1
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540428. [PMID: 37214805 PMCID: PMC10197642 DOI: 10.1101/2023.05.12.540428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes; IIS). IIS also are common in other mouse models and occur in AD patients. Im mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore we studied ΔFosB expression in GCs. We also studied the the neuronal marker NeuN within hilar neurons of the DG because other studies have reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address:Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27510
| | - Karim S. Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Psychology, University of Maine, Orono, ME 04469
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Anatomy, Physiology, & Pharmacology, College of Medicine, Saskatoon, SK S7N 5E5
| | - Stephen D. Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
3
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Maurer SV, Kong C, Terrando N, Williams CL. Dietary Choline Protects Against Cognitive Decline After Surgery in Mice. Front Cell Neurosci 2022; 15:671506. [PMID: 34970119 PMCID: PMC8712952 DOI: 10.3389/fncel.2021.671506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a common complication following procedures such as orthopedic surgery. Using a mouse model of tibial fracture and repair surgery, we have previously shown an increase in neuroinflammation and hippocampal-dependent cognitive deficits. These changes were ameliorated with the addition of a cholinergic agonist. Here, we sought to examine the effects of a high-choline diet for 3 weeks prior to tibial fracture surgery. We evaluated memory using novel object recognition (NOR) as well as young neurons and glial cell morphology at 1 day and 2 weeks post-surgery. At both time points, tibial fracture impaired NOR performance, and dietary choline rescued these impairments. Astrocytic density and hilar granule cells increased 1 day after tibial fracture, and these increases were partially blunted by dietary choline. An increase in young neurons in the subgranular zone of the dentate gyrus was found 2 weeks after tibial fracture. This increase was partially blunted by choline supplementation. This suggests that shortly after tibial fracture, hippocampal reorganization is a possible mechanism for acute impaired memory. These findings together suggest that non-pharmaceutical approaches, such as pre-surgical dietary intervention with choline, may be able to prevent PNDs.
Collapse
Affiliation(s)
- Sara V Maurer
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Cuicui Kong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Christina L Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Bahnfleth CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial. FASEB J 2021; 36:e22054. [PMID: 34962672 PMCID: PMC9303951 DOI: 10.1096/fj.202101217r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 01/23/2023]
Abstract
Numerous rodent studies demonstrate developmental programming of offspring cognition by maternal choline intake, with prenatal choline deprivation causing lasting adverse effects and supplemental choline producing lasting benefits. Few human studies have evaluated the effect of maternal choline supplementation on offspring cognition, with none following children to school age. Here, we report results from a controlled feeding study in which pregnant women were randomized to consume 480 mg choline/d (approximately the Adequate Intake [AI]) or 930 mg choline/d during the 3rd trimester. Sustained attention was assessed in the offspring at age 7 years (n = 20) using a signal detection task that showed benefits of maternal choline supplementation in a murine model. Children in the 930 mg/d group showed superior performance (vs. 480 mg/d group) on the primary endpoint (SAT score, p = .02) and a superior ability to maintain correct signal detections (hits) across the 12‐min session (p = .02), indicative of improved sustained attention. This group difference in vigilance decrement varied by signal duration (p = .04). For the briefest (17 ms) signals, the 480 mg/d group showed a 22.9% decline in hits across the session compared to a 1.5% increase in hits for the 930 mg/d group (p = .04). The groups did not differ in vigilance decrement for 29 or 50 ms signals. This pattern suggests an enhanced ability to sustain perceptual amplification of a brief low‐contrast visual signal by children in the 930 mg/d group. This inference of improved sustained attention by the 930 mg/d group is strengthened by the absence of group differences for false alarms, omissions, and off‐task behaviors. This pattern of results indicates that maternal 3rd trimester consumption of the choline AI for pregnancy (vs. double the AI) produces offspring with a poorer ability to sustain attention—reinforcing concerns that, on average, choline consumption by pregnant women is approximately 70% of the AI.
