1
|
Zeng Y, Zhang L, Zheng Z, Su J, Fu Y, Chen T, Lin K, Liu C, Huang H, Ou Q, Zeng Y. Targeted quantitative lipidomic uncovers lipid biomarkers for predicting the presence of compensated cirrhosis and discriminating decompensated cirrhosis from compensated cirrhosis. Clin Chem Lab Med 2024; 62:506-521. [PMID: 37924531 DOI: 10.1515/cclm-2023-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES This study aimed to characterize serum lipid metabolism and identify potential biomarkers for compensated cirrhosis (CC) predicting and decompensated cirrhosis (DC) discrimination using targeted quantitative lipidomics and machine learning approaches. METHODS Serum samples from a cohort of 120 participants was analyzed, including 90 cirrhosis patients (45 CC patients and 45 DC patients) and 30 healthy individuals. Lipid metabolic profiling was performed using targeted LC-MS/MS. Two machine learning methods, least absolute shrinkage and selection operator (LASSO), and random forest (RF) were applied to screen for candidate metabolite biomarkers. RESULTS The metabolic profiling analysis showed a significant disruption in patients with CC and DC. Compared to the CC group, the DC group exhibited a significant upregulation in the abundance of glycochenodeoxycholic acid (GCDCA), glyco-ursodeoxycholic acid (GUDCA), glycocholic acid (GCA), phosphatidylethanolamine (PE), N-acyl-lyso-phosphatidylethanolamine (LNAPE), and triglycerides (TG), and a significant downregulation in the abundance of ceramides (Cer) and lysophosphatidylcholines (LPC). Machine learning identified 11 lipid metabolites (abbreviated as BMP11) as potential CC biomarkers with excellent prediction performance, with an AUC of 0.944, accuracy of 94.7 %, precision of 95.6 %, and recall of 95.6 %. For DC discrimination, eight lipids (abbreviated as BMP8) were identified, demonstrating strong efficacy, with an AUC of 0.968, accuracy of 92.2 %, precision of 88.0 %, and recall of 97.8 %. CONCLUSIONS This study unveiled distinct lipidomic profiles in CC and DC patients and established robust lipid-based models for CC predicting and DC discrimination.
Collapse
Affiliation(s)
- Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Li Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Zhiyi Zheng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Jingyi Su
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Kun Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Huanhuan Huang
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Yongjun Zeng
- Department of Cardiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
2
|
Hernandez-Lara MA, Yadav SK, Shah SD, Okumura M, Yokoyama Y, Penn RB, Kambayashi T, Deshpande DA. Regulation of Airway Smooth Muscle Cell Proliferation by Diacylglycerol Kinase: Relevance to Airway Remodeling in Asthma. Int J Mol Sci 2022; 23:11868. [PMID: 36233170 PMCID: PMC9569455 DOI: 10.3390/ijms231911868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, generation of inositol triphosphate (IP3) and diacylglycerol (DAG). Diacylglycerol kinase (DGK) converts DAG into phosphatidic acid (PA) and terminates DAG signaling while promoting PA-mediated signaling and function. Herein, we hypothesized that PA is a pro-mitogenic second messenger in ASM, and DGK inhibition reduces the conversion of DAG into PA resulting in inhibition of ASM cell proliferation. We assessed the effect of pharmacological inhibition of DGK on pro-mitogenic signaling and proliferation in primary human ASM cells. Pretreatment with DGK inhibitor I (DGKI) significantly inhibited platelet-derived growth factor-stimulated ASM cell proliferation. Anti-mitogenic effect of DGKI was associated with decreased mTOR signaling and expression of cyclin D1. Exogenous PA promoted pro-mitogenic signaling and rescued DGKI-induced attenuation of ASM cell proliferation. Finally, house dust mite (HDM) challenge in wild type mice promoted airway remodeling features, which were attenuated in DGKζ-/- mice. We propose that DGK serves as a potential drug target for mitigating airway remodeling in asthma.
