1
|
Song H, Bharadwaj PK, Raichlen DA, Habeck CG, Grilli MD, Huentelman MJ, Hishaw GA, Trouard TP, Alexander GE. Cortical lobar volume reductions associated with homocysteine-related subcortical brain atrophy and poorer cognition in healthy aging. Front Aging Neurosci 2024; 16:1406394. [PMID: 39170895 PMCID: PMC11335513 DOI: 10.3389/fnagi.2024.1406394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Homocysteine (Hcy) is a cardiovascular risk factor implicated in cognitive impairment and cerebrovascular disease but has also been associated with Alzheimer's disease. In 160 healthy older adults (mean age = 69.66 ± 9.95 years), we sought to investigate the association of cortical brain volume with white matter hyperintensity (WMH) burden and a previously identified Hcy-related multivariate network pattern showing reductions in subcortical gray matter (SGM) volumes of hippocampus and nucleus accumbens with relative preservation of basal ganglia. We additionally evaluated the potential role of these brain imaging markers as a series of mediators in a vascular brain pathway leading to age-related cognitive dysfunction in healthy aging. We found reductions in parietal lobar gray matter associated with the Hcy-SGM pattern, which was further associated with WMH burden. Mediation analyses revealed that slowed processing speed related to aging, but not executive functioning or memory, was mediated sequentially through increased WMH lesion volume, greater Hcy-SGM pattern expression, and then smaller parietal lobe volume. Together, these findings suggest that volume reductions in parietal gray matter associated with a pattern of Hcy-related SGM volume differences may be indicative of slowed processing speed in cognitive aging, potentially linking cardiovascular risk to an important aspect of cognitive dysfunction in healthy aging.
Collapse
Affiliation(s)
- Hyun Song
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Christian G. Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University, New York, NY, United States
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
- Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Van Etten EJ, Bharadwaj PK, Grilli MD, Raichlen DA, Hishaw GA, Huentelman MJ, Trouard TP, Alexander GE. Impact of age and apolipoprotein E ε4 status on regional white matter hyperintensity volume and cognition in healthy aging. J Int Neuropsychol Soc 2024; 30:553-563. [PMID: 38515367 PMCID: PMC11864114 DOI: 10.1017/s1355617724000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
OBJECTIVE White matter hyperintensity (WMH) volume is a neuroimaging marker of lesion load related to small vessel disease that has been associated with cognitive aging and Alzheimer's disease (AD) risk. METHOD The present study sought to examine whether regional WMH volume mediates the relationship between APOE ε4 status, a strong genetic risk factor for AD, and cognition and if this association is moderated by age group differences within a sample of 187 healthy older adults (APOE ε4 status [carrier/non-carrier] = 56/131). RESULTS After we controlled for sex, education, and vascular risk factors, ANCOVA analyses revealed significant age group by APOE ε4 status interactions for right parietal and left temporal WMH volumes. Within the young-old group (50-69 years), ε4 carriers had greater right parietal and left temporal WMH volumes than non-carriers. However, in the old-old group (70-89 years), right parietal and left temporal WMH volumes were comparable across APOE ε4 groups. Further, within ε4 non-carriers, old-old adults had greater right parietal and left temporal WMH volumes than young-old adults, but there were no significant differences across age groups in ε4 carriers. Follow-up moderated mediation analyses revealed that, in the young-old, but not the old-old group, there were significant indirect effects of ε4 status on memory and executive functions through left temporal WMH volume. CONCLUSIONS These findings suggest that, among healthy young-old adults, increased left temporal WMH volume, in the context of the ε4 allele, may represent an early marker of cognitive aging with the potential to lead to greater risk for AD.
