1
|
Higarza SG, De Antón-Cosío M, Zorzo C, Arias JL, Arias N. Effects of Metabolic Dysfunction-Associated Steatohepatitis in Alertness, Associative Learning, and Astrocyte Density. Brain Behav 2025; 15:e70222. [PMID: 39740785 DOI: 10.1002/brb3.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
PURPOSE Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats. METHODS Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks. Then, we assessed the acoustic startle response and alertness through the prepulse inhibition paradigm as well as the associative learning by the use of the passive avoidance test. Also, we explored the astrocyte density in the prefrontal cortex and hippocampus. RESULTS Our results showed that, whereas the MASH group did not display an impaired associative learning, a lower exploration rate was found in this group. Moreover, a reduced prepulse inhibition was found in these subjects in the case of the weaker and closer-to-the-stimulus prepulse, which indicates a mild alteration in this process. No differences were found in astrocyte density in the MASH group in comparison with controls. CONCLUSION MASH seems to be linked with cognitive dysfunction. Further research is needed to elucidate the pathway involved in this disease and its underlying mechanism, as well as the potential implication in human health.
Collapse
Affiliation(s)
- Sara G Higarza
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marina De Antón-Cosío
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Jorge L Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| |
Collapse
|
2
|
Asadzadeh Bayqara S, Aghazadeh Yamchelu M, Abdolahzadeyadegari S, Farhadi M, Nadjafi S, Fahanik Babaei J, Hosseini N. The effects of a chalcone derivative on memory, hippocampal corticosterone and BDNF levels in adult rats. Int J Neurosci 2024; 134:214-223. [PMID: 35796038 DOI: 10.1080/00207454.2022.2098735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Purpose/Aim of the study: Since chalcones belong to the flavonoid family, the effects of a new synthetic chalcone derivative on memory, chronic stress, and expression of hippocampal BDNF gene were studied.Materials and methods: In this experiment, the male wistar rats were placed under restraint stress (6 h/day) for 21 days and then treated with a newly synthesized chalcone, containing methoxy on the aromatic rings or vehicles (20 mg/kg, intraperitoneal, IP). After the behavioral Passive avoidance, Open field, and Morris water maze tests, the levels of serum corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) were analyzed.Results: Results of these tests presented significant differences between the Stress (St) and Chalcone (Ch) groups. Chronic stress led to high CORT levels and impaired memory functions. Moreover, a single dose of synthetic chalcone in the St group could postpone memory impairments. Furthermore, a 20 mg/kg IP injection of chalcone markedly attenuated the decrease of hippocampal BDNF.Conclusions: It has been already proposed that flavonoids have beneficial effects on different types of memory. According to these results, further investigations are required to explore other factors besides BDNF that could be acutely modulated by chalcones.
Collapse
Affiliation(s)
| | | | | | - Mona Farhadi
- Department of Microbiology, Islamic Azad University, Karaj, Iran
| | - Shabnam Nadjafi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Ji R, Zhou M, Ou N, Chen H, Li Y, Zhuo L, Huang X, Huang G. Large-scale networks underlie cognitive insight differs between untreated adolescents ongoing their first schizophrenic episode and their reference non-schizophrenic mates. Heliyon 2022; 8:e10818. [PMID: 36217472 PMCID: PMC9547213 DOI: 10.1016/j.heliyon.2022.e10818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 10/25/2022] Open
|
5
|
Higarza SG, Arboleya S, Arias JL, Gueimonde M, Arias N. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2022; 13:1-20. [PMID: 33678110 PMCID: PMC7946069 DOI: 10.1080/19490976.2021.1880240] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most prevalent diseases globally. A high-fat, high-cholesterol (HFHC) diet leads to an early NASH model. It has been suggested that gut microbiota mediates the effects of diet through the microbiota-gut-brain axis, modifying the host's brain metabolism and disrupting cognition. Here, we target NASH-induced cognitive damage by testing the impact of environmental enrichment (EE) and the administration of either Lacticaseibacillus rhamnosus GG (LGG) or Akkermansia muciniphila CIP107961 (AKK). EE and AKK, but not LGG, reverse the HFHC-induced cognitive dysfunction, including impaired spatial working memory and novel object recognition; however, whereas AKK restores brain metabolism, EE results in an overall decrease. Moreover, AKK and LGG did not induce major rearrangements in the intestinal microbiota, with only slight changes in bacterial composition and diversity, whereas EE led to an increase in Firmicutes and Verrucomicrobia members. Our findings illustrate the interplay between gut microbiota, the host's brain energy metabolism, and cognition. In addition, the findings suggest intervention strategies, such as the administration of AKK, for the management of the cognitive dysfunction related to NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain,Miguel Gueimonde Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias 33300, Spain