Collapse
Affiliation(s)
- Miguel Angel Hernandez-Lara
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Santosh K Yadav
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sushrut D Shah
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Kambayashi T, Deshpande DA. The role of diacylglycerol kinases in allergic airway disease. Curr Opin Pharmacol 2020; 51:50-58. [PMID: 32836013 DOI: 10.1016/j.coph.2020.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
Asthma is an obstructive inflammatory airway disease. Airway obstruction is mediated by hyperresponsive airway smooth muscle cell contraction, which is induced and compounded by inflammation caused by T lymphocytes. One important signal transduction pathway that is involved in the activation of these cell types involves the generation of a lipid second messenger known as diacylglycerol (DAG). DAG levels are controlled in cells by a negative regulator known as DAG kinase (DGK). In this review, we discuss how the DAG signaling pathway attenuates the pathological function of immune cells and airway smooth muscle cells in allergic airway disease and asthma. Furthermore, we discuss how the enhancement of the DAG signaling pathway through the inhibition of DGK may represent a novel therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
5
|
dos Santos GA, Ferreira MS, de Oliveira DN, de Oliveira V, Siqueira-Santos ES, Cintra DEC, Castilho RF, Velloso LA, Catharino RR. Identification of compounds from high-fat and extra virgin olive oil-supplemented diets in whole mouse liver extracts and isolated mitochondria using mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:951-958. [PMID: 26349651 DOI: 10.1002/jms.3609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 06/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a fatty liver disorder that could be improved with extra virgin olive oil (EVOO) supplementation in diet. We propose the monitoring, in whole mouse liver extracts and in isolated mitochondria, of the absorption of compounds from three different diets: standard (CT), high-fat (HFD) and high-fat supplemented with EVOO (HFSO). Male mice were submitted to one of the following three diets: CT or HFD for 16 weeks or HFD for 8 weeks followed by additional 8 weeks with HFSO. Following this period, liver was extracted for histological evaluation, mitochondria isolation and mass spectrometry analyses. Diets, liver extracts and Percoll-purified mitochondria were analyzed using ESI-MS and the lipidomics approach. Morphological, histological and spectrometric results indicated a decrease in NASH severity with EVOO supplementation in comparison with animals maintained with HFD. Spectrometric data also demonstrated that some compounds presented on the diets are absorbed by the mitochondria. EVOO was shown to be a potential therapeutic alternative in food for NASH. Our results are in accordance with the proposition that the major factor that influences different responses to diets is their composition - and not only calories - especially when it comes to studies on obesity.
Collapse
Affiliation(s)
| | - Mônica Siqueira Ferreira
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Diogo Noin de Oliveira
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Vanessa de Oliveira
- Sport Sciences Course, Faculty of Applied Sciences, University of Campinas, Campinas, SP, Brazil
| | - Edilene S Siqueira-Santos
- Experimental Neurodegeneration Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Roger Frigério Castilho
- Experimental Neurodegeneration Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
6
|
Egea-Jiménez AL, Corbalán-García S, Gómez-Fernández JC. The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCθ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1898-909. [DOI: 10.1016/j.bbamem.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
7
|
Zhao L, Gandhi CR, Gao ZH. Involvement of cytosolic phospholipase A2 alpha signalling pathway in spontaneous and transforming growth factor-beta-induced activation of rat hepatic stellate cells. Liver Int 2011; 31:1565-73. [PMID: 22093332 DOI: 10.1111/j.1478-3231.2011.02632.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 08/01/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) are extracellular matrix-producing cells that play a pivotal role in liver fibrogenesis. During liver injury and when cells are placed in vitro, HSCs undergo phenotypic transition from quiescent retinoid-storing cells to activated retinoid-deficient myofibroblast-like cells. Although several mediators including reactive oxygen species, platelet derived growth factor, transforming growth factor-beta (TGF-β) and tumour necrosis factor-alpha (TNF-α) were implicated in HSC activation, the cellular signalling pathways that regulate this process remain incompletely defined. AIMS The objectives of this study were to evaluate the role of cytosolic phospholipase A(2) alpha (cPLA(2)α) and peroxisome proliferator-activated receptor-beta/delta (PPAR-β/δ) in HSC activation. METHODS Rat HSCs were isolated, purified, cultured and stimulated with TGF-β1 in the presence or absence of the selective cPLA(2)α inhibitor, arachidonyltrifluoromethyl ketone (AACOCF(3)). The activation status of HSC was