1
|
A Runner's High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021; 11:biom11081077. [PMID: 34439743 PMCID: PMC8392752 DOI: 10.3390/biom11081077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise has wide-ranging benefits to cognitive functioning and mental state, effects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis has been implicated in many of these mental benefits of exercise. However, precise mechanisms behind these effects are not well known. Released peripherally during exercise, beta-endorphins are an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits of exercise. Although historically ignored due to their peripheral release and status as a peptide hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis, and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin appears to be a promising mechanism for understanding the specific ways that exercise promotes adult neurogenesis specifically and brain health broadly.
Collapse
|
2
|
Recruitment of parvalbumin and somatostatin interneuron inputs to adult born dentate granule neurons. Sci Rep 2020; 10:17522. [PMID: 33067500 PMCID: PMC7568561 DOI: 10.1038/s41598-020-74385-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
GABA is a key regulator of adult-born dentate granule cell (abDGC) maturation so mapping the functional connectivity between abDGCs and local interneurons is required to understand their development and integration into the hippocampal circuit. We recorded from birthdated abDGCs in mice and photoactivated parvalbumin (PV) and somatostatin (SST) interneurons to map the timing and strength of inputs to abDGCs during the first 4 weeks after differentiation. abDGCs received input from PV interneurons in the first week, but SST inputs were not detected until the second week. Analysis of desynchronized quantal events established that the number of GABAergic synapses onto abDGCs increased with maturation, whereas individual synaptic strength was constant. Voluntary wheel running in mice scaled the GABAergic input to abDGCs by increasing the number of synaptic contacts from both interneuron types. This demonstrates that GABAergic innervation to abDGCs develops during a prolonged post-mitotic period and running scales both SST and PV synaptic afferents.
Collapse
|
3
|
Wooden JI, Schuller K, Roman G, Das J, Leasure JL. MUNC13-1 heterozygosity does not alter voluntary ethanol consumption or sensitivity in mice. Alcohol 2020; 83:89-97. [PMID: 31265903 PMCID: PMC7043798 DOI: 10.1016/j.alcohol.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The role of the munc13-1 presynaptic protein in alcohol-related behaviors has been little-studied, despite being a known site of action for ethanol binding. Munc13-1 is an active zone protein that plays a vital role in vesicle maturation and the release of neurotransmitters in excitatory neurons. Ethanol binds munc13-1, which decreases its functionality. In Drosophila, loss of the homologous protein Dunc13 is associated with an increase in ethanol preference, and is associated with a resistance to sedation following ethanol exposure. The current study assessed the effects of munc13-1 heterozygosity on ethanol sensitivity and consumption in mice, as well as on learning and anxiety-like behaviors, which can influence alcohol intake. Wild-type and mutant mice underwent 6 cycles of drinking-in-the-dark (DID) as well as rotarod testing following ethanol injection, to probe for differences in ethanol consumption and sensitivity, respectively. We did not detect genotype-based differences in our measures of anxiety, spatial learning, ethanol consumption, or ethanol sensitivity. However, heterozygotes showed increased use of a spatial navigation strategy in a dual-solution water maze, as opposed to a stimulus-response strategy. To summarize, although reduction of Dunc13 in flies produces clear effects on ethanol consumption and sensitivity, heterozygosity for munc13-1 does not, potentially due to compensatory adaptation by other munc-13 isoforms.
Collapse
Affiliation(s)
- Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Kyle Schuller
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Gregg Roman
- Department of Biology, University of Mississippi, Oxford, MS 38677, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
4
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 PMCID: PMC6974928 DOI: 10.12688/f1000research.20352.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
5
|
Cooke MB, O'Leary TP, Harris P, Ma R, Brown RE, Snyder JS. Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Res 2019; 8:1521. [PMID: 32025289 DOI: 10.12688/f1000research.20352.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/24/2023] Open
Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Timothy P O'Leary
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Phelan Harris
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Ricky Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| | - Richard E Brown
- Psychology and Neuroscience Department, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jason S Snyder
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancovuer, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
6
|
Adami R, Pagano J, Colombo M, Platonova N, Recchia D, Chiaramonte R, Bottinelli R, Canepari M, Bottai D. Reduction of Movement in Neurological Diseases: Effects on Neural Stem Cells Characteristics. Front Neurosci 2018; 12:336. [PMID: 29875623 PMCID: PMC5974544 DOI: 10.3389/fnins.2018.00336] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
Both astronauts and patients affected by chronic movement-limiting pathologies face impairment in muscle and/or brain performance. Increased patient survival expectations and the expected longer stays in space by astronauts may result in prolonged motor deprivation and consequent pathological effects. Severe movement limitation can influence not only the motor and metabolic systems but also the nervous system, altering neurogenesis and the interaction between motoneurons and muscle cells. Little information is yet available about the effect of prolonged muscle disuse on neural stem cells characteristics. Our in vitro study aims to fill this gap by focusing on the biological and molecular properties of neural stem cells (NSCs). Our analysis shows that NSCs derived from the SVZ of HU mice had shown a reduced proliferation capability and an altered cell cycle. Furthermore, NSCs obtained from HU animals present an incomplete differentiation/maturation. The overall results support the existence of a link between reduction of exercise and muscle disuse and metabolism in the brain and thus represent valuable new information that could clarify how circumstances such as the absence of load and the lack of movement that occurs in people with some neurological diseases, may affect the properties of NSCs and contribute to the negative manifestations of these conditions.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Science, University of Milan, Milan, Italy
| | - Jessica Pagano
- Department of Health Science, University of Milan, Milan, Italy
| | - Michela Colombo
- Department of Health Science, University of Milan, Milan, Italy
| | | | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniele Bottai
- Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Rendeiro C, Rhodes JS. A new perspective of the hippocampus in the origin of exercise-brain interactions. Brain Struct Funct 2018; 223:2527-2545. [PMID: 29671055 DOI: 10.1007/s00429-018-1665-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Exercising regularly is a highly effective strategy for maintaining cognitive health throughout the lifespan. Over the last 20 years, many molecular, physiological and structural changes have been documented in response to aerobic exercise training in humans and animals, particularly in the hippocampus. However, how exercise produces such neurological changes remains elusive. A recent line of investigation has suggested that muscle-derived circulating factors cross into the brain and may be the key agents driving enhancement in synaptic plasticity and hippocampal neurogenesis from aerobic exercise. Alternatively, or concurrently, the signals might originate from within the brain itself. Physical activity also produces instantaneous and robust neuronal activation of the hippocampal formation and the generation of theta oscillations which are closely correlated with the force of movements. The repeated acute activation of the hippocampus during physical movement is likely critical for inducing the long-term neuroadaptations from exercise. Here we review the evidence which establishes the association between physical movement and hippocampal neuronal activation and discuss implications for long-term benefits of physical activity on brain function.
Collapse
Affiliation(s)
- Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA. .,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|