1
|
Barrera C, Valenzuela R, Rincón MÁ, Espinosa A, Echeverria F, Romero N, Gonzalez-Mañan D, Videla LA. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic Biol Med 2018; 126:313-321. [PMID: 30153476 DOI: 10.1016/j.freeradbiomed.2018.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Enhanced iron levels in liver are associated with oxidative stress development and damage with increased fat accumulation. The aim of this work was to assess the hypothesis that antioxidant-rich extra virgin olive oil (AR-EVOO) counteracts iron-rich diet (IRD)-induced oxidative stress hindering hepatic steatosis. Male Wistar rats were fed and IRD (200 mg iron/kg diet) versus a control diet (CD; 50 mg iron/kg diet) with alternate AR-EVOO supplementation (100 mg/day) for 21 days. IRD induced liver steatosis and oxidative stress (higher levels of protein oxidation and lipid peroxidation with glutathione depletion), mitochondrial dysfunction (decreased citrate synthase and complex I and II activities) and loss of polyunsaturated fatty acids (PUFAs), with a drastic enhancement in the sterol regulatory element-binding protein-1c (SREBP-1c)/peroxisome proliferator-activated receptor-α (PPAR-α) ratio upregulating the expression of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid (FA) synthase and stearoyl desaturase 2) and downregulating those involved in FA oxidation (carnitine palmitoyl transferase and acyl-CoA oxidase) over values in the CD group. IRD also upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes. AR-EVOO supplementation alone did not modify the studied parameters, however, IRD combined with AR-EVOO administration returned IRD-induced changes to baseline levels of the CD group. It is concluded that IRD-induced non-alcoholic fatty liver disease (NAFLD) is prevented by AR-EVOO supplementation, which might be related to the protective effects of its components such as hydroxytyrosol, oleic acid, tocopherols and/or PUFAs, thus representing a suitable anti-steatotic strategy to avoid progression into more severe stages of the disease, underlying NAFLD associated with iron overloading pathologies or obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | - Miguel Ángel Rincón
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
2
|
Cagin YF, Sahin N, Polat A, Erdogan MA, Atayan Y, Eyol E, Bilgic Y, Seckin Y, Colak C. The Acute Effect of Humic Acid on Iron Accumulation in Rats. Biol Trace Elem Res 2016; 171:145-55. [PMID: 26380988 DOI: 10.1007/s12011-015-0507-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/18/2015] [Indexed: 01/03/2023]
Abstract
Free iron leads to the formation of pro-oxidant reactive oxygen species (ROS). Humic acids (HAs) enhance permeability of cellular wall and act as a chelator through electron transferring. This study was designed to test chelator effect of HA on iron as well as its anti-oxidant effect against the iron-induced hepatotoxicity and cardiotoxicity. The rats used were randomly divided into four groups (n = 8/group): group I (the control group); group II (the HA group), humic acid (562 mg/kg) was given over 10 days by oral gavage; group III (the iron group), iron III hydroxide polymaltose (250 mg/kg) was given over 10 days by intraperitoneal route; and group IV (the HA plus iron group), received the iron (similar to group II) plus humic acid (similar to those in groups II and III) group. Blood and two tissue samples both from liver and heart were obtained for biochemical and histopathological evaluations. Iron deposition, the iron-induced hepatotoxicity, and cardiotoxicity were demonstrated by histopathological and biochemical manner. However, no significant differences were observed in the serum biochemical values and the histopathological results among the iron and the HA plus iron groups in the liver tissue but not in the heart tissue. The protective effects of humic acid against iron-induced cardiotoxicity were shown but not against hepatotoxicity in our study.
Collapse
Affiliation(s)
- Yasir Furkan Cagin
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey.
| | - N Sahin
- Department of Pathology, Medical Faculty, Inonu University, Malatya, Turkey
| | - A Polat
- Department of Physiology, Medical Faculty, Inonu University, Malatya, Turkey
| | - M A Erdogan
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Y Atayan
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - E Eyol
- Department of Pharmaceutical Toxicology, Inonu University, Malatya, Turkey
| | - Y Bilgic
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Y Seckin
- Department of Gastroenterology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - C Colak
- Department of Biostatistics and Medical Informatics, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
3
|
Piloni NE, Fermandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology 2013; 314:174-82. [PMID: 24120471 DOI: 10.1016/j.tox.2013.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload. This information has potential clinical relevance, as it could be the key to understand specific brain damage occurring in conditions of Fe overload.
