1
|
Zheng 征亦诚 Y, Zhou 周信羽 X, Moseley SC, Ragsdale SM, Alday LJ, Wu 吴畏 W, Wilber AA. A Hippocampal-Parietal Network for Reference Frame Coordination. J Neurosci 2025; 45:e1782242025. [PMID: 39909564 PMCID: PMC12019118 DOI: 10.1523/jneurosci.1782-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Navigating space and forming memories based on spatial experience are crucial for survival, including storing memories in an allocentric (map-like) framework and conversion into egocentric (body-centered) action. The hippocampus and parietal cortex (PC) comprise a network for coordinating these reference frames, though the mechanism remains unclear. We used a task requiring remembering previous spatial locations to make correct future action and observed that hippocampus can encode the allocentric place, while PC encodes upcoming actions and relays this to hippocampus. Transformation from location to action unfolds gradually, with "Came From" signals diminishing and future action representations strengthening. PC sometimes encodes previous spatial locations in a route-based reference frame and conveys this to hippocampus. The signal for the future location appears first in PC, and then in hippocampus, in the form of an egocentric direction of future goal locations, suggesting egocentric encoding recently observed in hippocampus may originate in PC (or another "upstream" structure). Bidirectional signaling is apparent between PC and hippocampus and suggests a coordinated mechanism for integrating allocentric, route-centered, and egocentric spatial reference frames at the network level during navigation.
Collapse
Affiliation(s)
- Yicheng Zheng 征亦诚
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Xinyu Zhou 周信羽
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Shawn C Moseley
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Sydney M Ragsdale
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Leslie J Alday
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Wei Wu 吴畏
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Aaron A Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
2
|
Rosenblum HL, Kim S, Stout JJ, Klintsova AY, Griffin AL. Choice Behaviors and Prefrontal-Hippocampal Coupling Are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. J Neurosci 2025; 45:e1241242025. [PMID: 39900497 PMCID: PMC11884398 DOI: 10.1523/jneurosci.1241-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC) and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as male and female AE and sham-intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared with the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06030
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
3
|
Easton A, Horner AJ, James SJ, Kendal J, Sutton J, Ainge JA. Context in memory is reconstructed, not encoded. Neurosci Biobehav Rev 2024; 167:105934. [PMID: 39477177 DOI: 10.1016/j.neubiorev.2024.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Context has long been regarded as an important element of long-term memory, and episodic memory in particular. The ability to remember not only the object or focus of a memory but also contextual details allow us to reconstruct integrated representations of events. However, despite its prevalence in the memory literature, context remains difficult to define and identify, with different studies using context to refer to different sets of stimuli or concepts. These varying definitions of context have not prevented it from being a key element of many models of memory. Within these models, context is usually explicitly encoded as an element of an event and processed through different neural pathways to other elements of the event, such as objects. Here we challenge the notion that context in memory is encoded. We offer an alternative where context in memory takes a variety of forms depending on the question being asked. We propose events are simply encoded, but the focus of retrieval (object) and context are not defined until recall.
Collapse
Affiliation(s)
| | - Aidan J Horner
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK
| | - Simon J James
- Department of English Studies, Durham University, UK
| | | | - John Sutton
- Department of Philosophy, University of Stirling, UK; Centre for the Sciences of Place and Memory, University of Stirling, UK
| | - James A Ainge
- School of Psychology & Neuroscience, University of St Andrews, UK
| |
Collapse
|
4
|
Collaro E, Barton RA, Ainge JA, Easton A. Measuring episodic memory and mental time travel: crossing the species gap. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230406. [PMID: 39278250 PMCID: PMC11449166 DOI: 10.1098/rstb.2023.0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024] Open
Abstract
Mental time travel is the projection of the mind into the past or future, and relates to experiential aspects of episodic memory, and episodic future thinking. Framing episodic memory and future thinking in this way causes a challenge when studying memory in animals, where demonstration of this mental projection is prevented by the absence of language. However, there is good evidence that non-human animals pass tests of episodic memory that are based on behavioural criteria, meaning a better understanding needs to be had of the relationship between episodic memory and mental time travel. We argue that mental time travel and episodic memory are not synonymous, and that mental time travel is neither a requirement of, nor an irrelevance to, episodic memory. Mental time travel can allow improved behavioural choices based on episodic memory, and work in all species (including humans) should include careful consideration of the behavioural outputs being measured. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Eli Collaro
- Department of Anthropology, Durham University , Durham, UK
| | | | - James A Ainge
- School of Psychology and Neuroscience, University of St Andrews , St Andrews, UK
| | | |
Collapse
|
5
|
Balcerek E, Włodkowska U, Czajkowski R. FOS mapping reveals two complementary circuits for spatial navigation in mouse. Sci Rep 2024; 14:21252. [PMID: 39261637 PMCID: PMC11391074 DOI: 10.1038/s41598-024-72272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we show that during continuous navigation in a dynamic external environment, mice are capable of developing a foraging strategy based exclusively on changing distal (allothetic) information and that this process may involve two alternative components of the spatial memory circuit: the hippocampus and retrosplenial cortex. To this end, we designed a novel custom apparatus and implemented a behavioral protocol based on the figure-8-maze paradigm with two goal locations associated with distinct contexts. We assessed whether mice are able to learn to retrieve a sequence of rewards guided exclusively by the changing context. We found out that training mice in the apparatus leads to change in strategy from the internal tendency to alternate into navigation based exclusively on visual information. This effect could be achieved using two different training protocols: prolonged alternation training, or a flexible protocol with unpredictable turn succession. Based on the c-FOS mapping we also provide evidence of opposing levels of engagement of hippocampus and retrosplenial cortex after training of mice in these two different regimens. This supports the hypothesis of the existence of parallel circuits guiding spatial navigation, one based on the well-described hippocampal representation, and another, RSC-dependent.
Collapse
Affiliation(s)
- Edyta Balcerek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Włodkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Rafał Czajkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
6
|
Raju RV, Guntupalli JS, Zhou G, Wendelken C, Lázaro-Gredilla M, George D. Space is a latent sequence: A theory of the hippocampus. SCIENCE ADVANCES 2024; 10:eadm8470. [PMID: 39083616 PMCID: PMC11290523 DOI: 10.1126/sciadv.adm8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Fascinating phenomena such as landmark vector cells and splitter cells are frequently discovered in the hippocampus. Without a unifying principle, each experiment seemingly uncovers new anomalies or coding types. Here, we provide a unifying principle that the mental representation of space is an emergent property of latent higher-order sequence learning. Treating space as a sequence resolves numerous phenomena and suggests that the place field mapping methodology that interprets sequential neuronal responses in Euclidean terms might itself be a source of anomalies. Our model, clone-structured causal graph (CSCG), employs higher-order graph scaffolding to learn latent representations by mapping aliased egocentric sensory inputs to unique contexts. Learning to compress sequential and episodic experiences using CSCGs yields allocentric cognitive maps that are suitable for planning, introspection, consolidation, and abstraction. By explicating the role of Euclidean place field mapping and demonstrating how latent sequential representations unify myriad observed phenomena, our work positions the hippocampus in a sequence-centric paradigm, challenging the prevailing space-centric view.
