Paris-Saclay University, CEA Fontenay aux Roses, F-92260 Fontenay-aux-Roses, France
- Laboratory of Molecular Mechanisms of Hematologic Disorders and Therapeutic Implications, INSERM UMR 1163, Imagine Institute, Paris-Centre University, F-75015 Paris, France
| | - Anne Dubart-Kupperschmitt
- Unité Mixte de Recherche (UMR_S) 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire Hépatinov, Hôpital Paul Brousse, F-94800 Villejuif, France
- Correspondence: (E.L.); (A.D.-K.)
| |
Collapse
|
8
|
Ma Y, Sun W, Zhao L, Yao M, Wu C, Su P, Yang L, Wang G. Generation of an mESC model with a human hemophilia B nonsense mutation via CRISPR/Cas9 technology. Stem Cell Res Ther 2022; 13:353. [PMID: 35883203 PMCID: PMC9327398 DOI: 10.1186/s13287-022-03036-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hemophilia B is a rare inherited genetic bleeding disorder caused by a deficiency or lack of coagulation factor IX, the gene for which (F9) is located on the X chromosome. Hemophilia B is currently incurable and the standard treatment is coagulation factor replacement therapy. Although gene therapy has the potential to cure hemophilia, significant barriers are still needed to be overcome, e.g., off-target effects and immunoreactivity, so new approaches must be explored. Nonsense mutations account for 8% of all the hemophilia B mutation types and can result in the development of coagulation factor inhibitors. In this study, CRISPR/Cas9 technology was used to construct a mouse embryonic stem cell model with a hemophilia B nonsense mutation (F9 c.223C > T) in humans to investigate the pathogenesis and treatment of nonsense mutations in hemophilia B. METHODS First, a donor plasmid with a mutation (F9 c.223 C > T) and sgRNAs were constructed. Second, both the donor plasmid and the px330-sgRNA were electroporated into mouse embryonic stem cell, and the mutant cells were then screened using puromycin and red fluorescence. Third, the mutant cell lines were tested for pluripotency and the ability to differentiate into three layers. Finally, the effect of mutation on gene function was studied in the differentiation system. RESULTS The mutant vector and effective sgRNA were constructed, and the mutant cell line was screened. This mutant cell line exhibited pluripotency and the ability to differentiate into three layers. This point mutation affects F9 expression at both the RNA and protein levels in the differentiation system. CONCLUSIONS The mutant cell line obtained in the current study had a single-base mutation rather than a base deletion or insertion in the exon, which is more similar to clinical cases. In addition, the mutant has the characteristics of mouse embryonic stem cells, and this point mutation affects F9 gene transcription and translation, which can be used as a disease model for studying the pathogenesis and treatment of hemophilia at the stem cell level.
Collapse
Affiliation(s)
- Yanchun Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Wenwen Sun
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Lidong Zhao
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Pengfei Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Gang Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
9
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
10
|
Messina A, Luce E, Benzoubir N, Pasqua M, Pereira U, Humbert L, Eguether T, Rainteau D, Duclos-Vallée JC, Legallais C, Dubart-Kupperschmitt A. Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells 2022; 11:cells11030537. [PMID: 35159346 PMCID: PMC8834365 DOI: 10.3390/cells11030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Human-induced pluripotent stem cell-derived hepatocytes (iHeps) have been shown to have considerable potential in liver diseases, toxicity, and pharmacological studies. However, there is a growing need to obtain iHeps that are truly similar to primary adult hepatocytes in terms of morphological features and functions. We generated such human iHeps, self-assembled as organoids (iHep-Orgs). Methods: iPSC-derived hepatoblasts were self-assembled into spheroids and differentiated into mature hepatocytes modulating final step of differentiation. Results: In about four weeks of culture, the albumin secretion levels and the complete disappearance of α-fetoprotein from iHep-Orgs suggested the acquisition of a greater degree of maturation than those previously reported. The expression of apical transporters and bile acid secretion evidenced the acquisition of complex hepatocyte polarity as well as the development of a functional and well-defined bile canalicular network confirmed by computational analysis. Activities recorded for CYP450, UGT1A1, and alcohol dehydrogenase, response to hormonal stimulation, and glucose metabolism were also remarkable. Finally, iHep-Orgs displayed a considerable ability to detoxify pathological concentrations of lactate and ammonia. Conclusions: With features similar to those of primary adult hepatocytes, the iHep-Orgs thus produced could be considered as a valuable tool for the development and optimization of preclinical and clinical applications.
Collapse
Affiliation(s)
- Antonietta Messina
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| | - Eléanor Luce
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Mattia Pasqua
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Ulysse Pereira
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Thibaut Eguether
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Cécile Legallais
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| |
Collapse
|