Collapse
Affiliation(s)
- Emily J. Van Etten
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ 85721, USA
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Kapasi A, Yu L, Leurgans SE, Agrawal S, Boyle PA, Bennett DA, Schneider JA. Association between hippocampal microglia, AD and LATE-NC, and cognitive decline in older adults. Alzheimers Dement 2024; 20:3193-3202. [PMID: 38494787 PMCID: PMC11095444 DOI: 10.1002/alz.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION This study investigates the relationship between microglia inflammation in the hippocampus, brain pathologies, and cognitive decline. METHODS Participants underwent annual clinical evaluations and agreed to brain donation. Neuropathologic evaluations quantified microglial burden in the hippocampus, amyloid beta (Aβ), tau tangles, and limbic age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic changes (LATE-NC), and other common brain pathologies. Mixed-effect and linear regression models examined the association of microglia with a decline in global and domain-specific cognitive measures, and separately with brain pathologies. Path analyses estimated direct and indirect effects of microglia on global cognition. RESULT Hippocampal microglia were associated with a faster decline in global cognition, specifically in episodic memory, semantic memory, and perceptual speed. Tau tangles and LATE-NC were independently associated with microglia. Other pathologies, including Aβ, were not related. Regional hippocampal burden of tau tangles and TDP-43 accounted for half of the association of microglia with cognitive decline. DISCUSSION Microglia inflammation in the hippocampus contributes to cognitive decline. Tau tangles and LATE-NC partially mediate this association.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sue E Leurgans
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sonal Agrawal
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Patricia A Boyle
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
| | - David A Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Julie A Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
4
|
Xhima K, Ottoy J, Gibson E, Zukotynski K, Scott C, Feliciano GJ, Adamo S, Kuo PH, Borrie MJ, Chertkow H, Frayne R, Laforce R, Noseworthy MD, Prato FS, Sahlas DJ, Smith EE, Sossi V, Thiel A, Soucy J, Tardif J, Goubran M, Black SE, Ramirez J. Distinct spatial contributions of amyloid pathology and cerebral small vessel disease to hippocampal morphology. Alzheimers Dement 2024; 20:3687-3695. [PMID: 38574400 PMCID: PMC11095424 DOI: 10.1002/alz.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Cerebral small vessel disease (SVD) and amyloid beta (Aβ) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aβ, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS Frontal WMH, occipital WMH, and Aβ were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aβ. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aβ-vulnerable subregions. DISCUSSION Hippocampal degeneration is differentially sensitive to SVD and Aβ pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.
Collapse
Affiliation(s)
- Kristiana Xhima
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Julie Ottoy
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Erin Gibson
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Katherine Zukotynski
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
- Departments of Medicine and RadiologyMcMaster UniversityHamiltonOntarioCanada
- Department of Medical ImagingSchulich School of Medicine and Dentistry, Western UniversityLondonOntarioCanada
| | - Christopher Scott
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Ginelle J. Feliciano
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Sabrina Adamo
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | - Phillip H. Kuo
- Departments of Medical Imaging, Medicine, Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Michael J. Borrie
- Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Howard Chertkow
- Rotman Research InstituteBaycrest Health SciencesTorontoOntarioCanada
| | - Richard Frayne
- Departments of Radiology and Clinical NeuroscienceHotchkiss Brain Institute, University of CalgaryCalgaryAlbertaCanada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences NeurologiquesUniversité Laval, Quebec CityQuebecCanada
| | - Michael D. Noseworthy
- Departments of Medicine and RadiologyMcMaster UniversityHamiltonOntarioCanada
- Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Frank S. Prato
- Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | | | - Eric E. Smith
- Department of Clinical Neurosciences and Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Vesna Sossi
- Physics and Astronomy Department and DM Center for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Alexander Thiel
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Jean‐Paul Soucy
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | | | - Maged Goubran
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Physical Sciences Platform, Sunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Sandra E. Black
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Joel Ramirez
- Dr. Sandra E. Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of TorontoTorontoOntarioCanada
| | | |
Collapse
|
5
|
Stipho F, Malek-Ahmadi M. Meta-Analysis of White Matter Hyperintensity Volume Differences Between APOE ε4 Carriers and Noncarriers. Alzheimer Dis Assoc Disord 2024; 38:208-212. [PMID: 38748617 PMCID: PMC11141236 DOI: 10.1097/wad.0000000000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 05/31/2024]
Abstract
Several studies have suggested that white matter hyperintensity volume (WMHV) is increased among apolipoprotein E (APOE) ε4 carriers while others have reported contradictory findings. Although APOE ε4 carriage is associated with greater AD pathology, it remains unclear whether cerebrovascular damage is also associated with APOE ε4 carriage. The aim of this meta-analysis was to determine whether WMHV is associated with APOE ε4 carrier status. 12 studies that were included yielded a total sample size of 16,738 adult subjects (ε4 carrier n = 4,721; ε4 noncarrier n = 12,017). There were no significant differences in WMHV between ε4 carriers and noncarriers (Hedge's g = 0.07; 95% CI (-0.01 to 0.15), P = 0.09). Subgroup analysis of community-based studies (n = 8) indicated a small effect size where ε4 carriers had greater WMHV relative to noncarriers (Hedge's g = 0.09 95% CI (0.02 to 0.16), P = 0.008). Among clinic-based studies (n = 3) there was no significant difference in WMHV by APOE ε4 carrier status (Hedge's g = -0.09, 95% CI (-0.60 to 0.41), P = 0.70). Observed APOE ε4-associated WMHV differences may be context-dependent and may also be confounded by a lack of standardization for WMHV segmentation.