Collapse
Affiliation(s)
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Richard L Canfield
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Gámiz F, Gallo M. A Systematic Review of the Dietary Choline Impact on Cognition from a Psychobiological Approach: Insights from Animal Studies. Nutrients 2021; 13:nu13061966. [PMID: 34201092 PMCID: PMC8229126 DOI: 10.3390/nu13061966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of dietary choline availability on cognition is currently being suggested by animal and human studies which have focused mainly on the early developmental stages. The aim of this review is to systematically search through the available rodent (rats and mice) research published during the last two decades that has assessed the effect of dietary choline interventions on cognition and related attentional and emotional processes for the entire life span. The review has been conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines covering peer-reviewed studies included in PubMed and Scopus databases. After excluding duplicates and applying the inclusion/exclusion criteria we have reviewed a total of 44 articles published in 25 journals with the contribution of 146 authors. The results are analyzed based on the timing and duration of the dietary intervention and the behavioral tests applied, amongst other variables. Overall, the available results provide compelling support for the relevance of dietary choline in cognition. The beneficial effects of choline supplementation is more evident in recognition rather than in spatial memory tasks when assessing nonpathological samples whilst these effects extend to other relational memory tasks in neuropathological models. However, the limited number of studies that have evaluated other cognitive functions suggest a wider range of potential effects. More research is needed to draw conclusions about the critical variables and the nature of the impact on specific cognitive processes. The results are discussed on the terms of the theoretical framework underlying the relationship between the brain systems and cognition.
Collapse
|
7
|
Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020; 12:E1731. [PMID: 32531929 PMCID: PMC7352907 DOI: 10.3390/nu12061731] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
The foundations of neurodevelopment across an individual's lifespan are established in the first 1000 days of life (2 years). During this period an adequate supply of nutrients are essential for proper neurodevelopment and lifelong brain function. Of these, evidence for choline has been building but has not been widely collated using systematic approaches. Therefore, a systematic review was performed to identify the animal and human studies looking at inter-relationships between choline, neurological development, and brain function during the first 1000 days of life. The database PubMed was used, and reference lists were searched. In total, 813 publications were subject to the title/abstract review, and 38 animal and 16 human studies were included after evaluation. Findings suggest that supplementing the maternal or child's diet with choline over the first 1000 days of life could subsequently: (1) support normal brain development (animal and human evidence), (2) protect against neural and metabolic insults, particularly when the fetus is exposed to alcohol (animal and human evidence), and (3) improve neural and cognitive functioning (animal evidence). Overall, most offspring would benefit from increased choline supply during the first 1000 days of life, particularly in relation to helping facilitate normal brain development. Health policies and guidelines should consider re-evaluation to help communicate and impart potential choline benefits through diet and/or supplementation approaches across this critical life stage.
Collapse
Affiliation(s)
| | - Rima Obeid
- Department of Clinical Chemistry, University Hospital of the Saarland, Building 57, 66424 Homburg, Germany;
| |
Collapse
|
8
|
Wallace TC, Blusztajn JK, Caudill MA, Klatt KC, Zeisel SH. Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. J Diet Suppl 2019; 17:733-752. [DOI: 10.1080/19390211.2019.1639875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Taylor C. Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
- Think Healthy Group, Inc, Washington, DC, USA
| | - Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marie A. Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kevin C. Klatt
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven H. Zeisel
- Research Institute, University of North Carolina, Kannapolis, NC, USA
| |
Collapse
|
9
|
Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacol Res 2018; 139:228-242. [PMID: 30227261 DOI: 10.1016/j.phrs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The majority of brain injuries that lead to cerebral palsy, developmental disability, and mental health disorders have their onset in utero. These lifelong conditions come with great economic and emotional burden as they impact function in nearly all domains of affected individuals' lives. Unfortunately, current therapeutic options are limited. There remains a focus on rescue, rehabilitation, and regeneration after the injury has occurred, rather than aiming to prevent the initial injury. Prevention would imply treating the mother during pregnancy to alter the fetal environment and in turn, treat the fetus. Fear of harming the developing fetus remains as a result of errors of the past such as the release of thalidomide. In this review, we outline evidence from animal studies and clinical trials that have explored maternal dietary supplementation with natural health products (including nutraceuticals and functional foods) for perinatal brain injury prevention. Namely, we discuss magnesium sulphate, creatine, choline, melatonin, resveratrol and broccoli sprouts/sulforaphane. Although clinical trials have only been completed in this realm for magnesium sulphate, results in animal models have been promising, suggesting that this is a productive avenue for further research. Natural health products may provide safe, effective, affordable, and easily accessible prevention of fetal brain injury and resulting lifelong disabilities.