evaluated by immunofluorescent staining of alpha-smooth muscle actin (α-SMA) and by measuring the expression of cPLA(2)α, cyclooxygenase 2 (COX-2) and PPAR-β/δ using western blot analysis. RESULTS Rapid and significant increase in cPLA(2)α expression was observed during activation of HSCs. These events preceded the elevation of PPAR-β/δ and the expression of α-SMA. Elevated expression of cPLA(2)α, but not COX-2, was also observed during TGF-β-induced HSC activation. The TGF-β-induced α-SMA expression was blocked by AACOCF(3). Furthermore, transfection of a cPLA(2)α expression vector enhanced the transcription activity of PPAR-β/δ and the expression of α-SMA in HSCs. CONCLUSION cPLA(2)α-mediated induction of PPAR-β/δ is a novel intracellular signalling pathway in spontaneous and TGF-β induced activation of HSCs and could be a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Liena Zhao
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
| | | | | |
Collapse
|
8
|
Tajima K, Terai S, Takami T, Kawaguchi K, Okita K, Sakaida I. Importance of inhibitor of DNA binding/differentiation 2 in hepatic stellate cell differentiation and proliferation. Hepatol Res 2007; 37:647-55. [PMID: 17559421 DOI: 10.1111/j.1872-034x.2007.00089.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM In liver fibrosis, activated hepatic stellate cells (HSC) are transformed into myofibroblasts. Helix-loop-helix (HLH) transcriptional factors such as MyoD regulate the differentiation of myocytes, and the inhibitor of DNA binding/differentiation (Id) family comprises dominant negative HLH transcriptional regulators that inhibit differentiation and promote cell proliferation. In the present study, we investigated how the Id family proteins regulate HSC. METHODS In primary rat HSC, inhibitor of DNA binding/differentiation (Id)2 and alpha-smooth muscle actin (alpha-SMA) mRNA expression increased 4 days after isolation. Next we established Id2 expressing HSC (HSC-T6-Id2-green fluorescent protein (GFP)) using HSC-T6 cells with retrovirus that expressed GFP-tagged Id2. RESULTS HSC-T6-Id2-GFP increased cell proliferation with cyclin D1 expression. In contrast, alpha-SMA expression wassuppressed. Real-time reverse transcription-polymerase chain reaction analysis showed Id2 induction significantly suppressed alpha-SMA, collagen-1, matrix metalloproteinase (MMP)-2, and MMP-9 mRNA (P < 0.05) but had no effect on tissue inhibitor of metalloproteinase or transforming growth factor-beta1 levels. CONCLUSION These findings suggest Id2, an HLH transcriptional regulator, plays an important regulatory role in the proliferation and differentiation of HSC.
Collapse
Affiliation(s)
- Kunihiko Tajima
- Department of Molecular Science and Applied Medicine (Gastroenterology and Hepatology), Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Hester SD, Wolf DC, Nesnow S, Thai SF. Transcriptional profiles in liver from rats treated with tumorigenic and non-tumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil. Toxicol Pathol 2007; 34:879-94. [PMID: 17178689 DOI: 10.1080/01926230601047824] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Conazoles are a class of fungicides used as pharmaceutical and agricultural agents. In chronic bioassays in rats, triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland, whereas, propiconazole and myclobutanil were hepatotoxic but had no effect on the thyroid gland. These conazoles administered in the feed to male Wistar/Han rats were found to induce hepatomegaly, induce high levels of pentoxyresorufin-O-dealkylase, increase cell proliferation in the liver, increase serum cholesterol, decrease serum T3 and T4, and increase hepatic uridine diphosphoglucuronosyl transferase activity. The goal of the present study was to define pathways that explain the biologic outcomes. Male Wistar/Han rats (3 per group), were exposed to the 3 conazoles in the feed for 4, 30, or 90 days of treatment at tumorigenic and nontumorigenic doses. Hepatic gene expression was determined using high-density Affymetrix GeneChips (Rat 230_2). Differential gene expression was assessed at the probe level using Robust Multichip Average analysis. Principal component analysis by treatment and time showed within group sample similarity and that the treatment groups were distinct from each other. The number of altered genes varied by treatment, dose, and time. The greatest number of altered genes was induced by triadimefon and propiconazole after 90 days of treatment, while myclobutanil had minimal effects at that time point. Pathway level analyses revealed that after 90 days of treatment the most significant numbers of altered pathways were related to cell signaling, growth, and metabolism. Pathway level analysis for triadimefon and propiconazole resulted in 71 altered pathways common to both chemicals. These pathways controlled cholesterol metabolism, activation of nuclear receptors, and N-ras and K-ras signaling. There were 37 pathways uniquely changed by propiconazole, and triadimefon uniquely altered 34 pathways. Pathway level analysis of altered gene expression resulted in a more complete description of the associated toxicological effects that can distinguish triadimefon from propiconazole and myclobutanil.