Collapse
|
7
|
Rosenblum HL, Kim S, Stout JJ, Klintsova A, Griffin AL. Deliberative Behaviors and Prefrontal-Hippocampal Coupling are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605480. [PMID: 39131304 PMCID: PMC11312474 DOI: 10.1101/2024.07.28.605480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC), thalamic nucleus reuniens, and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as AE and sham intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared to the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Anna Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
9
|
Ventura S, Duncan S, Ainge JA. Increased flexibility of CA3 memory representations following environmental enrichment. Curr Biol 2024; 34:2011-2019.e7. [PMID: 38636511 DOI: 10.1016/j.cub.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Environmental enrichment (EE) improves memory, particularly the ability to discriminate similar past experiences.1,2,3,4,5,6 The hippocampus supports this ability via pattern separation, the encoding of similar events using dissimilar memory representations.7 This is carried out in the dentate gyrus (DG) and CA3 subfields.8,9,10,11,12 Upregulation of adult neurogenesis in the DG improves memory through enhanced pattern separation.1,2,3,4,5,6,11,13,14,15,16 Adult-born granule cells (abGCs) in DG are suggested to contribute to pattern separation by driving inhibition in regions such as CA3,13,14,15,16,17,18 leading to sparser, nonoverlapping representations of similar events (although a role for abGCs in driving excitation in the hippocampus has also been reported16). Place cells in the hippocampus contribute to pattern separation by remapping to spatial and contextual alterations to the environment.19,20,21,22,23,24,25,26,27 How spatial responses in CA3 are affected by EE and input from increased numbers of abGCs in DG is, however, unknown. Here, we investigate the neural mechanisms facilitating improved memory following EE using associative recognition memory tasks that model the automatic and integrative nature of episodic memory. We find that EE-dependent improvements in difficult discriminations are related to increased neurogenesis and sparser memory representations across the hippocampus. Additionally, we report for the first time that EE changes how CA3 place cells discriminate similar contexts. CA3 place cells of enriched rats show greater spatial tuning, increased firing rates, and enhanced remapping to contextual changes. These findings point to more precise and flexible CA3 memory representations in enriched rats, which provides a putative mechanism for EE-dependent improvements in fine memory discrimination.
Collapse
Affiliation(s)
- Silvia Ventura
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK
| | - Stephen Duncan
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK; School of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA
| | - James A Ainge
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK.
| |
Collapse
|
10
|
Varga V, Petersen P, Zutshi I, Huszar R, Zhang Y, Buzsáki G. Working memory features are embedded in hippocampal place fields. Cell Rep 2024; 43:113807. [PMID: 38401118 PMCID: PMC11044127 DOI: 10.1016/j.celrep.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024] Open
Abstract
Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this distinction corresponds to separate neuron types or a context-dependent continuum has been debated. We report here that the task-context ("splitter") feature is highly variable along both trial and spatial position axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered. Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that place or splitter features are different manifestations of the same hippocampal computation.
Collapse
Affiliation(s)
- Viktor Varga
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Subcortical Modulation Research Group, Institute of Experimental Medicine - Hungarian Research Network, Budapest, Hungary
| | - Peter Petersen
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ipshita Zutshi
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Roman Huszar
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Yiyao Zhang
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience and Physiology, Langone Health, New York University, New York, NY, USA; Department of Neurology, Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
11
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Forro T, Klausberger T. Differential behavior-related activity of distinct hippocampal interneuron types during odor-associated spatial navigation. Neuron 2023:S0896-6273(23)00380-X. [PMID: 37279749 DOI: 10.1016/j.neuron.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Hippocampal pyramidal cells represent an animal's position in space together with specific contexts and events. However, it is largely unknown how distinct types of GABAergic interneurons contribute to such computations. We recorded from the intermediate CA1 hippocampus of head-fixed mice exhibiting odor-to-place memory associations during navigation in a virtual reality (VR). The presence of an odor cue and its prediction of a different reward location induced a remapping of place cell activity in the virtual maze. Based on this, we performed extracellular recording and juxtacellular labeling of identified interneurons during task performance. The activity of parvalbumin (PV)-expressing basket, but not of PV-expressing bistratified cells, reflected the expected contextual change in the working-memory-related sections of the maze. Some interneurons, including identified cholecystokinin-expressing cells, decreased activity during visuospatial navigation and increased activity during reward. Our findings suggest that distinct types of GABAergic interneuron are differentially involved in cognitive processes of the hippocampus.
Collapse
Affiliation(s)
- Thomas Forro
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Chen L, Lin X, Ye Q, Nenadic Z, Holmes TC, Nitz DA, Xu X. Anatomical organization of temporally correlated neural calcium activity in the hippocampal CA1 region. iScience 2023; 26:106703. [PMID: 37250317 PMCID: PMC10214731 DOI: 10.1016/j.isci.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/27/2022] [Accepted: 04/15/2023] [Indexed: 05/31/2023] Open
Abstract
Hippocampal CA1 neuronal ensembles generate sequential patterns of firing activity that contribute to episodic memory formation and spatial cognition. Here we used in vivo calcium imaging to record neural ensemble activities in mouse hippocampal CA1 and identified CA1 excitatory neuron sub-populations whose members are active across the same second-long period of time. We identified groups of hippocampal neurons sharing temporally correlated neural calcium activity during behavioral exploration and found that they also organized as clusters in anatomical space. Such clusters vary in membership and activity dynamics with respect to movement in different environments, but also appear during immobility in the dark suggesting an internal dynamic. The strong covariance between dynamics and anatomical location within the CA1 sub-region reveals a previously unrecognized form of topographic representation in hippocampus that may guide generation of hippocampal sequences across time and therefore organize the content of episodic memory.
Collapse
Affiliation(s)
- Lujia Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Qiao Ye
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697- 4560, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Douglas A. Nitz
- Department of Cognitive Science, University of California, La Jolla, La Jolla, CA 92093, San Diego
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697-3435, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Alexander AS, Robinson JC, Stern CE, Hasselmo ME. Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus. Hippocampus 2023; 33:465-487. [PMID: 36861201 PMCID: PMC10403145 DOI: 10.1002/hipo.23513] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
This paper reviews the recent experimental finding that neurons in behaving rodents show egocentric coding of the environment in a number of structures associated with the hippocampus. Many animals generating behavior on the basis of sensory input must deal with the transformation of coordinates from the egocentric position of sensory input relative to the animal, into an allocentric framework concerning the position of multiple goals and objects relative to each other in the environment. Neurons in retrosplenial cortex show egocentric coding of the position of boundaries in relation to an animal. These neuronal responses are discussed in relation to existing models of the transformation from egocentric to allocentric coordinates using gain fields and a new model proposing transformations of phase coding that differ from current models. The same type of transformations could allow hierarchical representations of complex scenes. The responses in rodents are also discussed in comparison to work on coordinate transformations in humans and non-human primates.
Collapse
Affiliation(s)
- Andrew S Alexander
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Jennifer C Robinson
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Chantal E Stern
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Duvelle É, Grieves RM, van der Meer MAA. Temporal context and latent state inference in the hippocampal splitter signal. eLife 2023; 12:e82357. [PMID: 36622350 PMCID: PMC9829411 DOI: 10.7554/elife.82357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
The hippocampus is thought to enable the encoding and retrieval of ongoing experience, the organization of that experience into structured representations like contexts, maps, and schemas, and the use of these structures to plan for the future. A central goal is to understand what the core computations supporting these functions are, and how these computations are realized in the collective action of single neurons. A potential access point into this issue is provided by 'splitter cells', hippocampal neurons that fire differentially on the overlapping segment of trajectories that differ in their past and/or future. However, the literature on splitter cells has been fragmented and confusing, owing to differences in terminology, behavioral tasks, and analysis methods across studies. In this review, we synthesize consistent findings from this literature, establish a common set of terms, and translate between single-cell and ensemble perspectives. Most importantly, we examine the combined findings through the lens of two major theoretical ideas about hippocampal function: representation of temporal context and latent state inference. We find that unique signature properties of each of these models are necessary to account for the data, but neither theory, by itself, explains all of its features. Specifically, the temporal gradedness of the splitter signal is strong support for temporal context, but is hard to explain using state models, while its flexibility and task-dependence is naturally accounted for using state inference, but poses a challenge otherwise. These theories suggest a number of avenues for future work, and we believe their application to splitter cells is a timely and informative domain for testing and refining theoretical ideas about hippocampal function.