| | - Natalia Arias
- Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain,UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,CONTACT Natalia Arias Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, LondonSE5 8AF, United Kingdom
| |
Collapse
|
6
|
Won J, Pankratov Y, Jang MW, Kim S, Ju YH, Lee S, Lee SE, Kim A, Park S, Lee CJ, Heo WD. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, and behavior. Neuron 2021; 110:423-435.e4. [PMID: 34852235 DOI: 10.1016/j.neuron.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 01/13/2023]
Abstract
Spatiotemporal control of brain activity by optogenetics has emerged as an essential tool to study brain function. For silencing brain activity, optogenetic probes, such as halorhodopsin and archaerhodopsin, inhibit transmitter release indirectly by hyperpolarizing membrane potentials. However, these probes cause an undesirable ionic imbalance and rebound spikes. Moreover, they are not applicable to use in non-excitable glial cells. Here we engineered Opto-vTrap, a light-inducible and reversible inhibition system to temporarily trap the transmitter-containing vesicles from exocytotic release. Light activation of Opto-vTrap caused full vesicle clusterization and complete inhibition of exocytosis within 1 min, which recovered within 30 min after light off. We found a significant reduction in synaptic and gliotransmission upon activation of Opto-vTrap in acute brain slices. Opto-vTrap significantly inhibited hippocampus-dependent memory retrieval with full recovery within an hour. We propose Opto-vTrap as a next-generation optogenetic silencer to control brain activity and behavior with minimal confounding effects.
Collapse
Affiliation(s)
- Joungha Won
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Minwoo Wendy Jang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sunpil Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Soowon Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Won Do Heo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Yao R, Nishii K, Aizu N, Kito T, Sakai K, Yamada K. Maintenance of the Amygdala-Hippocampal Circuit Function with Safe and Feasible Shaking Exercise Therapy in SAMP-10 Mice. Dement Geriatr Cogn Dis Extra 2021; 11:114-121. [PMID: 34178015 PMCID: PMC8215968 DOI: 10.1159/000515957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Patients with dementia show reduced adaptive, behavioral, and physiological responses to environmental threats. Physical exercise is expected to delay brain aging, maintain cognitive function and, consequently, help dementia patients face threats and protect themselves skillfully. METHODS To confirm this, we aimed to investigate the effects of the shaking exercise on the avoidance function in the senescence-accelerated mouse-prone strain-10 (SAMP-10) model at the behavioral and tissue levels. SAMP-10 mice were randomized into 2 groups: a control group and a shaking group. The avoidance response (latency) of the mice was evaluated using a passive avoidance task. The degree of amygdala and hippocampal aging was evaluated based on the brain morphology. Subsequently, the association between avoidance response and the degree of amygdala-hippocampal aging was evaluated. RESULTS Regarding the passive avoidance task, the shaking group showed a longer latency period than the control group (p < 0.05), even and low intensity staining of ubiquitinated protein, and had a higher number of and larger neurons than those of the control group. The difference between the groups was more significant in the BA region of the amygdala and the CA1 region of the hippocampus (staining degree: p < 0.05, neuron size: p < 0.01, neuron counts: p < 0.01) than in other regions. CONCLUSIONS The shaking exercise prevents nonfunctional protein (NFP) accumulation, neuron atrophy, and neuron loss; delays the aging of the amygdala and hippocampus; and maintains the function of the amygdala-hippocampal circuit. It thus enhances emotional processing and cognition functions, the memory of threats, the skillful confrontation of threats, and proper self-protection from danger.