Collapse
Affiliation(s)
- Susan D Hester
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | |
Collapse
|
10
|
Jin JO, Park HY, Kim JW, Park JI, Hong YS, Min DS, Kwak JY. Phosphatidic acid induces the differentiation of human acute promyelocytic leukemic cells into dendritic cell-like. J Cell Biochem 2007; 100:191-203. [PMID: 16924673 DOI: 10.1002/jcb.21054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated whether phosphatidic acid (PA) can differentiate the promyelocytic leukemia (PML)-retinoic acid receptor alpha (RAR alpha)-expressing acute promyelocytic leukemic cell line, NB4, to dendritic cell (DC)-like cells. Dioctanoyl-PA alone upregulated the expression of DC markers. The expression of DC markers on NB4 cells was potentiated by the overexpression of phospholipase D and upregulation was blocked by the addition of n-butanol, an inhibitor of PA production. The expression of CD11c, CD83, and CCR7 in PA-treated NB4 cells was further increased by tumor necrosis factor (TNF)-alpha treatment. Increased functional capacities were also found in PA-differentiated and TNF-alpha-activated NB4 cells with respect to changes in T-cell proliferation, cytokine production, endocytic activity, and cytolytic capacity against undifferentiated NB4 cells. PA alone increased the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2. The expression of DC markers was downregulated by PD98059, a specific inhibitor of ERK kinase or transient transfection of mutant-ERK. The level of PML-RAR alpha fusion protein was decreased by PA treatment and PD98059 blocked the decrease of PML-RAR alpha. These results suggest that PA induces differentiation of NB4 cells into DC-like cells and that the upregulation of antigen presenting cell markers is mediated by the activation of ERK and the downregulation of PML-RAR alpha levels.
Collapse
Affiliation(s)
- Jun-O Jin
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Benitez-Rajal J, Lorite MJ, Burt AD, Day CP, Thompson MG. Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. Am J Physiol Gastrointest Liver Physiol 2006; 291:G977-86. [PMID: 17030901 DOI: 10.1152/ajpgi.00041.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously provided evidence suggesting that phosphatidic acid, possibly derived from the hydrolysis of phosphatidylcholine by phospholipase D (PLD), is involved in platelet-derived growth factor (PDGF)-mediated increases in extracellular signal-regulated kinase (ERK) activity and DNA synthesis in rat hepatic stellate cells (HSC), the primary fibrogenic cells of the liver. A recent study has shown the presence of P2Y nucleotide receptors on HSC that are coupled to contraction and synthesis of the matrix component, alpha1-procollagen, leading to the suggestion that they may represent a new therapeutic target in the treatment of liver fibrosis. However, although extracellular nucleotides have been shown to stimulate both PLD and ERK, and to elicit proliferation of fibrogenic cells outside the liver, their effect on these parameters in HSC have not yet been investigated. PLD activity was determined by [3H]choline release and [3H]phosphatidylbutanol production, ERK activity by Western blotting, and DNA synthesis by [3H]thymidine incorporation. We report here, for the first time in HSC, that extracellular nucleotides stimulate PLD activity and a sustained activation of ERK. However, in contrast to PDGF, nucleotides had negligible effects on DNA synthesis. Moreover, the effects of PDGF and nucleotides on PLD and ERK were not additive, suggesting activation of the same PLD isoform and pool of ERK. The data demonstrate that nucleotide-stimulated PLD and ERK activities are not coupled to DNA synthesis in HSC. Instead, these responses may be linked to other phenotypic changes associated with activated HSC such as increases in contraction, motility, or extracellular matrix deposition.