Collapse
Affiliation(s)
- Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | - Roddy M Grieves
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | | |
Collapse
|
16
|
Xia Y, Zhang Y, Xu M, Zou X, Gao J, Ji MH, Chen G. Presenilin enhancer 2 is crucial for the transition of apical progenitors into neurons but into not basal progenitors in the developing hippocampus. Development 2022; 149:275418. [PMID: 35575074 DOI: 10.1242/dev.200272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/04/2022] [Indexed: 12/23/2022]
Abstract
Recent evidence has shown that presenilin enhancer 2 (Pen2; Psenen) plays an essential role in corticogenesis by regulating the switch of apical progenitors (APs) to basal progenitors (BPs). The hippocampus is a brain structure required for advanced functions, including spatial navigation, learning and memory. However, it remains unknown whether Pen2 is important for hippocampal morphogenesis. To address this question, we generated Pen2 conditional knockout (cKO) mice, in which Pen2 is inactivated in neural progenitor cells (NPCs) in the hippocampal primordium. We showed that Pen2 cKO mice exhibited hippocampal malformation and decreased population of NPCs in the neuroepithelium of the hippocampus. We found that deletion of Pen2 neither affected the proliferative capability of APs nor the switch of APs to BPs in the hippocampus, and that it caused enhanced transition of APs to neurons. We demonstrated that expression of the Notch1 intracellular domain (N1ICD) significantly increased the population of NPCs in the Pen2 cKO hippocampus. Collectively, this study uncovers a crucial role for Pen2 in the maintenance of NPCs during hippocampal development.
Collapse
Affiliation(s)
- Yingqian Xia
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Yizhi Zhang
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Min Xu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Xiaochuan Zou
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China, 210003
| | - Guiquan Chen
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China, 226001
| |
Collapse
|
17
|
Malkov A, Shevkova L, Latyshkova A, Kitchigina V. Theta and gamma hippocampal-neocortical oscillations during the episodic-like memory test: Impairment in epileptogenic rats. Exp Neurol 2022; 354:114110. [PMID: 35551900 DOI: 10.1016/j.expneurol.2022.114110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Cortical oscillations in different frequency bands have been shown to be intimately involved in exploration of environment and cognition. Here, the local field potentials in the hippocampus, the medial prefrontal cortex (mPFC), and the medial entorhinal cortex (mEC) were recorded simultaneously in rats during the execution of the episodic-like memory task. The power of theta (~4-10 Hz), slow gamma (~25-50 Hz), and fast gamma oscillations (~55-100 Hz) was analyzed in all structures examined. Particular attention was paid to the theta coherence between three mentioned structures. The modulation of the power of gamma rhythms by the phase of theta cycle during the execution of the episodic-like memory test by rats was also closely studied. Healthy rats and rats one month after kainate-induced status epilepticus (SE) were examined. Paroxysmal activity in the hippocampus (high amplitude interictal spikes), excessive excitability of animals, and the death of hippocampal and dentate granular cells in rats with kainate-evoked SE were observed, which indicated the development of seizure focus in the hippocampus (epileptogenesis). One month after SE, the rats exhibited a specific impairment of episodic memory for the what-where-when triad: unlike healthy rats, epileptogenic SE animals did not identify the objects during the test. This impairment was associated with the changes in the characteristics of theta and gamma rhythms and specific violation of theta coherence and theta/gamma coupling in these structures in comparison with the healthy animals. We believe that these disturbances in the cortical areas play a role in episodic memory dysfunction in kainate-treated animals. These findings can shed light on the mechanisms of cognitive deficit during epileptogenesis.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia.
| | | | - Alexandra Latyshkova
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| | - Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Russia
| |
Collapse
|
18
|
Zutshi I, Valero M, Fernández-Ruiz A, Buzsáki G. Extrinsic control and intrinsic computation in the hippocampal CA1 circuit. Neuron 2022; 110:658-673.e5. [PMID: 34890566 PMCID: PMC8857017 DOI: 10.1016/j.neuron.2021.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
In understanding circuit operations, a key problem is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. We addressed this issue in the hippocampus by performing combined optogenetic and pharmacogenetic local and upstream inactivation. Silencing the medial entorhinal cortex (mEC) largely abolished extracellular theta and gamma currents in CA1 while only moderately affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. However, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields and reliable assembly expression as in the intact mouse. Thus, the CA1 network can induce and maintain coordinated cell assemblies with minimal reliance on its inputs, but these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Manuel Valero
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Antonio Fernández-Ruiz
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
19
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
20
|
Quirk CR, Zutshi I, Srikanth S, Fu ML, Marciano ND, Wright MK, Parsey DF, Liu S, Siretskiy RE, Huynh TL, Leutgeb JK, Leutgeb S. Precisely timed theta oscillations are selectively required during the encoding phase of memory. Nat Neurosci 2021; 24:1614-1627. [PMID: 34608335 PMCID: PMC8556344 DOI: 10.1038/s41593-021-00919-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2021] [Indexed: 11/12/2022]
Abstract
Brain oscillations have been hypothesized to support cognitive function by coordinating spike timing within and across brain regions, yet it is often not known when timing is either critical for neural computations or an epiphenomenon. The entorhinal cortex and hippocampus are necessary for learning and memory and exhibit prominent theta oscillations (6-9 Hz), which are controlled by pacemaker cells in the medial septal area. Here we show that entorhinal and hippocampal neuronal activity patterns were strongly entrained by rhythmic optical stimulation of parvalbumin-positive medial septal area neurons in mice. Despite strong entrainment, memory impairments in a spatial working memory task were not observed with pacing frequencies at or below the endogenous theta frequency and only emerged at frequencies ≥10 Hz, and specifically when pacing was targeted to maze segments where encoding occurs. Neural computations during the encoding phase were therefore selectively disrupted by perturbations of the timing of neuronal firing patterns.
Collapse
Affiliation(s)
- Clare R. Quirk
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ipshita Zutshi
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sunandha Srikanth
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maylin L. Fu
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Naomie Devico Marciano
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Morgan K. Wright
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darian F. Parsey
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley Liu
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rachel E. Siretskiy
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany L. Huynh
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jill K. Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA,Correspondence should be addressed to S.L. ()
| |
Collapse
|
21
|
Zhao X, Hsu CL, Spruston N. Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron 2021; 110:96-108.e4. [PMID: 34678146 DOI: 10.1016/j.neuron.2021.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023]
Abstract
To successfully perform goal-directed navigation, animals must know where they are and what they are doing-e.g., looking for water, bringing food back to the nest, or escaping from a predator. Hippocampal neurons code for these critical variables conjunctively, but little is known about how this "where/what" code is formed or flexibly routed to other brain regions. To address these questions, we performed intracellular whole-cell recordings in mouse CA1 during a cued, two-choice virtual navigation task. We demonstrate that plateau potentials in CA1 pyramidal neurons rapidly strengthen synaptic inputs carrying conjunctive information about position and choice. Plasticity-induced response fields were modulated by cues only in animals previously trained to collect rewards based on available cues. Thus, we reveal that gradual learning is required for the formation of a conjunctive population code, upstream of CA1, while plateau-potential-induced synaptic plasticity in CA1 enables flexible routing of the code to downstream brain regions.