Collapse
Affiliation(s)
| | | | | | | | | | - Kouji Yamada
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
8
|
Arias JL, Mendez M, Martínez JÁ, Arias N. Differential effects of photobiomodulation interval schedules on brain cytochrome c-oxidase and proto-oncogene expression. NEUROPHOTONICS 2020; 7:045011. [PMID: 33313338 PMCID: PMC7723391 DOI: 10.1117/1.nph.7.4.045011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Significance: Transcranial photobiomodulation (PBM) is a noninvasive neuromodulation technique capable of producing changes in the mitochondrial cytochrome c-oxidase (CCO) activity of neurons. Although the application of PBM in clinical practice and as a neurophysiological tool is increasing, less is known about how different treatment time intervals may result in different outcomes. Aim: We evaluated the effects of different PBM treatment intervals on brain metabolic activity through the CCO and proto-oncogene expression (c-Fos). Approach: We studied PBM effects on brain CCO and c-Fos expression in three groups of animals: Control (CN, n = 8 ), long interval PBM treatment (LI, n = 5 ), and short interval PBM treatment (SI, n = 5 ). Results: Increased CCO activity in the LI group, compared to the SI and CN groups, was found in the prefrontal cortices, dorsal and ventral striatum, and hippocampus. Regarding c-Fos expression, we found a significant increase in the SI group compared to LI and CN, whereas LI showed increased c-Fos expression compared to CN in the cingulate and infralimbic cortices. Conclusions: We show the effectiveness of different PBM interval schedules in increasing brain metabolic activity or proto-oncogene expression.
Collapse
Affiliation(s)
- Jorge L. Arias
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marta Mendez
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Juan Ángel Martínez
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- University of Oviedo, Escuela Politécnica de Gijón, Departamento Ingeniería Eléctrica, Electrónica, Computadores y Sistemas, Gijón, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King´s College London, Department of Basic and Clinical Neuroscience, London, United Kingdom
| |
Collapse
|
9
|
Ma Q, Fu Y, Cao Z, Shao D, Song J, Sheng H, Yang L, Cui D, Chen M, Zhao F, Luo MH, Lai B, Zheng P. A Conditioning-Strengthened Circuit From CA1 of Dorsal Hippocampus to Basolateral Amygdala Participates in Morphine-Withdrawal Memory Retrieval. Front Neurosci 2020; 14:646. [PMID: 32760235 PMCID: PMC7372939 DOI: 10.3389/fnins.2020.00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Conditioned context-induced retrieval of drug withdrawal memory contributes to drug relapse. The basolateral amygdala (BLA) is an important brain region that is involved in conditioned context-induced retrieval of morphine withdrawal memory. However, the upstream pathways of the activation of the BLA by conditioned context remains to be studied. The present results show that the CA1 of dorsal hippocampus is an upstream brain region of the activation of the BLA during conditioned context-induced morphine withdrawal memory retrieval; the indirect connection from the CA1 of dorsal hippocampus to the BLA is enhanced in mice with conditioned place aversion (CPA); the postrhinal cortex (POR) is a brain region that connects the CA1 of dorsal hippocampus and the activation of the BLA during conditioned context-induced retrieval of morphine-withdrawal memory. These results suggest that a conditioning-strengthened indirect circuit from the CA1 of dorsal hippocampus to the BLA through the POR participates in morphine withdrawal memory retrieval.
Collapse
Affiliation(s)
- Qianqian Ma
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yali Fu
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Cao
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaojiao Song
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Department of Neurology of Zhongshan Hospital, MOE Frontier Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ghobadi Pour M, Mirazi N, Alaei H, Radahmadi M, Rajaei Z, Monsef Esfahani A. The effects of concurrent treatment of silymarin and lactulose on memory changes in cirrhotic male rats. ACTA ACUST UNITED AC 2020; 10:177-186. [PMID: 32793440 PMCID: PMC7416014 DOI: 10.34172/bi.2020.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
![]()
Introduction: Chronic liver disease frequently accompanied by hepatic encephalopathy (HE). Changes in the permeability of the blood-brain barrier in HE, make an easier entrance of ammonia among other substances to the brain, which leads to neurotransmitter disturbances. Lactulose (LAC), causes better defecation and makes ammonia outreach of blood. Silymarin (SM) is a known standard drug for liver illnesses. The purpose of this research was to determine the results of LAC and SM combined treatment, on the changes in memory of cirrhotic male rats. Methods: The cirrhotic model established by treatment with thioacetamide (TAA) for 18 weeks. Cirrhotic rats randomized to four groups (n = 7): TAA group (received drinking water), LAC group (2 g/kg/d LAC in drinking water), SM group (50 mg/kg/d SM by food), SM+ LAC group (similar combined doses of both compounds) for 8 weeks. The control group received drinking water. The behavior examined by wire hanging (WH), passive avoidance (PA), and open field (OF) tests.