Collapse
Affiliation(s)
- Natacha E Piloni
- Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
4
|
Lou LX, Geng B, Chen Y, Yu F, Zhao J, Tang CS. Endoplasmic reticulum stress involved in heart and liver injury in iron-loaded rats. Clin Exp Pharmacol Physiol 2010; 36:612-8. [PMID: 19594550 DOI: 10.1111/j.1440-1681.2008.05114.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Iron overload contributes to the pathogenesis of various diseases and directly induces tissue injury. In the present study, we investigated the relationship between heart and liver injury induced by iron overload and cellular endoplasmic reticulum (ER) stress to explore the molecular mechanism of iron overload-induced cellular injury. 2. Iron overload in rats was generated by intraperitoneal injection of iron-dextran chronically (30 mg/kg per day for 9 weeks) or acutely (300 mg/kg once). Tissue injury was assessed by determining serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, as well as malondialdehyde (MDA) content in the heart and liver. The ER stress response was analysed by expression of glucose-response protein 78 (GRP78) and activation of caspase 12. 3. In chronic iron-loaded rats, iron levels in the heart and liver were higher, by approximately 2- and 7.8-fold, respectively (P < 0.01), compared with control. Serum LDH, ALT and AST activity, as well as MDA content, GRP78 expression and caspase 12 activity in the heart and liver, were upregulated in chronically iron-loaded rats. In acute iron-loaded rats, iron content in the heart and liver was 51% and 63% higher than in controls (both P < 0.01). Serum LDH, ALT and AST activity, MDA content in the heart and liver and levels of ER stress markers were all increased in acute iron-loaded rats. N-Acetylcysteine (150 mg/kg, s.c.) lowered the levels of these parameters in acute iron-loaded rats. 4. The results of the present study indicate that ER stress may play an important role in iron-induced tissue injury and that reactive oxygen species may mediate the ER stress response in the pathogenesis of iron-overload cellular injury.
Collapse
Affiliation(s)
- Li-Xia Lou
- Institute of Cardiovascular Diseases, Peking University First Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
5
|
Cisternas FA, Tapia G, Arredondo M, Cartier-Ugarte D, Romanque P, Sierralta WD, Vial MT, Videla LA, Araya M. Early histological and functional effects of chronic copper exposure in rat liver. Biometals 2006; 18:541-51. [PMID: 16333755 DOI: 10.1007/s10534-005-1244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 07/20/2005] [Indexed: 02/08/2023]
Abstract
Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.
Collapse
Affiliation(s)
- Felipe A Cisternas
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, José Pedro Alessandri 5540, Macul, Santiago 11, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The amount of iron within the cell is carefully regulated in order to provide an adequate level of the micronutrient while preventing its accumulation to toxic levels. Iron excess is believed to generate oxidative stress, understood as an increase in the steady state concentration of oxygen radical intermediates. The main aspects of cellular metabolism of iron, with special emphasis on the role of iron with respect to oxidative damage to lipid membranes, are briefly reviewed here. Both in vitro and in vivo models are examined. Finally, a discussion of iron overload and its impact on human health is included. Overall, further studies are required to assess more effective means to limit iron-dependent damage, by minimizing the formation and release of free radicals in tissues when the cellular iron steady state concentration is increased either as a consequence of disease or by therapeutic iron supplementation.
Collapse
Affiliation(s)
- Susana Puntarulo
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, 1113 Buenos Aires, Argentina.
| |
Collapse
|
7
|
Cornejo P, Varela P, Videla LA, Fernández V. Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide 2005; 13:54-61. [PMID: 15927492 DOI: 10.1016/j.niox.2005.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/12/2005] [Accepted: 04/20/2005] [Indexed: 11/15/2022]
Abstract
Iron is an essential micronutrient promoting oxidative stress in the liver of overloaded animals and human, which may trigger the expression of redox-sensitive genes. We have tested the hypothesis that chronic iron overload (CIO) enhances inducible nitric oxide synthase (iNOS) expression in rat liver by extracellular signal-regulated kinase (ERK1/2) and NF-kappaB activation. CIO (diet enriched with 3%(wt/wt) carbonyl-iron for 12 weeks) increased liver protein carbonylation and decreased reduced glutathione (GSH) content and the GSH/GSSG ratio after 6 weeks, parameters that are normalized after 8-12 weeks of treatment. These changes are paralleled by higher phosphorylated-ERK1/2 to non-phosphorylated-ERK1/2 ratios at 6 and 8 weeks, increased NF-kappaB DNA binding to the iNOS gene promoter at 8-12 weeks, and higher iNOS mRNA expression and activity at 8 and 12 weeks. It is concluded that CIO triggers liver oxidative stress at early times, with upregulation of iNOS expression involving the ERK/NF-kappaB pathway at later times, a finding that may represent a hepatoprotective mechanism against CIO toxicity in addition to the recovery of GSH homeostasis.