Collapse
Affiliation(s)
- Xinyu Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
22
|
Gemzik ZM, Donahue MM, Griffin AL. Optogenetic suppression of the medial septum impairs working memory maintenance. ACTA ACUST UNITED AC 2021; 28:361-370. [PMID: 34526381 PMCID: PMC8456985 DOI: 10.1101/lm.053348.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/30/2021] [Indexed: 01/14/2023]
Abstract
Spatial working memory (SWM) is the ability to encode, maintain, and retrieve spatial information over a temporal gap, and relies on a network of structures including the medial septum (MS), which provides critical input to the hippocampus. Although the role of the MS in SWM is well-established, up until recently, we have been unable to use temporally precise circuit manipulation techniques to examine the specific role of the MS in SWM, particularly to distinguish between encoding, maintenance, and retrieval. Here, we test the hypothesis that the MS supports the maintenance of spatial information over a temporal gap using precisely timed optogenetic suppression delivered during specific portions of three different tasks, two of which rely on SWM and one that does not. In experiment 1, we found that MS optogenetic suppression impaired choice accuracy of a SWM dependent conditional discrimination task. Moreover, this deficit was only observed when MS suppression was delivered during the cue-sampling, but not the cue-retrieval, portion of the trial. There was also no deficit when MS neurons were optogenetically suppressed as rats performed a SWM-independent variant of the task. In experiment 2, we tested whether MS suppression affected choice accuracy on a delayed nonmatch to position (DNMP) task when suppression was limited to the sample, delay, and choice phases of the task. We found that MS suppression delivery during the delay phase of the DNMP task, but not during the sample or choice phases, impaired choice accuracy. Our results collectively suggest that the MS plays an important role in SWM by maintaining task-relevant information over a temporal delay.
Collapse
Affiliation(s)
- Zachary M Gemzik
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19711, USA
| | - Margaret M Donahue
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19711, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19711, USA
| |
Collapse
|
23
|
Griffin AL. The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neurosci Biobehav Rev 2021; 128:415-420. [PMID: 34217746 DOI: 10.1016/j.neubiorev.2021.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Spatial working memory, the ability to temporarily maintain an internal representation of spatial information for use in guiding upcoming decisions, has been shown to be dependent upon a network of brain structures that includes the hippocampus, a region known to be critical for spatial navigation and episodic memory, and the prefrontal cortex (PFC), a region known to be critical for executive function and goal directed behavior. Oscillatory synchronization between the hippocampus and the prefrontal cortex (PFC) is known to increase in situations of high working memory demand. Most of our knowledge about the anatomical connectivity between the PFC and hippocampus comes from the rodent literature. Thus, most of the findings that will be discussed here model human working memory using spatial working memory-dependent maze navigation tasks in rodents. It has been demonstrated that the ventral midline thalamic nucleus reuniens (Re) is reciprocally connected to both the infralimbic and prelimbic subregions of the PFC, collectively referred to as the medial PFC (mPFC), and the hippocampus. Given that the Re serves as a major anatomical route between the mPFC and hippocampus, it is perhaps not surprising that Re has been shown to be critical for spatial working memory. This review will describe the latest findings and ideas on how the Re contributes to prefrontal-hippocampal synchronization and spatial working memory in rodents. The review will conclude with possible future directions that will advance the understanding of the mechanisms that enable the Re to orchestrate long range synchrony in the prefrontal-hippocampal network.
Collapse
Affiliation(s)
- Amy L Griffin
- University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
24
|
van Heusden FC, Palacín I Bonsón S, Stiedl O, Smit AB, van Kesteren RE. Longitudinal Assessment of Working Memory Performance in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease Using an Automated Figure-8-Maze. Front Behav Neurosci 2021; 15:655449. [PMID: 34054444 PMCID: PMC8155296 DOI: 10.3389/fnbeh.2021.655449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with a long preclinical and prodromal phase. To enable the study of disease mechanisms, AD has been modeled in many transgenic animal lines and cognitive functioning has been tested using several widely used behavioral tasks. These tasks, however, are not always suited for repeated longitudinal testing and are often associated with acute stress such as animal transfer, handling, novelty, or stress related to the task itself. This makes it challenging to relate cognitive dysfunction in animal models to cognitive decline observed in AD patients. Here, we designed an automated figure-8-maze (F8M) to test mice in a delayed alternation task (DAT) in a longitudinal manner. Mice were rewarded when they entered alternate sides of the maze on subsequent trials. Automation as well as connection of the F8M set-up with a home cage reduces experimenter interference and minimizes acute stress, thus making it suitable for longitudinal testing and facilitating clinical translation. In the present study, we monitored cognitive functioning of 2-month-old APPswe/PSEN1dE9 (APP/PS1) mice over a period of 4 months. The percentage of correct responses in the DAT did not differ between wild-type and transgenic mice from 2 to 6 months of age. However, 6-month-old mice displayed an increase in the number of consecutive incorrect responses. These results demonstrate the feasibility of longitudinal testing using an automated F8M and suggest that APP/PS1 mice are not impaired at delayed spatial alternation until 6 months of age under the current experimental conditions.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sara Palacín I Bonsón
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Oliver Stiedl
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Crucial role for CA2 inputs in the sequential organization of CA1 time cells supporting memory. Proc Natl Acad Sci U S A 2021; 118:2020698118. [PMID: 33431691 DOI: 10.1073/pnas.2020698118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is considerable evidence for hippocampal time cells that briefly activate in succession to represent the temporal structure of memories. Previous studies have shown that time cells can be disrupted while leaving place cells intact, indicating that spatial and temporal information can be coded in parallel. However, the circuits in which spatial and temporal information are coded have not been clearly identified. Here we investigated temporal and spatial coding by dorsal hippocampal CA1 (dCA1) neurons in mice trained on a classic spatial working-memory task. On each trial, the mice approached the same choice point on a maze but were trained to alternate between traversing one of two distinct spatial routes (spatial coding phase). In between trials, there was a 10-s mnemonic delay during which the mouse continuously ran in a fixed location (temporal coding phase). Using cell-type-specific optogenetic methods, we found that inhibiting dorsal CA2 (dCA2) inputs into dCA1 degraded time cell coding during the mnemonic delay and impaired the mouse's subsequent memory-guided choice. Conversely, inhibiting dCA2 inputs during the spatial coding phase had a negligible effect on place cell activity in dCA1 and no effect on behavior. Collectively, our work demonstrates that spatial and temporal coding in dCA1 is largely segregated with respect to the dCA2-dCA1 circuit and suggests that CA2 plays a critical role in representing the flow of time in memory within the hippocampal network.
Collapse
|
26
|
Vandrey B, Duncan S, Ainge JA. Object and object-memory representations across the proximodistal axis of CA1. Hippocampus 2021; 31:881-896. [PMID: 33942429 DOI: 10.1002/hipo.23331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
Episodic memory requires information about objects to be integrated into a spatial framework. Place cells in the hippocampus encode spatial representations of objects that could be generated through signaling from the entorhinal cortex. Projections from lateral (LEC) and medial entorhinal cortex (MEC) to the hippocampus terminate in distal and proximal CA1, respectively. We recorded place cells in distal and proximal CA1 as rats explored an environment that contained objects. Place cells in distal CA1 demonstrated higher measures of spatial tuning, stability, and closer proximity of place fields to objects. Furthermore, remapping to object displacement was modulated by place field proximity to objects in distal, but not proximal CA1. Finally, representations of previous object locations were closer to those locations in distal CA1 than proximal CA1. Our data suggest that in cue-rich environments, LEC inputs to the hippocampus support spatial representations with higher spatial tuning, closer proximity to objects, and greater stability than those receiving inputs from MEC. This is consistent with functional segregation in the entorhinal-hippocampal circuits underlying object-place memory.