Results: Our findings showed that treatment with SM+LAC effectively increased PA latency, compared with the control group. The results showed that the administration of LAC and SM+LAC affected the number of lines crossed, the total distance moved and velocity in the OF tests. Conclusion: SM and LAC have anti-inflammatory effects that are memory changing. It may be due to their useful effects. These results indicated that SM+LAC restored memory disturbance and irritated mood in the cirrhotic rats. Comparable neuroprotection was never previously informed. Such outcomes are extremely promising and indicate the further study of SM+LAC.
Collapse
Affiliation(s)
- Mozhgan Ghobadi Pour
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Hojatollah Alaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
11
|
Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, Shen C, Lee H, Kulkarni S, Pasricha PJ, Lee G, Pomper MG, Dawson VL, Dawson TM, Ko HS. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron 2019; 103:627-641.e7. [PMID: 31255487 DOI: 10.1016/j.neuron.2019.05.035] [Citation(s) in RCA: 903] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Analysis of human pathology led Braak to postulate that α-synuclein (α-syn) pathology could spread from the gut to brain via the vagus nerve. Here, we test this postulate by assessing α-synucleinopathy in the brain in a novel gut-to-brain α-syn transmission mouse model, where pathological α-syn preformed fibrils were injected into the duodenal and pyloric muscularis layer. Spread of pathologic α-syn in brain, as assessed by phosphorylation of serine 129 of α-syn, was observed first in the dorsal motor nucleus, then in caudal portions of the hindbrain, including the locus coeruleus, and much later in basolateral amygdala, dorsal raphe nucleus, and the substantia nigra pars compacta. Moreover, loss of dopaminergic neurons and motor and non-motor symptoms were observed in a similar temporal manner. Truncal vagotomy and α-syn deficiency prevented the gut-to-brain spread of α-synucleinopathy and associated neurodegeneration and behavioral deficits. This study supports the Braak hypothesis in the etiology of idiopathic Parkinson's disease (PD).
Collapse
Affiliation(s)
- Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun Hee Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wonjoong Richard Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minjee Kook
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chentian Shen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hojae Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pankaj J Pasricha
- Center for Neurogastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| |
Collapse
|
12
|
Nishigaki A, Kawano T, Iwata H, Aoyama B, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Eguchi S, Locatelli FM, Yokoyama M. Acute and long-term effects of haloperidol on surgery-induced neuroinflammation and cognitive deficits in aged rats. J Anesth 2019; 33:416-425. [PMID: 31049689 DOI: 10.1007/s00540-019-02646-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Neuroinflammation may contribute to the pathogenesis of the cognitive symptoms of postoperative delirium (POD) and its subsequent long-term cognitive impairment. Haloperidol (HAL), a dopamine receptor antagonist, is widely used to treat POD, whereas the effects of HAL on postoperative neuroinflammation and related cognitive deficits have been underdetermined. METHODS Aged rats underwent sham or abdominal surgery and were subcutaneously treated with either vehicle, low-dose (0.5 mg/kg bolus, then 0.5 mg/kg/day infusion), or high-dose (2.0 mg/kg bolus, then 2.0 mg/kg/day infusion) HAL. All treatments were initiated immediately after surgery and continued for 48 h. On either postoperative day 2 (early) or 7 (late), all rats were tested for trace and context fear memory retention after acquisition of trace fear conditioning. Following the cognitive testing, the levels of pro-inflammatory cytokines, as well as dopamine and its metabolite, in hippocampus and medial prefrontal cortex (mPFC) were measured. RESULTS In the early postoperative period, surgery induced acute neuroinflammation along with related trace and context memory dysfunction. Dopamine turnover was increased in both hippocampus and mPFC, whereas no relationship with memory functions was observed. However, HAL even at high-dose failed to restore the surgery-induced neuroinflammation and related cognitive deficits. In the late postoperative period, chronic neuroinflammation was detected only in hippocampus, which was associated with context, but not trace memory dysfunction. Neither low- nor high-dose HAL could prevent the development of these late-phase neurocognitive deficits. CONCLUSION Our findings indicate that perioperative administration with HAL may have no effects on postoperative neuroinflammation and related cognitive impairment.