Collapse
Affiliation(s)
- Faissal Stipho
- University of Arizona College of Medicine-Tucson, Tucson, AZ
| | - Michael Malek-Ahmadi
- Banner Alzheimer’s Institute, Phoenix, AZ
- University of Arizona College of Medicine-Phoenix, Dept. of Biomedical Informatics, Phoenix, AZ
| |
Collapse
|
6
|
Van Etten EJ, Bharadwaj PK, Grilli MD, Raichlen DA, Hishaw GA, Huentelman MJ, Trouard TP, Alexander GE. Regional covariance of white matter hyperintensity volume patterns associated with hippocampal volume in healthy aging. Front Aging Neurosci 2024; 16:1349449. [PMID: 38524117 PMCID: PMC10957632 DOI: 10.3389/fnagi.2024.1349449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Hippocampal volume is particularly sensitive to the accumulation of total brain white matter hyperintensity volume (WMH) in aging, but how the regional distribution of WMH volume differentially impacts the hippocampus has been less studied. In a cohort of 194 healthy older adults ages 50-89, we used a multivariate statistical method, the Scaled Subprofile Model (SSM), to (1) identify patterns of regional WMH differences related to left and right hippocampal volumes, (2) examine associations between the multimodal neuroimaging covariance patterns and demographic characteristics, and (3) investigate the relation of the patterns to subjective and objective memory in healthy aging. We established network covariance patterns of regional WMH volume differences associated with greater left and right hippocampal volumes, which were characterized by reductions in left temporal and right parietal WMH volumes and relative increases in bilateral occipital WMH volumes. Additionally, we observed lower expression of these hippocampal-related regional WMH patterns were significantly associated with increasing age and greater subjective memory complaints, but not objective memory performance in this healthy older adult cohort. Our findings indicate that, in cognitively healthy older adults, left and right hippocampal volume reductions were associated with differences in the regional distribution of WMH volumes, which were exacerbated by advancing age and related to greater subjective memory complaints. Multivariate network analyses, like SSM, may help elucidate important early effects of regional WMH volume on brain and cognitive aging in healthy older adults.