Collapse
Affiliation(s)
- Brianna Vandrey
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH8 9XD, UK
| | - Stephen Duncan
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| | - James A Ainge
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| |
Collapse
|
27
|
Kitanishi T, Umaba R, Mizuseki K. Robust information routing by dorsal subiculum neurons. SCIENCE ADVANCES 2021; 7:7/11/eabf1913. [PMID: 33692111 PMCID: PMC7946376 DOI: 10.1126/sciadv.abf1913] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/25/2021] [Indexed: 05/27/2023]
Abstract
The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region-specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ryoko Umaba
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| |
Collapse
|
28
|
Time as the fourth dimension in the hippocampus. Prog Neurobiol 2020; 199:101920. [PMID: 33053416 DOI: 10.1016/j.pneurobio.2020.101920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Experiences of animal and human beings are structured by the continuity of space and time coupled with the uni-directionality of time. In addition to its pivotal position in spatial processing and navigation, the hippocampal system also plays a central, multiform role in several types of temporal processing. These include timing and sequence learning, at scales ranging from meso-scales of seconds to macro-scales of minutes, hours, days and beyond, encompassing the classical functions of short term memory, working memory, long term memory, and episodic memories (comprised of information about when, what, and where). This review article highlights the principal findings and behavioral contexts of experiments in rats showing: 1) timing: tracking time during delays by hippocampal 'time cells' and during free behavior by hippocampal-afferent lateral entorhinal cortex ramping cells; 2) 'online' sequence processing: activity coding sequences of events during active behavior; 3) 'off-line' sequence replay: during quiescence or sleep, orderly reactivation of neuronal assemblies coding awake sequences. Studies in humans show neurophysiological correlates of episodic memory comparable to awake replay. Neural mechanisms are discussed, including ion channel properties, plateau and ramping potentials, oscillations of excitation and inhibition of population activity, bursts of high amplitude discharges (sharp wave ripples), as well as short and long term synaptic modifications among and within cell assemblies. Specifically conceived neural network models will suggest processes supporting the emergence of scalar properties (Weber's law), and include different classes of feedforward and recurrent network models, with intrinsic hippocampal coding for 'transitions' (sequencing of events or places).
Collapse
|
29
|
Sabariego M, Tabrizi NS, Marshall GJ, McLagan AN, Jawad S, Hales JB. In the temporal organization of episodic memory, the hippocampus supports the experience of elapsed time. Hippocampus 2020; 31:46-55. [PMID: 32956520 DOI: 10.1002/hipo.23261] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
Space and time are both essential features of episodic memory, for which the hippocampus is critical (Howard & Eichenbaum, 2015). Spatial tasks have been used effectively to study the behavioral relevance of place cells. However, the behavioral paradigms utilized for the study of time cells have not used time duration as a variable that animals need to be aware of to solve the task. Therefore, the behavioral relevance of this cell firing is unclear. In order to directly study the role of the hippocampus in processing elapsed time, we created a novel time duration discrimination task. Rats learned to make a decision to turn left or right depending on the preceding tone duration (10 s, left turn; 20 s, right turn). Once the rats reached criterion performance of 90% correct on two out of three consecutive days, they received either an excitotoxic hippocampal lesion or a sham-lesion surgery. After recovery, rats were tested to determine hippocampal involvement in discriminating time duration. Rats with hippocampal lesions performed at chance level on their first testing day postlesion, and they were impaired relative to the sham-lesioned rats. Although the hippocampal-lesioned rats began discriminating at above chance level, their performance never returned to criterion even with 50 days of postoperative testing. Furthermore, while sham rats showed no difference in the number of errors they made on 10- versus 20-s delay trials, hippocampal lesion rats similarly improved their performance under the 10-s delay condition, but not under the 20-s delay condition. Results indicate that hippocampal lesions resulted in a selective impairment in discriminating elapsed time only during the longer delay trials. The implications of these results are discussed in relation to the limits of working-memory capacity and to the role of sustained hippocampal time cell activity in memory performance depending on the perceived relevance of the delay period.
Collapse
Affiliation(s)
- Marta Sabariego
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Nina S Tabrizi
- Department of Psychological Sciences, University of San Diego, San Diego, California, USA
| | - Greer J Marshall
- Department of Psychological Sciences, University of San Diego, San Diego, California, USA
| | - Ali N McLagan
- Department of Psychological Sciences, University of San Diego, San Diego, California, USA
| | - Safa Jawad
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, California, USA
| |
Collapse
|
30
|
López-Madrona VJ, Pérez-Montoyo E, Álvarez-Salvado E, Moratal D, Herreras O, Pereda E, Mirasso CR, Canals S. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife 2020; 9:57313. [PMID: 32687054 PMCID: PMC7413668 DOI: 10.7554/elife.57313] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Efrén Álvarez-Salvado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - David Moratal
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Herreras
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ernesto Pereda
- Departamento de Ingeniería Industrial & IUNE, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, La Laguna, Spain.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
31
|
Kuruvilla MV, Wilson DIG, Ainge JA. Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations. Brain Neurosci Adv 2020; 4:2398212820939463. [PMID: 32954005 PMCID: PMC7479866 DOI: 10.1177/2398212820939463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
During navigation, landmark processing is critical either for generating
an allocentric-based cognitive map or in facilitating egocentric-based
strategies. Increasing evidence from manipulation and single-unit
recording studies has highlighted the role of the entorhinal cortex in
processing landmarks. In particular, the lateral (LEC) and medial
(MEC) sub-regions of the entorhinal cortex have been shown to attend
to proximal and distal landmarks, respectively. Recent studies have
identified a further dissociation in cue processing between the LEC
and MEC based on spatial frames of reference. Neurons in the LEC
preferentially encode egocentric cues while those in the MEC encode
allocentric cues. In this study, we assessed the impact of disrupting
the LEC on landmark-based spatial memory in both egocentric and
allocentric reference frames. Animals that received excitotoxic
lesions of the LEC were significantly impaired, relative to controls,
on both egocentric and allocentric versions of an object–place
association task. Notably, LEC lesioned animals performed at chance on
the egocentric version but above chance on the allocentric version.
There was no significant difference in performance between the two
groups on an object recognition and spatial T-maze task. Taken
together, these results indicate that the LEC plays a role in feature
integration more broadly and in specifically processing spatial
information within an egocentric reference frame.