Collapse
Affiliation(s)
- Pamela Cornejo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70000, Santiago-7, Chile
| | | | | | | |
Collapse
|
8
|
Vorobiov M, Basok A, Tovbin D, Shnaider A, Katchko L, Rogachev B. Iron-mobilizing properties of the gadolinium-DTPA complex: clinical and experimental observations. Nephrol Dial Transplant 2003; 18:884-7. [PMID: 12686659 DOI: 10.1093/ndt/gfg064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gadolinium (Gd) magnetic resonance imaging (MRI) contrast agents are considered to be safe in patients with impaired renal function. Our study investigates a mechanism of severe iron intoxication with life-threatening serum iron levels in a haemodialysis patient following MRI with Gd-diethylenetriaminepentaacetic acid (Gd-DTPA) administration. His previous history was remarkable for multiple blood transfusions and biochemical evidence of iron overload. We hypothesized that Gd-DTPA may have an iron-mobilizing effect in specific conditions of iron overload combined with prolonged exposure to the agent. METHODS For the in vitro study, Gd-DTPA was added to mice liver homogenate and iron metabolism parameters were measured after incubation in comparison with the same samples incubated with saline only. For the in vivo study, an experimental model of acute renal failure in iron-overloaded rats was designed. Previously iron-overloaded and normally fed rats underwent bilateral nephrectomy by renal pedicle ligation, followed by Gd-DTPA or saline injection. Iron and iron saturation levels were checked before and 24 h after Gd-DTPA or vehicle administration. RESULTS Significant mobilization of iron from mice liver tissue homogenate in mixtures with Gd in vitro was seen in the control (saline) and in the experimental (Gd) groups (513+/-99.1 vs 1117.8+/-360.8 microg/dl, respectively; P<0.05). Administration of Gd-DTPA to iron-overloaded rats after renal pedicle ligation caused marked elevation of serum iron from baseline 143+/-3.4 to 570+/-8 microg/dl (P<0.0001). There were no changes of the named parameter, either in iron-overloaded anuric rats after saline injection or in normal diet uraemic animals, following Gd-DTPA administration. CONCLUSIONS The combination of iron overload and lack of adequate clearance of Gd chelates may cause massive liberation of iron with dangerous elevation of free serum iron. It is highly recommended that after Gd contrast study, end-stage renal disease patients with probable iron overload should undergo prompt and intensive haemodialysis for prevention of this serious complication.
Collapse
Affiliation(s)
- Marina Vorobiov
- Department of Nephrology, Soroka Medical Center, Ben Gurion University of the Negev, Faculty of Health Sciences, PO Box 151, Beer Sheva 84101, Israel.
| | | | | | | | | | | |
Collapse
|
9
|
She H, Xiong S, Lin M, Zandi E, Giulivi C, Tsukamoto H. Iron activates NF-kappaB in Kupffer cells. Am J Physiol Gastrointest Liver Physiol 2002; 283:G719-26. [PMID: 12181188 DOI: 10.1152/ajpgi.00108.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron exacerbates various types of liver injury in which nuclear factor (NF)-kappaB-driven genes are implicated. This study tested a hypothesis that iron directly elicits the signaling required for activation of NF-kappaB and stimulation of tumor necrosis factor (TNF)-alpha gene expression in Kupffer cells. Addition of Fe2+ but not Fe3+ (approximately 5-50 microM) to cultured rat Kupffer cells increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Cu+ but not Cu2+ stimulated TNF-alpha protein release and promoter activity but with less potency. Fe2+ caused a disappearance of the cytosolic inhibitor kappaBalpha, a concomitant increase in nuclear p65 protein, and increased DNA binding of p50/p50 and p65/p50 without affecting activator protein-1 binding. Addition of Fe2+ to the cells resulted in an increase in electron paramagnetic resonance-detectable.OH peaking at 15 min, preceding activation of NF-kappaB but coinciding with activation of inhibitor kappaB kinase (IKK) but not c-Jun NH2-terminal kinase. In conclusion, Fe2+ serves as a direct agonist to activate IKK, NF-kappaB, and TNF-alpha promoter activity and to induce the release of TNF-alpha protein by cultured Kupffer cells in a redox status-dependent manner. We propose that this finding offers a molecular basis for iron-mediated accentuation of TNF-alpha-dependent liver injury.