Collapse
Affiliation(s)
- Emily J. Van Etten
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Anthropology, University of Southern California, Los Angeles, CA, United States
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Kapasi A, Capuano AW, Lamar M, Leurgans SE, Evia AM, Bennett DA, Arfanakis K, Schneider JA. Atherosclerosis and Hippocampal Volumes in Older Adults: The Role of Age and Blood Pressure. J Am Heart Assoc 2024; 13:e031551. [PMID: 38240240 PMCID: PMC11056126 DOI: 10.1161/jaha.123.031551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lower hippocampal volume is associated with late-life cognitive decline and is an important, but nonspecific marker for clinical Alzheimer's dementia. Cerebrovascular disease may also be associated with hippocampal volume. Here we study the role of intracranial large vessel disease (atherosclerosis) in association with hippocampal volume and the potential role of age, average late-life blood pressure across all visits, and other factors (sex, apolipoprotein ε4 [APOE ε4], and diabetes). METHODS AND RESULTS Data came from 765 community-based older people (91 years old on average at death; 72% women), from 2 ongoing clinical-pathologic cohort studies. Participants completed baseline assessment, annual standardized blood pressure measurements, vascular risk assessment for diabetes, and blood draws to determine APOE genotype, and at death, brains were removed and underwent ex vivo magnetic resonance imaging and neuropathologic evaluation for atherosclerosis pathology and other cerebrovascular and neurodegenerative pathologies. Linear regression models examined the association of atherosclerosis and hippocampal to hemisphere volume ratio and whether age at death, blood pressure, and other factors modified associations. In linear regression models adjusted for demographics and neurodegenerative and other cerebrovascular pathologies, atherosclerosis severity was associated with a lower hippocampal to hemisphere volume ratio. In separate models, we found the effect of atherosclerosis on the ratio of hippocampal to hemisphere volume was attenuated among advanced age at death or having higher systolic blood pressure (interaction terms P≤0.03). We did not find confounding or interactions with sex, diabetes, or APOE ε4. CONCLUSIONS Atherosclerosis severity is associated with lower hippocampal volume, independent of neurodegenerative and other cerebrovascular pathologies. Higher systolic blood pressures and advanced age attenuate associations.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
| | - Ana W. Capuano
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Melissa Lamar
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIL
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Arnold M. Evia
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
| | - David A. Bennett
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIL
- Department of Diagnostic RadiologyRush University Medical CenterChicagoIL
| | - Julie A. Schneider
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| |
Collapse
|
8
|
Li M, Habes M, Grabe H, Kang Y, Qi S, Detre JA. Disconnectome associated with progressive white matter hyperintensities in aging: a virtual lesion study. Front Aging Neurosci 2023; 15:1237198. [PMID: 37719871 PMCID: PMC10500060 DOI: 10.3389/fnagi.2023.1237198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Objective White matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach. Methods High-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction. Results Disconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's. Conclusion Changes in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.
Collapse
Affiliation(s)
- Meng Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohamad Habes
- Biggs Alzheimer’s Institute, University of Texas San Antonio, San Antonio, TX, United States
| | - Hans Grabe
- Department of Psychiatry and Psychotherapy, University of Greifswald, Stralsund, Germany
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Huang Y, Shan Y, Qin W, Zhao G. Apolipoprotein E ε4 accelerates the longitudinal cerebral atrophy in open access series of imaging studies-3 elders without dementia at enrollment. Front Aging Neurosci 2023; 15:1158579. [PMID: 37323144 PMCID: PMC10265507 DOI: 10.3389/fnagi.2023.1158579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Early studies have reported that APOE is strongly associated with brain atrophy and cognitive decline among healthy elders and Alzheimer's disease (AD). However, previous research has not directly outlined the modulation of APOE on the trajectory of cerebral atrophy with aging during the conversion from cognitive normal (CN) to dementia (CN2D). Methods This study tried to elucidate this issue from a voxel-wise whole-brain perspective based on 416 qualified participants from a longitudinal OASIS-3 neuroimaging cohort. A voxel-wise linear mixed-effects model was applied for detecting cerebrum regions whose nonlinear atrophic trajectories were driven by AD conversion and to elucidate the effect of APOE variants on the cerebral atrophic trajectories during the process. Results We found that CN2D participants had faster quadratically accelerated atrophy in bilateral hippocampi than persistent CN. Moreover, APOE ε4 carriers had faster-accelerated atrophy in the left hippocampus than ε4 noncarriers in both CN2D and persistent CN, and CN2D ε4 carriers an noncarriers presented a faster atrophic speed than CN ε4 carriers. These findings could be replicated in a sub-sample with a tough match in demographic information. Discussion Our findings filled the gap that APOE ε4 accelerates hippocampal atrophy and the conversion from normal cognition to dementia.