Collapse
Affiliation(s)
- Maneesh V Kuruvilla
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - David I G Wilson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - James A Ainge
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
32
|
Meyer-Mueller C, Jacob PY, Montenay JY, Poitreau J, Poucet B, Chaillan FA. Dorsal, but not ventral, hippocampal inactivation alters deliberation in rats. Behav Brain Res 2020; 390:112622. [DOI: 10.1016/j.bbr.2020.112622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
|
33
|
Kuruvilla MV, O'Connor AR, Ainge JA. Distance- rather than location-based temporal judgments are more accurate during episodic recall in a real-world task. Memory 2020; 28:783-794. [PMID: 32583726 DOI: 10.1080/09658211.2020.1783319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Definitions of episodic memory typically emphasise the importance of spatiotemporal frameworks in the contextual reconstruction of episodic retrieval. However, our ability to retrieve specific temporal contexts of experienced episodes is poor. This has bearing on the prominence of temporal context in the definition and evaluation of episodic memory, particularly among non-human animals. Studies demonstrating that rats rely on elapsed time (distance) rather than specific timestamps (location) to disambiguate events have been used to suggest that human episodic memory is qualitatively different to other species. We examined whether humans were more accurate using a distance- or location-based method for judging when an event happened. Participants (n = 57) were exposed to a series of events and then asked either when (e.g., 1:03 pm) or how long ago (HLA; e.g., 33 min) a specific event took place. HLA judgements were significantly more accurate, particularly for the most recently experienced episode. Additionally, a significantly higher proportion of participants making HLA judgements accurately recalled non-temporal episodic features across all episodes. Finally, for participants given the choice of methods for making temporal judgements, a significantly higher proportion chose to use HLA judgements. These findings suggest that human and non-human temporal judgements are not qualitatively different.
Collapse
Affiliation(s)
- Maneesh V Kuruvilla
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, St Andrews, UK.,Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Akira R O'Connor
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, St Andrews, UK
| | - James A Ainge
- School of Psychology & Neuroscience, University of St Andrews, St Mary's Quad, St Andrews, UK
| |
Collapse
|
34
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
35
|
Kinsky NR, Mau W, Sullivan DW, Levy SJ, Ruesch EA, Hasselmo ME. Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. Nat Commun 2020; 11:2443. [PMID: 32415083 PMCID: PMC7229120 DOI: 10.1038/s41467-020-16226-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Trajectory-dependent splitter neurons in the hippocampus encode information about a rodent's prior trajectory during performance of a continuous alternation task. As such, they provide valuable information for supporting memory-guided behavior. Here, we employed single-photon calcium imaging in freely moving mice to investigate the emergence and fate of trajectory-dependent activity through learning and mastery of a continuous spatial alternation task. In agreement with others, the quality of trajectory-dependent information in hippocampal neurons correlated with task performance. We thus hypothesized that, due to their utility, splitter neurons would exhibit heightened stability. We find that splitter neurons were more likely to remain active and retained more consistent spatial information across multiple days than other neurons. Furthermore, we find that both splitter neurons and place cells emerged rapidly and maintained stable trajectory-dependent/spatial activity thereafter. Our results suggest that neurons with useful functional coding exhibit heightened stability to support memory guided behavior.
Collapse
Affiliation(s)
- Nathaniel R. Kinsky
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000000086837370grid.214458.eDepartment of Anesthesiology, University of Michigan, 1301 Catherine St. Rm 7433, Ann Arbor, MI 48109 USA
| | - William Mau
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10th Floor, New York, NY 10029 USA
| | - David W. Sullivan
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Samuel J. Levy
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Evan A. Ruesch
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Michael E. Hasselmo
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| |
Collapse
|
36
|
Leibold C. A model for navigation in unknown environments based on a reservoir of hippocampal sequences. Neural Netw 2020; 124:328-342. [DOI: 10.1016/j.neunet.2020.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
37
|
Hoxha M, Sabariego M. Delayed Alternation Task for the Study of Spatial Working and Long Term Memory in Rats. Bio Protoc 2020; 10:e3549. [PMID: 33659523 DOI: 10.21769/bioprotoc.3549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/02/2022] Open
Abstract
Memory systems can hold previously presented information for several seconds, bridging gaps between discontinuous events. It has been previously demonstrated that the hippocampus and the medial entorhinal cortex (mEC) are necessary for memory retention over delay intervals in alternation tasks. Here we describe the delayed alternation task, a spatial working memory (WM) task in which animals need to alternate between left and right sides of a figure-8 maze on a trial-by-trial basis to receive a reward. On each trial of this task, the rat has to remember the last episode and turn in the opposite direction compared to the previous trial. We manipulated the WM load by introducing delays of various lengths (10 s and 60 s) between trials. While other alternation task protocols use short delay intervals between trials, our protocol introduces a longer delay condition that requires animals to use long-term memory resources that are not necessarily supported by sequential neuronal firing patterns (i.e., time cells) as are seen with shorter delay intervals.
Collapse
Affiliation(s)
- Megi Hoxha
- Program of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States
| | - Marta Sabariego
- Program of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States
| |
Collapse
|
38
|
Sanguinetti-Scheck JI, Brecht M. Home, head direction stability, and grid cell distortion. J Neurophysiol 2020; 123:1392-1406. [PMID: 32101492 PMCID: PMC7191526 DOI: 10.1152/jn.00518.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The home is a unique location in the life of humans and animals. In rats, home presents itself as a multicompartmental space that involves integrating navigation through subspaces. Here we embedded the laboratory rat’s home cage in the arena, while recording neurons in the animal’s parasubiculum and medial entorhinal cortex, two brain areas encoding the animal’s location and head direction. We found that head direction signals were unaffected by home cage presence or translocation. Head direction cells remain globally stable and have similar properties inside and outside the embedded home. We did not observe egocentric bearing encoding of the home cage. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated toward the home. These effects appeared to be geometrical in nature rather than a home-specific distortion and were not dependent on explicit behavioral use of the home cage during a hoarding task. Our work suggests that medial entorhinal cortex and parasubiculum do not remap after embedding the home, but local changes in grid cell activity overrepresent the embedded space location and might contribute to navigation in complex environments. NEW & NOTEWORTHY Neural findings in the field of spatial navigation come mostly from an abstract approach that separates the animal from even a minimally biological context. In this article we embed the home cage of the rat in the environment to address some of the complexities of natural navigation. We find no explicit home cage representation. While both head direction cells and grid cells remain globally stable, we find that embedded spaces locally distort grid cells.
Collapse
Affiliation(s)
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
39
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Alexander AS, Robinson JC, Dannenberg H, Kinsky NR, Levy SJ, Mau W, Chapman GW, Sullivan DW, Hasselmo ME. Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain Neurosci Adv 2020; 4:2398212820972871. [PMID: 33294626 PMCID: PMC7708714 DOI: 10.1177/2398212820972871] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Neurophysiological recordings in behaving rodents demonstrate neuronal response properties that may code space and time for episodic memory and goal-directed behaviour. Here, we review recordings from hippocampus, entorhinal cortex, and retrosplenial cortex to address the problem of how neurons encode multiple overlapping spatiotemporal trajectories and disambiguate these for accurate memory-guided behaviour. The solution could involve neurons in the entorhinal cortex and hippocampus that show mixed selectivity, coding both time and location. Some grid cells and place cells that code space also respond selectively as time cells, allowing differentiation of time intervals when a rat runs in the same location during a delay period. Cells in these regions also develop new representations that differentially code the context of prior or future behaviour allowing disambiguation of overlapping trajectories. Spiking activity is also modulated by running speed and head direction, supporting the coding of episodic memory not as a series of snapshots but as a trajectory that can also be distinguished on the basis of speed and direction. Recent data also address the mechanisms by which sensory input could distinguish different spatial locations. Changes in firing rate reflect running speed on long but not short time intervals, and few cells code movement direction, arguing against path integration for coding location. Instead, new evidence for neural coding of environmental boundaries in egocentric coordinates fits with a modelling framework in which egocentric coding of barriers combined with head direction generates distinct allocentric coding of location. The egocentric input can be used both for coding the location of spatiotemporal trajectories and for retrieving specific viewpoints of the environment. Overall, these different patterns of neural activity can be used for encoding and disambiguation of prior episodic spatiotemporal trajectories or for planning of future goal-directed spatiotemporal trajectories.