Collapse
|
10
|
Sanon NT, Gagné J, Wolf DC, Aboulamer S, Bosoi CM, Simard A, Messiet E, Desgent S, Carmant L. Favorable adverse effect profile of brivaracetam vs levetiracetam in a preclinical model. Epilepsy Behav 2018; 79:117-125. [PMID: 29287214 DOI: 10.1016/j.yebeh.2017.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
Levetiracetam (LEV), and its newer selective analog brivaracetam (BRV), are two seizure medications that share an innovative mechanism of action targeting the Synaptic Vesicle Protein 2A (SV2A), altering neurotransmitter release and decreasing seizure frequency. Behavioral changes are the most significant adverse effects reported by patients taking LEV. We hypothesize that BRV, the more potent SV2A analog, could exert less behavioral side effects, as it requires lower doses than LEV. Using Kainic Acid (KA)-treated and control rats, we measured adverse behavioral effect profiles of LEV, BRV, or Saline, on social and nonsocial behaviors. Our data indicate that both tested drugs had no effect on locomotion, anxiety levels, fear learning, depression-like behavior, and memory retention in rats. However, when considering social interactions, we first confirmed the epilepsy-induced strong increase in aggressive behaviors and specific hippocampal neuronal loss. We furthermore observed, in Sham rats, that LEV-treated animals were 2 times faster to attack at first encounter, had 5 times more aggressive behaviors, and had significantly less social behaviors than control rats. In all circumstances, BRV rats behaved like Saline rats, suggesting that BRV treatment in rats leads to significantly less aggressive behaviors than LEV treatment at the doses used, while there are limited differential effects between these two drugs on other types of behaviors. Since increased aggressiveness has been reported in patients well controlled on LEV, this study indicates based on our findings, that BRV could represent an effective alternative to LEV to limit aggressiveness problems due to this antiepileptic drug (AED) therapy.
Collapse
Affiliation(s)
- Nathalie T Sanon
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada.
| | - Jonathan Gagné
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada; Département de Sciences Biomédicales, Université de Montréal, Québec, Canada
| | - Daniele C Wolf
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Soumia Aboulamer
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada
| | - Ciprian M Bosoi
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada
| | - Alexe Simard
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada
| | - Estelle Messiet
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada
| | - Sébastien Desgent
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Lionel Carmant
- Centre de Recherche, Centre Hospitalier Universitaire CHU-Sainte-Justine, Québec, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada.
| |
Collapse
|
11
|
Nickerson CA, Brown AL, Yu W, Chun Y, Glenn MJ. Prenatal choline supplementation attenuates MK-801-induced deficits in memory, motor function, and hippocampal plasticity in adult male rats. Neuroscience 2017; 361:116-128. [PMID: 28790020 PMCID: PMC5605469 DOI: 10.1016/j.neuroscience.2017.07.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Choline is essential to the development and function of the central nervous system and supplemental choline during development is neuroprotective against a variety of insults, including neurotoxins like dizocilpine (MK-801). MK-801 is an NMDA receptor antagonist that is frequently used in rodent models of psychological disorders, particularly schizophrenia. At low doses, it causes cognitive impairments, and at higher doses it induces motor deficits, anhedonia, and neuronal degeneration. The primary goals of the present study were to investigate whether prenatal choline supplementation protects against the cognitive impairments, motor deficits, and neuropathologies that are precipitated by MK-801 administration in adulthood. Adult male Sprague-Dawley rats were fed a standard or supplemented choline diet prenatally. Using the novelty preference test of object recognition, we found that only prenatal standard-fed rats displayed memory consolidation deficits induced by low-dose MK-801 administered immediately following study of sample objects; all other groups, including prenatal choline supplemented rats given MK-801, showed intact memory. Following high-dose MK-801, prenatal choline supplementation significantly alleviated rats' motor response to MK-801, particularly ataxia. Using doublecortin and Ki67 to mark neurogenesis and cell division, respectively, in the hippocampus, we found that prenatal choline supplementation, in the face of MK-801 toxicity, protected against reduced hippocampal plasticity. Taken together, the current findings suggest that prenatal choline supplementation protects against a variety of behavioral and neural pathologies induced by the neurotoxin, MK-801. This research contributes to the growing body of evidence supporting the robust neuroprotective capacity of choline.