Collapse
Affiliation(s)
- Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
10
|
de Flores R, Demeilliez-Servouin S, Kuhn E, Chauveau L, Landeau B, Delcroix N, Gonneaud J, Vivien D, Chételat G. Respective influence of beta-amyloid and APOE ε4 genotype on medial temporal lobe subregions in cognitively unimpaired older adults. Neurobiol Dis 2023; 181:106127. [PMID: 37061167 DOI: 10.1016/j.nbd.2023.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aβ) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aβ + (n = 24) and Aβ- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aβ and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aβ to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.
Collapse
Affiliation(s)
- Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France.
| | - Solène Demeilliez-Servouin
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Elizabeth Kuhn
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Léa Chauveau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Brigitte Landeau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Julie Gonneaud
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Denis Vivien
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Gaël Chételat
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| |
Collapse
|
11
|
Song H, Bharadwaj PK, Raichlen DA, Habeck CG, Huentelman MJ, Hishaw GA, Trouard TP, Alexander GE. Association of homocysteine-related subcortical brain atrophy with white matter lesion volume and cognition in healthy aging. Neurobiol Aging 2023; 121:129-138. [PMID: 36436304 PMCID: PMC10002471 DOI: 10.1016/j.neurobiolaging.2022.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Homocysteine (Hcy) is a vascular risk factor associated with cognitive impairment and cerebrovascular disease but has also been implicated in Alzheimer's disease (AD). Using multivariate Scaled Subprofile Model (SSM) analysis, we sought to identify a network pattern in structural neuroimaging reflecting the regionally distributed association of plasma Hcy with subcortical gray matter (SGM) volumes and its relation to other health risk factors and cognition in 160 healthy older adults, ages 50-89. We identified an SSM Hcy-SGM pattern that was characterized by bilateral hippocampal and nucleus accumbens volume reductions with relative volume increases in bilateral caudate, pallidum, and putamen. Greater Hcy-SGM pattern expression was associated with greater white matter hyperintensity (WMH) volume, older age, and male sex, but not with other vascular and AD-related risk factors. Mediation analyses revealed that age predicted WMH volume, which predicted Hcy-SGM pattern expression, which, in turn, predicted cognitive processing speed performance. These findings suggest that the multivariate SSM Hcy-SGM pattern may be indicative of cognitive aging, reflecting a potential link between vascular health and cognitive dysfunction in healthy older adults.
Collapse
Affiliation(s)
- Hyun Song
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christian G Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University, New York, NY, USA
| | - Matthew J Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Georg A Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Theodore P Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Gene E Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Department of Psychiatry, University of Arizona, Tucson, AZ, USA; Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Han X, Song L, Li Y, Dong Y, Liu R, Han Q, Wang X, Mao M, Cong L, Tang S, Hou T, Zhang Q, Liu C, Han X, Shi L, Nyberg L, Launer LJ, Wang Y, Du Y, Qiu C. Accelerometer-Measured Sedentary Behavior Patterns, Brain Structure, and Cognitive Function in Dementia-Free Older Adults: A Population-Based Study. J Alzheimers Dis 2023; 96:657-668. [PMID: 37840495 PMCID: PMC10657675 DOI: 10.3233/jad-230575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Sedentary behavior is associated with cognitive impairment, but the neuropathological mechanisms underlying their associations are poorly understood. OBJECTIVE To investigate the associations of accelerometer-measured sedentary behavior patterns with brain structure and cognition, and further to explore the potential mechanisms. METHODS This community-based study included 2,019 older adults (age≥60 years, 59% women) without dementia derived from participants in the baseline examination of MIND-China (2018-2020). We assessed sedentary parameters using an accelerometer and cognitive function using a neuropsychological test battery. Structural brain markers were assessed on the structural brain MRI scans in a subsample (n = 1,009). Data were analyzed using the general linear, isotemporal substitution, and mediation models. RESULTS In the total sample (n = 2,019), adjusting for multiple covariates and moderate-to-vigorous-intensity physical activity, longer mean sedentary bout duration was linearly related with lower z-scores of global cognition, verbal fluency, and memory (ptrend < 0.05), whereas greater total sedentary time was linearly associated with lower z-scores of global cognition, verbal fluency, and memory only among individuals with long sedentary time (>10 h/day) (ptrend < 0.05); Breaking up sedentary time with same amount of light-intensity physical activity was significantly associated with higher verbal fluency and memory z-scores (p < 0.05). In the MRI subsample (n = 1,009), separately entering structural brain MRI markers into the mediation models substantially attenuated the associations of mean sedentary bout duration with global cognition, verbal fluency, and memory z-scores. CONCLUSION Prolonged uninterrupted sedentary time is associated with poor global cognition, memory, and verbal fluency among rural older adults, and structural brain markers could partially mediate the association.