Collapse
Affiliation(s)
- Atsushi Nishigaki
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Kawano
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | - Hideki Iwata
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Bun Aoyama
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Daiki Yamanaka
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiroki Tateiwa
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Marie Shigematsu-Locatelli
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Satoru Eguchi
- Department of Dental Anesthesiology, Tokushima University School of Dentistry, Tokushima, Japan
| | - Fabricio M Locatelli
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Masataka Yokoyama
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
13
|
Fujisaki Y, Matsuo R. Context-Dependent Passive Avoidance Learning in the Terrestrial Slug Limax. Zoolog Sci 2019; 34:532-537. [PMID: 29219042 DOI: 10.2108/zs170071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The terrestrial slug Limax has been used as a model animal for studying the neural mechanisms underlying associative olfactory learning. The slug also innately exhibits negative phototactic behavior using its eyes. In the present study, we developed an experimental paradigm for quantification of slug's negative phototaxis behavior, and investigated whether the nature of the negative phototaxis can be modified by learning experience. The experimental set-up consists of light and dark compartments, between which the slug can move freely. During conditioning, the slug was placed in the light compartment, and an aversive stimulus (quinidine sulfate solution) was applied when it reached the dark compartment. After a single conditioning session, the time to reach the dark compartment significantly increased when it was tested following 24 hr or one week. Protein synthesis inhibition immediately following the conditioning impaired the memory retention at one week but not at 24 hr. The retrieval of the memory was context-dependent, as the time to reach the dark compartment did not significantly increase if the slug was placed on a floor with a different texture in the memory retention test. If the aversive stimulus was applied when the slug was in the light compartment, the time to reach the dark compartment did not increase after 24 hr. This is the first report demonstrating the capability of the slug to form context-dependent passive avoidance memory that can be established in a single conditioning session.
Collapse
Affiliation(s)
- Yuko Fujisaki
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
14
|
Lin CC, Chang HA, Tai YM, Chen TY, Wan FJ, Chang CC, Tung CS, Liu YP. Subchronic administration of aripiprazole improves fear extinction retrieval of Pavlovian conditioning paradigm in rats experiencing psychological trauma. Behav Brain Res 2019; 362:181-187. [PMID: 30610908 DOI: 10.1016/j.bbr.2018.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 11/15/2022]
Abstract
People may suffer from an intruded fear memory when the attributable traumatic events no longer exist. This is of highly clinical relevance to trauma-induced mental disorders, such as posttraumatic stress disorder (PTSD). Mechanism underlying PTSD largely lies in the abnormal process of fear extinction and a functional imbalance within amygdala associated fear circuit areas. Previous evidence suggested central dopamine plays a key role in the regulation of the fear memory process, yet it remains unclear whether the intervention of dopamine modulators would be beneficial for the fear extinction abnormalities. The present study examined the performance of Pavlovian conditioned fear and the changes of dopamine profiles following a subchronic 14-day regimen of aripiprazole (a partial agonist of dopamine D2 receptors to normalize the condition caused by dopamine imbalance) in rats previously experienced a psychologically traumatic procedure of single prolonged stress (SPS). The results demonstrated that aripiprazole at 5.0 mg/kg reversed the SPS-impaired fear memory dysfunction and the SPS-reduced dopamine efflux in the amygdala. The present study suggests a therapeutic potential of subchronic treatment with aripiprazole in managing patients suffered from fear extinction problem.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Yen Chen
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, Department of Physiology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
15
|
Kumar RS, Narayanan SN, Kumar N, Nayak S. Exposure to Enriched Environment Restores Altered Passive Avoidance Learning and Ameliorates Hippocampal Injury in Male Albino Wistar Rats Subjected to Chronic Restraint Stress. Int J Appl Basic Med Res 2019; 8:231-236. [PMID: 30598910 PMCID: PMC6259305 DOI: 10.4103/ijabmr.ijabmr_379_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims: The aim of the study was to investigate the effects of exposure to enriched environment (EE) on passive avoidance learning and hippocampal cellular morphology in rats exposed to chronic restraint stress. Materials and Methods: Adult male albino Wistar rats were assigned into the following groups: normal control (NC) remained undisturbed in their home cages; stressed group (S) subjected to restrained stress (6 h/day) followed by housing in standard housing for 21 days; And stressed + EE (S + EE) subjected to restrained stress followed by housing in EE for 21 days. On 22nd day, six animals from each of the three groups were exposed to passive avoidance test. The remaining animals were sacrificed. Hippocampus was isolated and processed for cellular morphology using cresyl violet staining. Statistical Analysis Used: Data were analyzed using one-way analysis of variance followed by Tukey's multiple comparison test (post hoc). Results: Stressed rats exposed to EE showed significant improvement in passive avoidance learning test compared to NC. Quantification of the surviving neurons in the hippocampal subfields and their cellular morphology revealed significant neuroprotection in S + EE in cornu ammonis-2 (CA2) neurons and CA3 hippocampal neurons. No significant changes were found in CA1 hippocampal subfield. Conclusions: The outcome of this study makes us to think the possibilities of adopting EE as an alternative strategy in brain diseases where there is chronic stress and to minimize the impairment in learning and memory.