Collapse
Affiliation(s)
- Chelsea A Nickerson
- Department of Biology, Colby College, 5550 Mayflower Hill Dr., Waterville, ME 04901, USA.
| | - Alexandra L Brown
- Department of Psychology, Colby College, 5550 Mayflower Hill Dr., Waterville, ME 04901, USA.
| | - Waylin Yu
- Department of Psychology, Colby College, 5550 Mayflower Hill Dr., Waterville, ME 04901, USA.
| | - Yoona Chun
- Department of Biology, Colby College, 5550 Mayflower Hill Dr., Waterville, ME 04901, USA.
| | - Melissa J Glenn
- Department of Psychology, Colby College, 5550 Mayflower Hill Dr., Waterville, ME 04901, USA.
| |
Collapse
|
12
|
Neuroprotective Actions of Dietary Choline. Nutrients 2017; 9:nu9080815. [PMID: 28788094 PMCID: PMC5579609 DOI: 10.3390/nu9080815] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer’s disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.
Collapse
|
13
|
Mellott TJ, Huleatt OM, Shade BN, Pender SM, Liu YB, Slack BE, Blusztajn JK. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS One 2017; 12:e0170450. [PMID: 28103298 PMCID: PMC5245895 DOI: 10.1371/journal.pone.0170450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Prevention of Alzheimer's disease (AD) is a major goal of biomedical sciences. In previous studies we showed that high intake of the essential nutrient, choline, during gestation prevented age-related memory decline in a rat model. In this study we investigated the effects of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amyloid precursor protein (APP) metabolites-specifically elevated amounts of β-C-terminal fragment (β-CTF) and reduced levels of solubilized amyloid Aβ40 and Aβ42 peptides; 2) reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyltransferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astrogliosis. The data suggest that dietary supplementation of choline during fetal development and early postnatal life may constitute a preventive strategy for AD.
Collapse
Affiliation(s)
- Tiffany J. Mellott
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Olivia M. Huleatt
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bethany N. Shade
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sarah M. Pender
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yi B. Liu
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara E. Slack
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jan K. Blusztajn
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Zhu CH, Wu T, Jin Y, Huang BX, Zhou RF, Wang YQ, Luo XL, Zhu HL. Prenatal choline supplementation attenuates spatial learning deficits of offspring rats exposed to low-protein diet during fetal period. J Nutr Biochem 2016; 32:163-70. [DOI: 10.1016/j.jnutbio.2015.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022]
|
15
|
Schneider RD, Thomas JD. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent. Alcohol Clin Exp Res 2016; 40:897-905. [PMID: 27038598 PMCID: PMC5763508 DOI: 10.1111/acer.13021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol's adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol's teratogenic effects when administered during adolescence/young adulthood. METHODS Sprague-Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). RESULTS Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. CONCLUSIONS The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects, even when administered later in life, findings with important implications for adolescents and young adults with fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Ronald D Schneider
- Department of Psychology (RDS, JDT), Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Jennifer D Thomas
- Department of Psychology (RDS, JDT), Center for Behavioral Teratology, San Diego State University, San Diego, California
| |
Collapse
|
16
|
Tran PV, Kennedy BC, Pisansky MT, Won KJ, Gewirtz JC, Simmons RA, Georgieff MK. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus. J Nutr 2016; 146:484-93. [PMID: 26865644 PMCID: PMC4763487 DOI: 10.3945/jn.115.227561] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. OBJECTIVES We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. METHODS Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. RESULTS Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. CONCLUSIONS Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Department of Genetics, and
| | - Jonathan C Gewirtz
- Graduate Program in Neuroscience, and Department of Psychology, University of Minnesota, Minneapolis, MN
| | - Rebecca A Simmons
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
17
|
|
18
|
High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav Brain Res 2015; 278:210-20. [DOI: 10.1016/j.bbr.2014.09.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/26/2022]
|
19
|
Yan J, Ginsberg SD, Powers B, Alldred MJ, Saltzman A, Strupp BJ, Caudill MA. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. FASEB J 2014; 28:4312-23. [PMID: 24963152 DOI: 10.1096/fj.14-251736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.