Collapse
Affiliation(s)
| | | | | | | | - Samuel J. Levy
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - William Mau
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Shin JD, Tang W, Jadhav SP. Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making. Neuron 2019; 104:1110-1125.e7. [PMID: 31677957 PMCID: PMC6923537 DOI: 10.1016/j.neuron.2019.09.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023]
Abstract
Spatial learning requires remembering and choosing paths to goals. Hippocampal place cells replay spatial paths during immobility in reverse and forward order, offering a potential mechanism. However, how replay supports both goal-directed learning and memory-guided decision making is unclear. We therefore continuously tracked awake replay in the same hippocampal-prefrontal ensembles throughout learning of a spatial alternation task. We found that, during pauses between behavioral trajectories, reverse and forward hippocampal replay supports an internal cognitive search of available past and future possibilities and exhibits opposing learning gradients for prediction of past and future behavioral paths, respectively. Coordinated hippocampal-prefrontal replay distinguished correct past and future paths from alternative choices, suggesting a role in recall of past paths to guide planning of future decisions for spatial working memory. Our findings reveal a learning shift from hippocampal reverse-replay-based retrospective evaluation to forward-replay-based prospective planning, with prefrontal readout of memory-guided paths for learning and decision making.
Collapse
Affiliation(s)
- Justin D Shin
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA.
| | - Shantanu P Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA; Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
42
|
Vandrey B, Garden DLF, Ambrozova V, McClure C, Nolan MF, Ainge JA. Fan Cells in Layer 2 of the Lateral Entorhinal Cortex Are Critical for Episodic-like Memory. Curr Biol 2019; 30:169-175.e5. [PMID: 31839450 PMCID: PMC6947484 DOI: 10.1016/j.cub.2019.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022]
Abstract
Episodic memory requires different types of information to be bound together to generate representations of experiences. The lateral entorhinal cortex (LEC) and hippocampus are required for episodic-like memory in rodents [1, 2]. The LEC is critical for integrating spatial and contextual information about objects [2, 3, 4, 5, 6]. Further, LEC neurons encode objects in the environment and the locations where objects were previously experienced and generate representations of time during the encoding and retrieval of episodes [7, 8, 9, 10, 11, 12]. However, it remains unclear how specific populations of cells within the LEC contribute to the integration of episodic memory components. Layer 2 (L2) of LEC manifests early pathology in Alzheimer’s disease (AD) and related animal models [13, 14, 15, 16]. Projections to the hippocampus from L2 of LEC arise from fan cells in a superficial sub-layer (L2a) that are immunoreactive for reelin and project to the dentate gyrus [17, 18]. Here, we establish an approach for selectively targeting fan cells using Sim1:Cre mice. Whereas complete lesions of the LEC were previously found to abolish associative recognition memory [2, 3], we report that, after selective suppression of synaptic output from fan cells, mice can discriminate novel object-context configurations but are impaired in recognition of novel object-place-context associations. Our results suggest that memory functions are segregated between distinct LEC networks. Sim1:Cre mice provide access to DG-projecting fan cells in lateral entorhinal cortex Fan cells are not required for novel object or object-context recognition Fan cells are required to discriminate novel object-place-context configurations Episodic-like memory impairment is correlated with extent of fan-cell inactivation
Collapse
Affiliation(s)
- Brianna Vandrey
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland; School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland
| | - Derek L F Garden
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland
| | - Veronika Ambrozova
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland
| | - Christina McClure
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XE, Scotland.
| | - James A Ainge
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews KY16 9JP, Scotland.
| |
Collapse
|
43
|
Pitti A, Quoy M, Lavandier C, Boucenna S. Gated spiking neural network using Iterative Free-Energy Optimization and rank-order coding for structure learning in memory sequences (INFERNO GATE). Neural Netw 2019; 121:242-258. [PMID: 31581065 DOI: 10.1016/j.neunet.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
We present a framework based on iterative free-energy optimization with spiking neural networks for modeling the fronto-striatal system (PFC-BG) for the generation and recall of audio memory sequences. In line with neuroimaging studies carried out in the PFC, we propose a genuine coding strategy using the gain-modulation mechanism to represent abstract sequences based solely on the rank and location of items within them. Based on this mechanism, we show that we can construct a repertoire of neurons sensitive to the temporal structure in sequences from which we can represent any novel sequences. Free-energy optimization is then used to explore and to retrieve the missing indices of the items in the correct order for executive control and compositionality. We show that the gain-modulation mechanism permits the network to be robust to variabilities and to have long-term dependencies as it implements a gated recurrent neural network. This model, called Inferno Gate, is an extension of the neural architecture Inferno standing for Iterative Free-Energy Optimization of Recurrent Neural Networks with Gating or Gain-modulation. In experiments performed with an audio database of ten thousand MFCC vectors, Inferno Gate is capable of encoding efficiently and retrieving chunks of fifty items length. We then discuss the potential of our network to model the features of working memory in the PFC-BG loop for structural learning, goal-direction and hierarchical reinforcement learning.
Collapse
Affiliation(s)
- Alexandre Pitti
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Mathias Quoy
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Catherine Lavandier
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Sofiane Boucenna
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| |
Collapse
|
44
|
Bretas RV, Matsumoto J, Nishimaru H, Takamura Y, Hori E, Ono T, Nishijo H. Neural Representation of Overlapping Path Segments and Reward Acquisitions in the Monkey Hippocampus. Front Syst Neurosci 2019; 13:48. [PMID: 31572133 PMCID: PMC6751269 DOI: 10.3389/fnsys.2019.00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Disambiguation of overlapping events is thought to be the hallmark of episodic memory. Recent rodent studies have reported that when navigating overlapping path segments in the different routes place cell activity in the same overlapping path segments were remapped according to different goal locations in different routes. However, it is unknown how hippocampal neurons disambiguate reward delivery in overlapping path segments in different routes. In the present study, we recorded monkey hippocampal neurons during performance of three virtual navigation (VN) tasks in which a monkey alternately navigated two different routes that included overlapping path segments (common central hallway) and acquired rewards in the same locations in overlapping path segments by manipulating a joystick. The results indicated that out of 106 hippocampal neurons, 57 displayed place-related activity (place-related neurons), and 18 neurons showed route-dependent activity in the overlapping path segments, consistent with a hippocampal role in the disambiguation of overlapping path segments. Moreover, 75 neurons showed neural correlates to reward delivery (reward-related neurons), whereas 56 of these 75 reward-related neurons showed route-dependent reward-related activity in the overlapping path segments. The ensemble activity of reward-related neurons represented reward delivery, locations, and routes in the overlapping path segments. In addition, ensemble activity patterns of hippocampal neurons more distinctly represented overlapping path segments than non-overlapping path segments. The present results provide neurophysiological evidence of disambiguation in the monkey hippocampus, consistent with a hippocampal role in episodic memory, and support a recent computational model of "neural differentiation," in which overlapping items are better represented by repeated retrieval with competitive learning.