Collapse
Affiliation(s)
- Hongyun She
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033-9141, USA
| | | | | | | | | | | |
Collapse
|
10
|
Videla LA, Tapia G, Fernández V. Influence of aging on Kupffer cell respiratory activity in relation to particle phagocytosis and oxidative stress parameters in mouse liver. Redox Rep 2002; 6:155-9. [PMID: 11523590 DOI: 10.1179/135100001101536265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influence of aging on the respiratory activity of stimulated Kupffer cells was investigated in the isolated perfused mouse liver in relation to colloidal carbon phagocytosis, and the content of glutathione (GSH) and protein carbonyls as parameters related to oxidative stress. Livers from aged (22 months) mice exhibited significant 35% and 65% decreases in the carbon uptake and in the carbon-induced O2 consumption compared to young (3 months) animals, respectively, with a concomitant 46% diminution in the carbon-induced O2 consumption/carbon uptake ratio. Hepatic GSH depletion was observed in aged mice compared to young animals, whereas protein oxidation was enhanced. It is concluded that aging leads to an impairment in the functional capacity of Kupffer cells reflected by a substantial reduction in their respiratory burst activity, lessened endocytic capacity and enhanced oxidative stress, that may contribute to increased susceptibility of the liver to noxious challenges.
Collapse
Affiliation(s)
- L A Videla
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago.
| | | | | |
Collapse
|
11
|
Adding LC, Bannenberg GL, Gustafsson LE. Basic experimental studies and clinical aspects of gadolinium salts and chelates. CARDIOVASCULAR DRUG REVIEWS 2001; 19:41-56. [PMID: 11314600 DOI: 10.1111/j.1527-3466.2001.tb00182.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gadolinium is a lanthanide that has in recent years become more commonly present in our society. Organic chelates of gadolinium are increasingly used as contrast agents for the imaging of body fluids. Although adverse reactions to these agents are uncommon, it is known that gadolinium salts can bring about a wide variety of changes in physiology. Gadolinium chloride is widely used experimentally as an inhibitor of stretch-activated ion channels and physiological responses of tissues to mechanical stimulation. It is also employed as a selective inhibitor of macrophages in vivo. In this review, the known biochemical actions of gadolinium are brought together with its in vivo pharmacology and toxicology.
Collapse
Affiliation(s)
- L C Adding
- Dept. of Physiology and Pharmacology, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
12
|
Cornejo P, Tapia G, Puntarulo S, Galleano M, Videla LA, Fernández V. Iron-induced changes in nitric oxide and superoxide radical generation in rat liver after lindane or thyroid hormone treatment. Toxicol Lett 2001; 119:87-93. [PMID: 11311569 DOI: 10.1016/s0378-4274(00)00295-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The involvement of cytosolic nitric oxide (NO) and mitochondrial superoxide radical (O2(.-)) production was evaluated as a mechanism triggering liver oxidative stress in lindane (40 mg/kg) or L-3,3',5-triiodothyronine (T3, 0.1 mg/kg for 2 consecutive days) treated animals (male Sprague-Dawley rats) subjected to iron overload (200 mg/kg). Lindane and iron led to 504 and 210% increases in the content of hepatic protein carbonyls as an index of oxidative stress, with a 706% enhancement being produced by their combined administration. T3 did not alter this parameter, whereas iron overload increased the content of protein carbonyls by 116% in hyperthyroid rats. Lindane increased NO generation by 106% without changes in generation of O2(.-), whereas iron enhanced both parameters by 109 and 80% over control values, respectively, with a net 33 and 46% decrease, respectively, being elicited by the combined treatment related to iron overload alone. Hyperthyroidism increased liver NO (69%) and O2(.-) (110%) generation compared to controls, effects that were either synergistically augmented or suppressed by iron overload, respectively. The in vitro addition of iron (1 micromol/mg protein) to liver cytosolic fractions from euthyroid (97%) and hyperthyroid (173%) rats also enhanced NO generation. The effects of iron overload on mitochondrial O2(.-) production by hyperthyroid rats were reproduced by the in vitro addition of 1 micromol iron/mg protein and abolished by the in vivo pretreatment with the iron chelator desferrioxamine (500 mg/kg). It is concluded that liver oxidative stress induced by iron overload is independent of NO and O2(.-) production in lindane-treated rats, whereas in hyperthyroid animals NO generation is a major factor contributing to this redox imbalance.