Collapse
Affiliation(s)
- Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and Department of Psychiatry and Department of Physiology and Neuroscience, New York University Langone Medical Center, New York, New York, USA
| | - Brian Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and Department of Psychiatry and
| | - Arthur Saltzman
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA; and
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
20
|
Jiang X, West AA, Caudill MA. Maternal choline supplementation: a nutritional approach for improving offspring health? Trends Endocrinol Metab 2014; 25:263-73. [PMID: 24680198 DOI: 10.1016/j.tem.2014.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 12/15/2022]
Abstract
The modulatory role of choline on the fetal epigenome and the impact of in utero choline supply on fetal programming and health are of great interest. Studies in animals and/or humans suggest that maternal choline supplementation during pregnancy benefits important physiologic systems such as offspring cognitive function, response to stress, and cerebral inhibition. Because alterations in offspring phenotype frequently coincide with epigenetic modifications and changes in gene expression, maternal choline supplementation may be a nutritional strategy to improve lifelong health of the child. Future studies are warranted to elucidate further the effect of choline on the fetal epigenome and to determine the level of maternal choline intake required for optimal offspring physiologic function.
Collapse
Affiliation(s)
- Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA
| | - Allyson A West
- Division of Nutritional Sciences, Cornell University, Ithaca 14853, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca 14853, NY, USA.
| |
Collapse
|
21
|
Ozarda Y, Cansev M, Ulus IH. Breast milk choline contents are associated with inflammatory status of breastfeeding women. J Hum Lact 2014; 30:161-6. [PMID: 24194609 DOI: 10.1177/0890334413508004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Choline is an important component of human breast milk and its content varies considerably among breastfeeding women and lactation periods. OBJECTIVE The aim of this study was to assess the relationship between breast milk choline contents and inflammatory status in breastfeeding women. METHODS Breast milk choline compounds and serum C-reactive protein (CRP) concentrations were determined in breastfeeding women at 1 to 3 (n = 53) or 22 to 180 (n = 54) days postpartum, expressing colostrum or mature milk, respectively. RESULTS Median concentrations of free choline, phosphocholine, glycerophosphocholine, phospholipid-bound choline, and total choline were 71, 38, 96, 194, and 407 µmol/L or 93, 351, 958, 186, and 1532 µmol/L in colostrum or mature milk, respectively. Median serum CRP concentrations were 4.13 mg/L and 0.33 mg/L at 1 to 3 days and 22 to 180 days postpartum, respectively. At 1 to 3 days postpartum, milk free choline, phosphocholine, glycerophosphocholine, and total choline as well as serum CRP concentrations were significantly higher in breastfeeding women who delivered by cesarean section than those who delivered via the vaginal route. Serum CRP concentration was positively correlated with colostrum free choline (r = 0.703; P < .001), phosphocholine (r = 0.759; P < .001), glycerophosphocholine (r = 0.706; P < .001), and total choline (r = 0.693; P < .001), whereas it was negatively correlated (r = -0.442; P < .001) with colostrum phospholipid-bound choline. Serum CRP was also negatively correlated with mature milk free choline (r = -0.278; P < .05), but no correlation was found between serum CRP and other choline compounds in mature milk. CONCLUSION These data show that the concentrations of milk choline compounds are associated with inflammatory status of breastfeeding women, particularly during the first few days after delivery.
Collapse
Affiliation(s)
- Yesim Ozarda
- 1Department of Biochemistry, Uludag University Medical School, Bursa, Turkey
| | | | | |
Collapse
|
22
|
Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety-related behaviors. Behav Brain Res 2014; 268:104-10. [PMID: 24675162 DOI: 10.1016/j.bbr.2014.03.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 01/07/2023]
Abstract
Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress.
