1
|
Pozo-Morales M, Singh SP. Computational Analysis of Calcium Flux Data Using R. Methods Mol Biol 2025; 2861:275-283. [PMID: 39395112 DOI: 10.1007/978-1-0716-4164-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Calcium imaging has emerged as a powerful tool for studying cellular dynamics, with applications spanning neuroscience, cell biology, and beyond. In this chapter, we present a comprehensive guide to the computational analysis of calcium flux data using the R programming language. Using an example of in vivo live imaging of GCaMP signal in zebrafish hepatocytes, we demonstrate techniques for segmentation, normalization, and quantification of calcium transients. We provide a step-by-step code example showcasing extraction of meaningful information from calcium imaging datasets. The code allows insights into the number of oscillating cells, number of oscillations per cell within a time frame, and generation of publication-ready plots for showcasing calcium dynamics. This chapter serves as a valuable resource for researchers seeking to leverage freely available computational tools for analyzing calcium flux data at cellular resolution and uncovering novel insights into cellular physiology.
Collapse
Affiliation(s)
- Macarena Pozo-Morales
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
2
|
Schmitner N, Thumer S, Regele D, Mayer E, Bergerweiss I, Helker C, Stainier DYR, Meyer D, Kimmel RA. Conserved glucokinase regulation in zebrafish confirms therapeutic utility for pharmacologic modulation in diabetes. Commun Biol 2024; 7:1557. [PMID: 39580550 PMCID: PMC11585571 DOI: 10.1038/s42003-024-07264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Glucokinase (GCK) is an essential enzyme for blood glucose homeostasis. Because of its importance in glucose metabolism, GCK is considered an attractive target for the development of antidiabetic drugs. However, a viable therapeutic agent has still to emerge, prompting efforts to improve understanding of the complex regulation and biological effects of GCK. Using the vertebrate organism zebrafish, an attractive model to study metabolic diseases and pharmacological responses, we dissected the complexities of gck regulation and unraveled effects of Gck modulation. We found that while gck expression in zebrafish islet cells is constitutive, gck expression in the liver is regulated by nutritional status, confirming similarity to the mammalian system. A combination of transgenic gck reporter lines and our diabetes model, the pdx1 mutant, allowed monitoring of gck expression under pathological conditions, revealing reduced gck expression and activity in the liver, which was unresponsive to nutrient stimulation, and decreased expression in the islet due to the reduced number of β-cells. Gck activation substantially ameliorated hyperglycemia in pdx1 mutants, without inducing oxidative stress responses in liver or islet. In-depth characterization of Gck activity and regulation at the cellular level in a whole-organism diabetes model clarifies its applicability as a drug target for therapies.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Sophie Thumer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Elena Mayer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ines Bergerweiss
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Christian Helker
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Philipps-University Marburg, Marburg, Germany
| | | | - Dirk Meyer
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Zhang H, Zhu C, Zhao J, Zheng R, Xing J, Li Z, Zhang Y, Xu Q. The enhanced hepatotoxicity of isobavachalcone in depigmented zebrafish due to calcium signaling dysregulation and lipid metabolism disorder. J Appl Toxicol 2024; 44:919-932. [PMID: 38400677 DOI: 10.1002/jat.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.
Collapse
Affiliation(s)
- Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- College of Medicine, Xin Jiang Medical University, Urumqi, China
| | - Ruifang Zheng
- Institute of Medicine of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianguo Xing
- Institute of Medicine of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhijian Li
- College of Medicine, Xin Jiang Medical University, Urumqi, China
- Hospital of Xin Jiang Traditional UYGMJR Medicine, Urumqi, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Pozo-Morales M, Cobham AE, Centola C, McKinney MC, Liu P, Perazzolo C, Lefort A, Libert F, Bai H, Rohner N, Singh SP. Starvation-resistant cavefish reveal conserved mechanisms of starvation-induced hepatic lipotoxicity. Life Sci Alliance 2024; 7:e202302458. [PMID: 38467419 PMCID: PMC10927358 DOI: 10.26508/lsa.202302458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
Collapse
Affiliation(s)
| | - Ansa E Cobham
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cielo Centola
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | | | - Anne Lefort
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
5
|
Pozo-Morales M, Cobham AE, Centola C, McKinney MC, Liu P, Perazzolo C, Lefort A, Libert F, Bai H, Rohner N, Singh SP. Starvation resistant cavefish reveal conserved mechanisms of starvation-induced hepatic lipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574986. [PMID: 38260657 PMCID: PMC10802416 DOI: 10.1101/2024.01.10.574986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that while surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Further, down-regulation of FATP2 in drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionary conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
Collapse
Affiliation(s)
- Macarena Pozo-Morales
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Ansa E Cobham
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Cielo Centola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Camille Perazzolo
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Anne Lefort
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Frédérick Libert
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Zoodsma JD, Gomes CI, Sirotkin HI, Wollmuth LP. Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish. Methods Mol Biol 2024; 2799:243-255. [PMID: 38727911 DOI: 10.1007/978-1-0716-3830-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Carly I Gomes
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Zebrafish Models to Study Ectopic Calcification and Calcium-Associated Pathologies. Int J Mol Sci 2023; 24:ijms24043366. [PMID: 36834795 PMCID: PMC9967340 DOI: 10.3390/ijms24043366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues and is often the result of a dysregulated action or disrupted function of proteins involved in extracellular matrix mineralization. While the mouse has traditionally been the go-to model organism for the study of pathologies associated with abnormal calcium deposition, many mouse mutants often have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and the development of effective therapies. Since the mechanisms underlying ectopic calcification share some analogy with those of bone formation, the zebrafish (Danio rerio)-a well-established model for studying osteogenesis and mineralogenesis-has recently gained momentum as a model to study ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes, and describe current methods to induce and characterize ectopic calcification in zebrafish.
Collapse
|
8
|
Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 2022; 290:121823. [DOI: 10.1016/j.biomaterials.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|