Collapse
Affiliation(s)
- P Cornejo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70086, 7, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
13
|
Junge B, Carrion Y, Bosco C, Galleano M, Puntarulo S, Tapia G, Videla LA. Effects of iron overload and lindane intoxication in relation to oxidative stress, Kupffer cell function, and liver injury in the rat. Toxicol Appl Pharmacol 2001; 170:23-8. [PMID: 11141352 DOI: 10.1006/taap.2000.9066] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parameters related to liver oxidative stress, Kupffer cell function, and hepatocellular injury were assessed in control rats and in animals subjected to lindane (40 mg/kg; 24 h) and/or iron (200 mg/kg; 4 h) administration. Independently of lindane treatment, iron overload enhanced the levels of iron in serum and liver. Biliary efflux of glutathione disulfide increased by 140, 160, or 335% by lindane, iron, or their combined administration, respectively, and the hepatic content of protein carbonyls was elevated by 5.84-, 2.95-, and 10-fold. Colloidal carbon uptake by perfused livers was not modified by lindane and/or iron, whereas gadolinium chloride (GdCl(3)) pretreatment diminished uptake by 60-72%. Carbon-induced liver O(2) uptake was not altered by lindane, whereas iron produced a 61% increase and the combined treatment led to a 72% decrease over control values. Pretreatment with GdCl(3) abolished these effects in all groups. Lindane-treated rats showed acidophilic hepatocytes in periportal areas and some hepatic cells with nuclear pyknosis, whereas iron overload led to moderate hyperplasia and hypertrophy of Kupffer cells and moderate inflammatory cell infiltration. Combined lindane-iron treatment led to hepatocytes with pyknotic nuclei, significant acidophilia, and extensive lymphatic and neutrophil infiltration in the portal space. Hepatic myeloperoxidase activity increased by 1.1-, 2.1-, or 6.7-fold by lindane, iron, or their combined administration, respectively. Liver sinusoidal lactate dehydrogenase efflux increased by 2.2-fold (basal conditions) and 9.7-fold (carbon infusion) in the lindane-iron treated rats, effects that were diminished by 35 and 78% by GdCl(3) pretreatment, respectively. These data support the contention that lindane sensitizes the liver to the damaging effects of iron overload by providing an added enhancement to the oxidative stress status in the tissue, and this may contribute to the alteration of the respiratory activity of Kupffer cells and the development of an inflammatory response.
Collapse
Affiliation(s)
- B Junge
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
14
|
Boisier X, Schön M, Sepúlveda A, Basualdo A, Cornejo P, Bosco C, Carrión Y, Galleano M, Tapia G, Puntarulo S, Fernández V, Videla LA. Derangement of Kupffer cell functioning and hepatotoxicity in hyperthyroid rats subjected to acute iron overload. Redox Rep 2000; 4:243-50. [PMID: 10731099 DOI: 10.1179/135100099101534963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Liver oxidative stress, Kupffer cell functioning, and cell injury were studied in control rats and in animals subjected to L-3,3',5-tri-iodothyronine (T3) and/or acute iron overload. Thyroid calorigenesis with increased rates of hepatic O2 uptake was not altered by iron treatment, whereas iron enhanced serum and liver iron levels independently of T3. Liver thiobarbituric acid reactants formation increased by 5.8-, 5.7-, or 11.0-fold by T3, iron, or their combined treatment, respectively. Iron enhanced the content of protein carbonyls independently of T3 administration, whereas glutathione levels decreased in T3- and iron-treated rats (54%) and in T3Fe-treated animals (71%). Colloidal carbon infusion into perfused livers elicited a 109% and 68% increase in O2 uptake in T3 and iron-treated rats over controls. This parameter was decreased (78%) by the joint T3Fe administration and abolished by gadolinium chloride (GdCl3) pretreatment in all experimental groups. Hyperthyroidism and iron overload did not modify the sinusoidal efflux of lactate dehydrogenase, whereas T3Fe-treated rats exhibited a 35-fold increase over control values, with a 54% reduction by GdCl3 pretreatment. Histological studies showed a slight increase in the number or size of Kupffer cells in hyperthyroid rats or in iron overloaded animals, respectively. Kupffer cell hypertrophy and hyperplasia with presence of inflammatory cells and increased hepatic myeloperoxidase activity were found in T3Fe-treated rats. It is concluded that hyperthyroidism increases the susceptibility of the liver to the toxic effects of iron, which seems to be related to the development of a severe oxidative stress status in the tissue, thus contributing to the concomitant liver injury and impairment of Kupffer cell phagocytosis and particle-induced respiratory burst activity.