Collapse
Affiliation(s)
- Rafael Vieira Bretas
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
- Symbolic Cognitive Development, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| |
Collapse
|
45
|
Yu RQ, Cooke M, Seib DR, Zhao J, Snyder JS. Adult neurogenesis promotes efficient, nonspecific search strategies in a spatial alternation water maze task. Behav Brain Res 2019; 376:112151. [PMID: 31445978 DOI: 10.1016/j.bbr.2019.112151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Goal-directed navigation requires learning strategies that are efficient and minimize costs. In some cases it may be desirable to flexibly adjust behavioral responses depending on the cues that vary from one episode to the next. In others, successful navigation might be achieved with inflexible, habit-like responses that reduce cognitive load. Adult neurogenesis is believed to contribute to the spatial processing functions of the hippocampus, particularly when behavioral flexibility is required. However, little is known about the role of neurogenesis in spatial navigation when goals are unpredictable or change repeatedly according to certain rules. We hypothesized that neurogenesis is necessary in a spatial navigation task that involves different patterns of reinforcement. Intact and neurogenesis-deficient rats were trained to escape to one of two possible platform locations in a spatial water maze. The platform either repeated in the same location for all trials in a day, alternated between two locations across trials, or randomly moved between the two locations. Neurogenesis selectively enhanced escape performance in the alternating condition, but not by improving platform choice accuracy. Instead, neurogenesis-intact rats made fewer search errors and developed an efficient habit-like strategy where they consistently swam to a preferred location. If the platform was not present, they proceeded to the other possible location. In contrast, neurogenesis-deficient rats were indecisive and navigationally less-efficient. Thus, in conditions where goals follow a predictable spatiotemporal pattern, adult neurogenesis promotes the adoption of navigation strategies that are spatially nonspecific but, nonetheless, accurate and efficient.
Collapse
Affiliation(s)
- Ru Qi Yu
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Matthew Cooke
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Desiree R Seib
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Jiaying Zhao
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
46
|
Sugar J, Moser MB. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29:1190-1205. [PMID: 31334573 DOI: 10.1002/hipo.23132] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Episodic memory is defined as the ability to recall events in a spatiotemporal context. Formation of such memories is critically dependent on the hippocampal formation and its inputs from the entorhinal cortex. To be able to support the formation of episodic memories, entorhinal cortex and hippocampal formation should contain a neuronal code that follows several requirements. First, the code should include information about position of the agent ("where"), sequence of events ("when"), and the content of the experience itself ("what"). Second, the code should arise instantly thereby being able to support memory formation of one-shot experiences. For successful encoding and to avoid interference between memories during recall, variations in location, time, or in content of experience should result in unique ensemble activity. Finally, the code should capture several different resolutions of experience so that the necessary details relevant for future memory-based predictions will be stored. We review how neuronal codes in entorhinal cortex and hippocampus follow these requirements and argue that during formation of episodic memories entorhinal cortex provides hippocampus with instant information about ongoing experience. Such information originates from (a) spatially modulated neurons in medial entorhinal cortex, including grid cells, which provide a stable and universal positional metric of the environment; (b) a continuously varying signal in lateral entorhinal cortex providing a code for the temporal progression of events; and (c) entorhinal neurons coding the content of experiences exemplified by object-coding and odor-selective neurons. During formation of episodic memories, information from these systems are thought to be encoded as unique sequential ensemble activity in hippocampus, thereby encoding associations between the content of an event and its spatial and temporal contexts. Upon exposure to parts of the encoded stimuli, activity in these ensembles can be reinstated, leading to reactivation of the encoded activity pattern and memory recollection.
Collapse
Affiliation(s)
- Jørgen Sugar
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - May-Britt Moser
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
47
|
Dolleman-van der Weel MJ, Griffin AL, Ito HT, Shapiro ML, Witter MP, Vertes RP, Allen TA. The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 2019; 26:191-205. [PMID: 31209114 PMCID: PMC6581009 DOI: 10.1101/lm.048389.118] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
The nucleus reuniens of the thalamus (RE) is a key component of an extensive network of hippocampal and cortical structures and is a fundamental substrate for cognition. A common misconception is that RE is a simple relay structure. Instead, a better conceptualization is that RE is a critical component of a canonical higher-order cortico-thalamo-cortical circuit that supports communication between the medial prefrontal cortex (mPFC) and the hippocampus (HC). RE dysfunction is implicated in several clinical disorders including, but not limited to Alzheimer's disease, schizophrenia, and epilepsy. Here, we review key anatomical and physiological features of the RE based primarily on studies in rodents. We present a conceptual model of RE circuitry within the mPFC-RE-HC system and speculate on the computations RE enables. We review the rapidly growing literature demonstrating that RE is critical to, and its neurons represent, aspects of behavioral tasks that place demands on memory focusing on its role in navigation, spatial working memory, the temporal organization of memory, and executive functions.
Collapse
Affiliation(s)
- Margriet J Dolleman-van der Weel
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam NL-1007MB, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, Florida 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
48
|
Dannenberg H, Alexander AS, Robinson JC, Hasselmo ME. The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition. J Cogn Neurosci 2019; 31:1271-1289. [PMID: 31251890 DOI: 10.1162/jocn_a_01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Behavioral research in human verbal memory function led to the initial definition of episodic memory and semantic memory. A complete model of the neural mechanisms of episodic memory must include the capacity to encode and mentally reconstruct everything that humans can recall from their experience. This article proposes new model features necessary to address the complexity of episodic memory encoding and recall in the context of broader cognition and the functional properties of neurons that could contribute to this broader scope of memory. Many episodic memory models represent individual snapshots of the world with a sequence of vectors, but a full model must represent complex functions encoding and retrieving the relations between multiple stimulus features across space and time on multiple hierarchical scales. Episodic memory involves not only the space and time of an agent experiencing events within an episode but also features shown in neurophysiological data such as coding of speed, direction, boundaries, and objects. Episodic memory includes not only a spatio-temporal trajectory of a single agent but also segments of spatio-temporal trajectories for other agents and objects encountered in the environment consistent with data on encoding the position and angle of sensory features of objects and boundaries. We will discuss potential interactions of episodic memory circuits in the hippocampus and entorhinal cortex with distributed neocortical circuits that must represent all features of human cognition.
Collapse
|
49
|
Sabariego M, Schönwald A, Boublil BL, Zimmerman DT, Ahmadi S, Gonzalez N, Leibold C, Clark RE, Leutgeb JK, Leutgeb S. Time Cells in the Hippocampus Are Neither Dependent on Medial Entorhinal Cortex Inputs nor Necessary for Spatial Working Memory. Neuron 2019; 102:1235-1248.e5. [PMID: 31056352 DOI: 10.1016/j.neuron.2019.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
A key function of the hippocampus and entorhinal cortex is to bridge events that are discontinuous in time, and it has been proposed that medial entorhinal cortex (mEC) supports memory retention by sustaining the sequential activity of hippocampal time cells. Therefore, we recorded hippocampal neuronal activity during spatial working memory and asked whether time cells depend on mEC inputs. Working memory was impaired in rats with mEC lesions, but the occurrence of time cells and of trajectory-coding cells in the stem did not differ from controls. Rather, the main effect of mEC lesions was an extensive spatial coding deficit of CA1 cells, which included inconsistency over time and reduced firing differences between positions on the maze. Therefore, mEC is critical for providing stable and distinct spatial information to hippocampus, while working memory (WM) maintenance is likely supported either by local synaptic plasticity in hippocampus or by activity patterns elsewhere in the brain.
Collapse
Affiliation(s)
- Marta Sabariego
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antonia Schönwald
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brittney L Boublil
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David T Zimmerman
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Siavash Ahmadi
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nailea Gonzalez
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Leibold
- Department Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Martinsried, Germany
| | - Robert E Clark
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy. J Neurosci 2019; 39:2144-2156. [PMID: 30665947 DOI: 10.1523/jneurosci.0435-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.
Collapse
|