Collapse
Affiliation(s)
- Joaquin Benitez-Rajal
- Centre for Liver Research, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Zhang XL, Liu JM, Yang CC, Zheng YL, Liu L, Wang ZK, Jiang HQ. Dynamic expression of extracellular signal-regulated kinase in rat liver tissue during hepatic fibrogenesis. World J Gastroenterol 2006; 12:6376-6381. [PMID: 17072965 PMCID: PMC4088150 DOI: 10.3748/wjg.v12.i39.6376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 07/08/2006] [Accepted: 07/18/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether extracellular signal-regulated kinase 1 (ERK(1)) is activated and associated with hepatic stellate cell (HSC) proliferation in fibrotic rat liver tissue. METHODS Rat hepatic fibrosis was induced by bile duct ligation (BDL). Histopathological changes were evaluated by hematoxylin and eosin staining, and Masson's trichrome method. ERK(1) mRNA in rat liver tissue was determined by reverse transcription-polymerase chain reaction, while the distribution of ERK(1) was assessed by immunohistochemistry. ERK(1) protein was detected by Western blotting analysis. The number of activated HSCs was quantified after alpha smooth muscle actin (alpha-SMA) staining. RESULTS With the development of hepatic fibrosis, the positive staining cells of alpha-SMA increased obviously, and mainly resided in the portal ducts. Fiber septa and perisinuses were accompanied with proliferating bile ducts. The positive staining areas of the rat livers in model groups 1-4 wk after ligation of common bile duct (12.88% +/- 2.63%, 22.65% +/- 2.16%, 27.45% +/- 1.86%, 35.25% +/- 2.34%, respectively) were significantly larger than those in the control group (5.88% +/- 1.46%, P < 0.01). With the development of hepatic fibrosis, the positive cells of ERK(1) increased a lot, and were mainly distributed in portal ducts, fiber septa around the bile ducts, vascular endothelial cells and perisinusoidal cells. Western blotting analysis displayed that the expression of ERK(1) and ERK(2) protein was up-regulated during the model course, and its level was the highest 4 wk after operation, being 3.9-fold and 7.2-fold higher in fibrotic rat liver than in controls. ERK(1) mRNA was expressed in normal rat livers as well, which was up-regulated two days after BDL and reached the highest 4 wk after BDL. The expression of ERK(1) was positively correlated with alpha-SMA expression (r = 0.958, P < 0.05). CONCLUSION The expression of ERK(1) protein and mRNA is greatly increased in fibrotic rat liver tissues, which may play a key role in HSC proliferation and hepatic fibrogenesis.
Collapse
Affiliation(s)
- Xiao-Lan Zhang
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Breitkopf K, Sawitza I, Gressner AM. Characterization of intracellular pathways leading to coinduction of thrombospondin-1 and TGF-beta1 expression in rat hepatic stellate cells. Growth Factors 2005; 23:77-85. [PMID: 16019429 DOI: 10.1080/08977190500095980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating evidence has identified Thrombospondin (TSP)-1 as important activator of latent TGF-beta. Since little is known about signal transduction pathways regulating TSP expression in liver, we investigated cytokine-mediated upregulation of TSP-1 and TGF-beta1 in primary rat hepatic stellate cells (HSC). PDGF-BB and TNF-a rapidly coinduce mRNA levels of TSP-1 and TGF-beta1. Interestingly, blockade of basal Erk activity by synthetic Erk-binding peptides also leads to strong induction of both mRNA transcripts in non-stimulated cells. We show that PDGF-BB induces TSP-1 and TGF-beta1 via the src kinase pathway whereas TNF-a utilizes the MAPK/Erk pathway. However, especially TSP-1 induction by both cytokines involves a pathway, which depends to a certain extent on PI3 kinase activity. In summary the data illustrate specific pathways activated by PDGF-BB and TNF-a in HSC giving new insights into the tightly controlled mechanisms regulating TSP-1 and TGF-beta1 expression in these cells.
Collapse
Affiliation(s)
- Katja Breitkopf
- Mol. Alcohol Research in Gastroenterology, Department of Medicine II, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
14
|
Lee HY, Kang HK, Yoon HR, Kwak JY, Bae YS. Lysophosphatidic acid is a mediator of Trp-Lys-Tyr-Met-Val-d-Met-induced calcium influx. Biochem Biophys Res Commun 2004; 324:458-65. [PMID: 15465041 DOI: 10.1016/j.bbrc.2004.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/16/2022]
Abstract
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.