Collapse
|
23
|
Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2013; 58:92-101. [PMID: 23643842 PMCID: PMC4029409 DOI: 10.1016/j.nbd.2013.04.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/12/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.
Collapse
Affiliation(s)
- Ramon Velazquez
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Jessica A. Ash
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Brian E. Powers
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Christy M. Kelley
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Myla Strawderman
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Zoe I. Luscher
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, and Departments of Psychiatry, and Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10962
| | - Elliott J. Mufson
- Dept. Neurological Science and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Barbara J. Strupp
- Div. Nutritional Sciences and Dept of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Blusztajn JK, Mellott TJ. Neuroprotective actions of perinatal choline nutrition. Clin Chem Lab Med 2013; 51:591-9. [PMID: 23314544 DOI: 10.1515/cclm-2012-0635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/15/2022]
Abstract
Choline is an essential nutrient for humans. Studies in rats and mice have shown that high choline intake during gestation or the perinatal period improves cognitive function in adulthood, prevents memory decline of old age, and protects the brain from damage and cognitive and neurological deterioration associated with epilepsy and hereditary conditions such as Down's and Rett syndromes. These behavioral changes are accompanied by modified patterns of expression of hundreds of cortical and hippocampal genes including those encoding proteins central for learning and memory processing. The effects of choline correlate with cerebral cortical changes in DNA and histone methylation, thus suggesting an epigenomic mechanism of action of perinatal choline.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
25
|
Corriveau JA, Glenn MJ. Postnatal choline levels mediate cognitive deficits in a rat model of schizophrenia. Pharmacol Biochem Behav 2013; 103:60-8. [PMID: 22917834 DOI: 10.1016/j.pbb.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/23/2012] [Accepted: 08/04/2012] [Indexed: 02/02/2023]
Abstract
In the present study, we investigated whether the essential nutrient choline may protect against schizophrenic-like cognitive deficits in a rat model. Theories regarding the etiology of schizophrenia suggest that early life events render an individual more vulnerable to adult challenges, and the combination may precipitate disease onset. To model this, the adult male offspring of dams who either experienced stress during late gestation or did not were given a 5 mg/kg dose of the NMDA antagonist,MK-801. The presence of both the prenatal challenge of stress and the adult challenge of MK-801 was expected to impair memory in these offspring. Memory was not expected to be impaired in rats that did not experience prenatal stress, but did receive MK-801 as adults. To study whether choline levels altered outcomes in these groups, rats were fed a choline-supplemented, -deficient, or standard diet during the period between the two challenges: beginning at weaning and continuing for 25 days. All rats consumed regular rat chow thereafter. The efficacy of the model was confirmed in the standard fed rats in that only those that were prenatally stressed and received MK-801 as adults displayed impaired memory on a novelty preference test of object recognition. Contrary to this finding and consistent with our hypothesis, choline-supplemented rats that were also both prenatally stressed and given MK-801 as adults showed intact memory. Choline deficiency impaired memory in rats that were just prenatally stressed, just given MK-801 as adults, and subjected to both. Thus, a choline deficient diet may render rats vulnerable to either challenge. Taken together, we offer evidence that developmental choline levels modulate the effects of prenatal stress and/or MK-801 and thereby alter the cognitive outcome in a rat model of schizophrenia.
Collapse
|
26
|
Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats. Epilepsy Behav 2013; 27:9-17. [PMID: 23353000 DOI: 10.1016/j.yebeh.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
Our aim was to examine whether neonatal lipopolysaccharide (LPS) exposure is associated with changes in microglia and whether these alternations could influence later seizure-induced neurobehavioral outcomes. Male pups were first injected intraperitoneally with either LPS or saline on postnatal day 3 (P3) and postnatal day 5 (P5). Immunohistochemical analysis showed that LPS-treated animals exhibited increased microglia activation that persisted into adolescence. At P45, seizures were induced in rats by intraperitoneal injection of kainic acid (KA). Rats treated with LPS neonatally showed significantly greater proinflammatory responses and performed significantly worse in the Y-maze, Morris water maze, and inhibitory avoidance tasks after KA insult. Treatment with minocycline at the time of neonatal LPS exposure to block LPS-induced microglia alternation attenuated the exaggerated neuroinflammatory responses and alleviated memory impairment associated with the KA insult. Our findings suggest that neonatal immune activation can predispose the brain to exacerbated behavioral deficits following seizures in adulthood, possibly by priming microglia.