Collapse
Affiliation(s)
- Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Naveen Kumar
- Department of Anatomy, Melaka Manipal Medical College Manipal Academy of Higher Education, Karnataka, India
| | - Satheesha Nayak
- Department of Anatomy, Melaka Manipal Medical College Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
16
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
17
|
Low-light-level therapy as a treatment for minimal hepatic encephalopathy: behavioural and brain assessment. Lasers Med Sci 2016; 31:1717-1726. [DOI: 10.1007/s10103-016-2042-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
|
18
|
Sałat K, Gdula-Argasińska J, Malikowska N, Podkowa A, Lipkowska A, Librowski T. Effect of pregabalin on contextual memory deficits and inflammatory state-related protein expression in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:613-23. [PMID: 26984821 PMCID: PMC4866991 DOI: 10.1007/s00210-016-1230-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia due to defects in insulin secretion or its action. Complications from long-term diabetes consist of numerous biochemical, molecular, and functional tissue alterations, including inflammation, oxidative stress, and neuropathic pain. There is also a link between diabetes mellitus and vascular dementia or Alzheimer’s disease. Hence, it is important to treat diabetic complications using drugs which do not aggravate symptoms induced by the disease itself. Pregabalin is widely used for the treatment of diabetic neuropathic pain, but little is known about its impact on cognition or inflammation-related proteins in diabetic patients. Thus, this study aimed to evaluate the effect of intraperitoneal (ip) pregabalin on contextual memory and the expression of inflammatory state-related proteins in the brains of diabetic, streptozotocin (STZ)-treated mice. STZ (200 mg/kg, ip) was used to induce diabetes mellitus. To assess the impact of pregabalin (10 mg/kg) on contextual memory, a passive avoidance task was applied. Locomotor and exploratory activities in pregabalin-treated diabetic mice were assessed by using activity cages. Using Western blot analysis, the expression of cyclooxygenase-2 (COX-2), cytosolic prostaglandin E synthase (cPGES), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor-ĸB (NF-ĸB) p50 and p65, aryl hydrocarbon receptor (AhR), as well as glucose transporter type-4 (GLUT4) was assessed in mouse brains after pregabalin treatment. Pregabalin did not aggravate STZ-induced learning deficits in vivo or influence animals’ locomotor activity. We observed significantly lower expression of COX-2, cPGES, and NF-κB p50 subunit, and higher expression of AhR and Nrf2 in the brains of pregabalin-treated mice in comparison to STZ-treated controls, which suggested immunomodulatory and anti-inflammatory effects of pregabalin. Antioxidant properties of pregabalin in the brains of diabetic animals were also demonstrated. Pregabalin does not potentiate STZ-induced cognitive decline, and it has antioxidant, immunomodulatory, and anti-inflammatory properties in mice. These results confirm the validity of its use in diabetic patients. Effect of pregabalin on fear-motivated memory and markers of brain tissue inflammation in diabetic mice ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland.
| | - Joanna Gdula-Argasińska
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Natalia Malikowska
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Anna Lipkowska
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Faculty of Pharmacy, Department of Radioligands, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Krakow, Poland
| |
Collapse
|