Collapse
Affiliation(s)
- Ha-Young Lee
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Xu Y, Fang Y, Chen J, Prestwich GD. Activation of mTOR signaling by novel fluoromethylene phosphonate analogues of phosphatidic acid. Bioorg Med Chem Lett 2004; 14:1461-4. [PMID: 15006382 DOI: 10.1016/j.bmcl.2004.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/30/2003] [Accepted: 01/12/2004] [Indexed: 11/22/2022]
Abstract
Phosphonate analogues of phosphatidic acid (PA) were synthesized in which the bridging oxygen was replaced by an alpha-monofluoromethylene (-CHF-) or alpha-difluoromethylene (-CF(2)-) moiety using hydrolytic kinetic resolution (HKR) of a racemic epoxide as the key step. Since PA activates signaling in the mTOR (mammalian target of rapamycin) pathway, these metabolically stabilized PA analogues were evaluated in quiescent HEK 293 cells. Most of these analogues surpassed PA in activating S6 kinase, a downstream target of mTOR signaling. The unnatural (2R) analogues were more slightly active than the natural (2S) enantiomers for both the mono- and difluoromethylene phosphonates.
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | |
Collapse
|
16
|
Lee YN, Lee HY, Kang HK, Kwak JY, Bae YS. Phosphatidic acid positively regulates LPS-induced differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Biochem Biophys Res Commun 2004; 318:839-45. [PMID: 15147947 DOI: 10.1016/j.bbrc.2004.04.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Indexed: 11/30/2022]
Abstract
Phosphatidic acid (PA) is an important second messenger produced by the activation of numerous cell surface receptors. Recent data have suggested that PA regulates multiple cellular processes. In this study, we found that PA positively regulates the lipopolysaccharide (LPS)-induced differentiation of RAW264.7 murine macrophage cells into dendritic-like cells. Co-treatment of PA with LPS further increased dendritic cell surface marker expressions (CD80, CD86, CD40, MHC class I, and class II antigens) and reduced the phagocytic activity of LPS-treated cells. Moreover, PA up regulated allostimulatory activity and the secretion of IL-12 in LPS-treated RAW264.7 cells. Taken together, these data indicate that PA might play a role in the LPS-mediated differentiation of macrophage cells into dendritic-like cells.
Collapse
Affiliation(s)
- Youl-Nam Lee
- Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Lim HK, Choi YA, Park W, Lee T, Ryu SH, Kim SY, Kim JR, Kim JH, Baek SH. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem 2003; 278:45117-27. [PMID: 12960176 DOI: 10.1074/jbc.m303789200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are pivotal effector cells in the innate immune system. When microbial products bind to pathogen recognition receptors, macrophages are activated and release a broad array of mediators, such as cytokines, that orchestrate the inflammatory responses of the host. Phosphatidic acid (PA) has been implicated as an important metabolite of phospholipid biosynthesis and in membrane remodeling and has been further suggested to be a crucial second messenger in various cellular signaling events. Here we show that PA is an essential regulator of inflammatory response. Deleterious effects of PA are associated with the secretion of proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and the production of nitric oxide, prostaglandin E2, which are predominantly released by macrophage Raw264.7 cells. Furthermore, the administration of PA to mice increased the serum cytokine level. Moreover, direct or lipopolysaccharide-induced PA accumulation by macrophages led to the Akt-dependent activation of the mammalian target of rapamycin-p70 S6 kinase 1, a process required for the induction of inflammatory mediators. These findings demonstrate the importance of the role of PA in systemic inflammatory responses, and provide a potential usefulness as specific targets for the development of therapies.
Collapse
Affiliation(s)
- Hyung-Kyu Lim
- Department of Biochemistry & Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang L, Zhang CZ, Zhu QJ. Kangxian ruangan keli inhibits hepatic stellate cell proliferation mediated by PDGF. World J Gastroenterol 2003; 9:2050-3. [PMID: 12970904 PMCID: PMC4656672 DOI: 10.3748/wjg.v9.i9.2050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Kangxian ruangan keli (KXR) on hepatic stellate cell (HSC) proliferation mediated by platelet-derived growth factor (PDGF) and the underlying mechanism.