Collapse
Affiliation(s)
- X Boisier
- Programas de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 2000; 162:68-75. [PMID: 10631129 DOI: 10.1006/taap.1999.8833] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the previous study we showed that senescent male Fischer 344 rats were resistant to Cd-induced hepatotoxicity compared with young-adult rats. In the present study we investigated the role of Kupffer cells and inflammatory cytokines in this effect of aging. The phagocytic activity of Kupffer cells, determined as the removal of carbon from blood, was stimulated by the administration of a hepatotoxic dose of Cd (3 mg/kg sc) in young-adult (5 months) rats but not in old (28 months) rats. Hepatic concentrations of interleukin (IL)-1beta and cytokine-induced neutrophil chemoattractant (CINC), but not of tumor necrosis factor-alpha or IL-6, were elevated in young rats treated with Cd. In old rats, however, the increase in IL-1beta produced by Cd was not statistically significant and the increase in CINC was much lower than in young-adult rats. Pretreatment with gadolinium chloride or cyclosporin A inhibited the elevations in hepatic cytokines and attenuated Cd-induced liver damage, assessed on the basis of serum alanine aminotransferase and sorbitol dehydrogenase activities. Cd-induced hepatotoxicity in the different treatment groups correlated well with hepatic levels of CINC (r = 0.98, p < 0.001) but not with those of IL-1beta. The results suggest that (1) Kupffer cell activation is essential for inflammatory liver damage from Cd, (2) IL-1beta and CINC are important mediators of the inflammatory response induced by Cd, and (3) the attenuation of Cd-induced liver injury in senescent rats is caused by an impairment in Kupffer cell activation, leading to a lower production of CINC and less inflammatory liver injury.
Collapse
Affiliation(s)
- T Yamano
- Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | | | | |
Collapse
|
16
|
Sans J, Aguilera AM, Faundez P, Troncoso P, Fernandez V, Videla LA. Influence of copper-(II) on colloidal carbon-induced Kupffer cell-dependent oxygen uptake in rat liver: relation to hepatotoxicity. Free Radic Res 1999; 30:489-98. [PMID: 10400461 DOI: 10.1080/10715769900300531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Formation of reactive O2 species in biological systems can be accomplished by copper-(II) (Cu2+) catalysis, with the consequent cytotoxic response. We have evaluated the influence of Cu2+ on the respiratory activity of Kupffer cells in the perfused liver after colloidal carbon infusion. Studies were carried out in untreated rats and in animals pretreated with the Kupffer cell inactivator gadolinium chloride (GdCl3) or with the metallothionein (MT) inducing agent zinc sulphate, and results were correlated with changes in liver sinusoidal efflux of lactate dehydrogenase (LDH) as an index of hepatotoxicity. In the concentration range of 0.1-1 microM, Cu2+ did not modify carbon phagocytosis by Kupffer cells, whereas the carbon-induced liver O2 uptake showed a sigmoidal-type kinetics with a half-maximal concentration of 0.23 microM. Carbon-induced O2 uptake occurred concomitantly with an increased LDH efflux, effects that were significantly correlated and abolished by GdCl3 pretreatment or by MT induction. It is hypothesized that Cu2+ increases Kupffer cell-dependent O2 utilization by promotion of the free radical processes related to the respiratory burst of activated liver macrophages, which may contribute to the concomitant development of hepatocellular injury.
Collapse
Affiliation(s)
- J Sans
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|