Collapse
|
27
|
Buhusi M, Scripa I, Williams CL, Buhusi CV. Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. TIMING & TIME PERCEPTION 2013; 1:21-38. [PMID: 28890867 DOI: 10.1163/22134468-00002003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders, including schizophrenia - a neurodevelopmental disorder with a strong genetic component. Several gene mutations, polymorphisms or rare copy number variants have been associated with schizophrenia. L1 cell adhesion molecules (L1CAMs) are involved in neurodevelopmental processes, and in synaptic function and plasticity in the adult brain. Mice deficient in the Close Homolog to L1 (CHL1) adhesion molecule show alterations of hippocampal and thalamo-cortical neuroanatomy as well as deficits in sensorimotor gating and exploratory behavior. We analyzed interval timing and attentional control of temporal and spatial information in male CHL1 deficient (KO) mice and wild type (WT) controls. In a 20-s peak-interval timing procedure (standard and reversed), KO mice showed a maintained leftward shift of the response function relative to WT, indicative of a deficit in memory encoding/decoding. In trials with 2, 5, or 10-s gaps, KO mice shifted their peak times less than WT controls at longer gap durations, suggesting a decreased (attentional) effect of interruptions. In the spatial-temporal task, KO mice made more working and reference memory errors than controls, suggestive of impaired use of spatial and/or temporal information. When the duration spent on the central platform of the maze was manipulated, WT mice showed fewer spatial errors at the trained duration than at shorter or longer durations, indicative of discrimination based upon spatial-temporal integration. In contrast, performance was similar at all tested durations in KO mice, indicative of control by spatial cues, but not by temporal cues. These results suggest that CHL1 KO mice selectively attend to the more relevant cues of the task, and fail to integrate more complex spatial-temporal information, possibly as a result of reduced memory capacity related to hippocampal impairment, and altered temporal-integration mechanisms possibly due to thalamo-cortical anomalies.
Collapse
Affiliation(s)
- Mona Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | - Ioana Scripa
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | | | - Catalin V Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| |
Collapse
|
28
|
Blusztajn JK, Mellott TJ. Choline nutrition programs brain development via DNA and histone methylation. Cent Nerv Syst Agents Med Chem 2012; 12:82-94. [PMID: 22483275 PMCID: PMC5612430 DOI: 10.2174/187152412800792706] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, L808, Boston, MA 02118, USA.
| | | |
Collapse
|
29
|
Abstract
Food intake can influence neuronal functions through different modulators expressed in the brain. The present review is a report through relevant experimental findings on the effects of choline, a nutritional component found in the diet, to identify a safe and effective dietary solution that can offer some protection against neurotoxicity and neurological disorders and that can be implemented in animals and humans in a very short period of time.
Collapse
Affiliation(s)
- Elisabetta Biasi
- Department of Pharmacology and Cancer Biology, Duke Univesity Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats. Brain Res 2012; 1443:52-63. [PMID: 22305146 DOI: 10.1016/j.brainres.2012.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/25/2022]
Abstract
Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression.
Collapse
|
31
|
Wong-Goodrich SJE, Tognoni CM, Mellott TJ, Glenn MJ, Blusztajn JK, Williams CL. Prenatal choline deficiency does not enhance hippocampal vulnerability after kainic acid-induced seizures in adulthood. Brain Res 2011; 1413:84-97. [PMID: 21840511 DOI: 10.1016/j.brainres.2011.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 11/28/2022]
Abstract
Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury.
Collapse
Affiliation(s)
- Sarah J E Wong-Goodrich
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wong-Goodrich SJE, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res 2010; 70:9329-38. [PMID: 20884629 DOI: 10.1158/0008-5472.can-10-1854] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Sarah J E Wong-Goodrich
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | |
Collapse
|