Collapse
Affiliation(s)
- Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Mao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaodong Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, Guangdong, China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, Umeå, Sweden
| | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Preventive Effect of Hippocampal Sparing on Cognitive Dysfunction of Patients Undergoing Whole-Brain Radiotherapy and Imaging Assessment of Hippocampal Volume Changes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4267673. [PMID: 35425838 PMCID: PMC9005304 DOI: 10.1155/2022/4267673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Objective Preventive effect of hippocampal sparing on cognitive dysfunction of patients undergoing whole-brain radiotherapy and imaging assessment of hippocampal volume changes. Methods Forty patients with brain metastases who attended Liaoning Cancer Hospital from January 2018 to December 2019 were identified as research subjects and were randomly divided into a control group and an experimental group, with 20 cases in each group. The control group was treated with whole-brain radiotherapy (WBRT), and the experimental group was treated with hippocampal sparing-WBRT (HS-WBRT). The Montreal Cognitive Assessment (MoCA) score, Eastern Cooperative Oncology Group (ECOG) score, cancer quality-of-life questionnaire (QLQ-C3O) score, hippocampal volume changes, and prognosis of the two groups were compared. Results The MoCA scores decreased in both groups at 3, 6, and 12 months after radiotherapy, with significantly higher scores in the experimental group than in the control group (P < 0.05). After radiotherapy, both groups had lower ECOG scores, with those in the experimental group being significantly lower than those in the control group (P < 0.05). After radiotherapy, the QLQ-C30 score was elevated in both groups, and that of the experimental group was significantly higher than that of the control group (P < 0.05). The experimental group outperformed the control group in terms of the prognosis (P < 0.05). The hippocampal volume of the control group was significantly smaller than that of the experimental group (P < 0.05). Conclusion The application of hippocampal sparing in patients receiving whole-brain radiotherapy is effective in preventing cognitive dysfunction, improving the quality of life and prognosis of patients, and avoiding shrinkage of hippocampal volume.
Collapse
|
14
|
Riphagen JM, Suresh MB, Salat DH. The canonical pattern of Alzheimer's disease atrophy is linked to white matter hyperintensities in normal controls, differently in normal controls compared to in AD. Neurobiol Aging 2022; 114:105-112. [PMID: 35414420 PMCID: PMC9387174 DOI: 10.1016/j.neurobiolaging.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
White matter signal abnormalities (WMSA), either hypo- or hyperintensities in MRI imaging, are considered a proxy of cerebrovascular pathology and contribute to, and modulate, the clinical presentation of Alzheimer's disease (AD), with cognitive dysfunction being apparent at lower levels of amyloid and/or tau pathology when lesions are present. To what extent the topography of cortical thinning associated with AD may be explained by WMSA remains unclear. Cortical thickness group difference maps and subgroup analyses show that the effect of WMSA on cortical thickness in cognitively normal participants has a higher overlap with the canonical pattern of AD, compared to AD participants. (Age and sex-matched group of 119 NC (AV45 PET negative, CDR = 0) versus 119 participants with AD (AV45 PET-positive, CDR > 0.5). The canonical patterns of cortical atrophy thought to be specific to Alzheimer's disease are strongly linked to cerebrovascular pathology supporting a reinterpretation of the classical models of AD suggesting that a part of the typical AD pattern is due to co-localized cortical loss before the onset of AD.
Collapse
|