METHODS: In a serum-free culture system, HSCs were treated with a KXR preparation for 24 h, followed by stimulation with PDGF-BB for 24 h. Then the cells were incubated again in the medium containing KXR for 3 h stimulated with PDGF-BB for 5 minutes, and collected. The proliferation of HSC was examined using an MTT assay and flow cytometry. Tyrosine phosphorylation was detected with Western blotting and visualized by the enhenced chemiluminescent (ECL) method.
RESULTS: The OD values for the HSCs growing in the media without and with addition of PDGF were 0.17 ± 0.06 and 0.82 ± 0.05, respectively. The PDGF-induced increase was hindered remarkably by KXR preparation in a dose-dependent manner. The reaction values for the systems with 5 mg/mL, 2.5 mg/mL and 1.25 mg/mL of KXR were 0.28 ± 0.03, 0.37 ± 0.02 and 0.43 ± 0.04, respectively. Moreover, the percentages of S-phase cells in these KXR-containing culture systems were 10.95 ± 1.35, 32.76 ± 1.07 and 43.19 ± 1.09, respectively, all of which were significantly lower than that in the culture free of KXR (68.24 ± 2.72). In addition, the values for tyrosine-phosphorylated protein in HSCs treated with 5 mg/mL and 1.25 mg/mL of KXR were 0.1349 ± 0.0072 and 0.1658 ± 0.0025, respectively, which were smaller than that in the cells treated only with PDGF-BB (0.1813 ± 0.0117).
CONCLUSION: Within the dose range used in the present study, KXR preparation shows an inhibitory effect on HSC proliferation induced by PDGF. The mechanism of this process may involve interference with tyrosine phosphorylation mediated by PDGF.
Collapse
Affiliation(s)
- Ling Yang
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | | | | |
Collapse
|
19
|
Liang ZW, Zhang G, Wang TC. Extracellular signal-regulated kinase in liver fibrogenesis of rat. Shijie Huaren Xiaohua Zazhi 2003; 11:730-732. [DOI: 10.11569/wcjd.v11.i6.730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of ERK signal transduction pathway in the pathogenesis of liver fibrosis via investigating the expression and distribution of ERK1 in rats with liver fibrosis.
METHODS Liver fibrosis model of rats were made by subcutaneously injecting with CCl4. Thirty-two male SD rats (weight 250-300 g) were randomly scarified at 1, 4 and 8 weeks after injection of CCl4 respectively, and their liver were used to detect ERK1 expression by immunohistochemical staining.
RESULTS The expression of ERK1 in rats after injection with CCl4 were found chiefly in hepatic stellate cells(HSC)and all significantly higher than those in normal rats(P<0.05). Moreover, it presented with a progressive tendency for the expression of ERK1 in rats respectively at 1st, 4th and 8th week after injection with CCl4 (P<0.05).
CONCLUSION The activation of ERK signal transduction pathway enhances HSC proliferation, and it may play an important role in liver fibrogenesis in rat.
Collapse
Affiliation(s)
- Zeng-Wen Liang
- Department of Digestive Diseases, People`S Hospital, Nanning 530021, Guangxi Zhuang Nationality Autonomous Region, China
| | - Guo Zhang
- Department of Digestive Diseases, People`S Hospital, Nanning 530021, Guangxi Zhuang Nationality Autonomous Region, China
| | - Tian-Cai Wang
- Hepatic Institute, Tongji Medical College, Huazhong Univensity of Sciense and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
20
|
Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001; 294:1942-5. [PMID: 11729323 DOI: 10.1126/science.1066015] [Citation(s) in RCA: 814] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian target of rapamycin (mTOR) governs cell growth and proliferation by mediating the mitogen- and nutrient-dependent signal transduction that regulates messenger RNA translation. We identified phosphatidic acid (PA) as a critical component of mTOR signaling. In our study, mitogenic stimulation of mammalian cells led to a phospholipase D-dependent accumulation of cellular PA, which was required for activation of mTOR downstream effectors. PA directly interacted with the domain in mTOR that is targeted by rapamycin, and this interaction was positively correlated with mTOR's ability to activate downstream effectors. The involvement of PA in mTOR signaling reveals an important function of this lipid in signal transduction and protein synthesis, as well as a direct link between mTOR and mitogens. Furthermore, these studies suggest a potential mechanism for the in vivo actions of the immunosuppressant rapamycin.
Collapse
Affiliation(s)
- Y Fang
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, B107, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|