1
|
Rolls ET. A Theory and Model of Scene Representations With Hippocampal Spatial View Cells. Hippocampus 2025; 35:e70013. [PMID: 40296500 PMCID: PMC12038316 DOI: 10.1002/hipo.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
A theory and network model are presented of how scene representations are built by forming spatial view cells in the ventromedial visual cortical scene pathway to the hippocampus in primates including humans. Layer 1, corresponding to V1-V4, connects to Layer 2 in the retrosplenial scene area and uses competitive learning to form visual feature combination neurons for the part of the scene being fixated, a visual fixation scene patch. In Layer 3, corresponding to the parahippocampal scene area and hippocampus, the visual fixation scene patches are stitched together to form whole scene representations. This is performed with a continuous attractor network for a whole scene made from the overlapping Gaussian receptive fields of the neurons as the head rotates to view the whole scene. In addition, in Layer 3, gain modulation by gaze direction maps visual fixation scene patches to the correct part of the whole scene representation when saccades are made. Each neuron in Layer 3 is thus a spatial view cell that responds to a location in a viewed scene based on visual features in a part of the scene. The novel conceptual advances are that this theory shows how scene representations may be built in primates, including humans, based on features in spatial scenes that anchor the scene representation to the world being viewed (to allocentric, world-based, space); and how gaze direction contributes to this. This offers a revolutionary approach to understanding the spatial representations for navigation and episodic memory in primates, including humans.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
Martinez-Trujillo J. Why do primates have view cells instead of place cells? Trends Cogn Sci 2025; 29:226-229. [PMID: 39765412 DOI: 10.1016/j.tics.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/08/2025]
Abstract
Hippocampal place cells that encode the spatial location of an individual during navigation are widely reported in rodents. However, studies in primates have instead reported hippocampal cells that encode views of the environment. Evolutionary adaptations for navigating during night and day may explain the divergence of hippocampal representations between species.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7; Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7.
| |
Collapse
|
3
|
Leopold DA. The big mixup: Neural representation during natural modes of primate visual behavior. Curr Opin Neurobiol 2024; 88:102913. [PMID: 39214044 PMCID: PMC11392606 DOI: 10.1016/j.conb.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The primate brain has evolved specialized visual capacities to navigate complex physical and social environments. Researchers studying cortical circuits underlying these capacities have traditionally favored the use of simplified tasks and brief stimulus presentations in order to isolate cognitive variables with tight experimental control. As a result, operational theories about visual brain function have come to emphasize feature detection, hierarchical stimulus encoding, top-down task modulation, and functional segregation in distinct cortical areas. Recently, however, experimental paradigms combining natural behavior with electrophysiological recordings have begun to offer a distinctly different portrait of how the brain takes in and analyzes its visual surroundings. The present article reviews recent work in this area, highlighting some of the more surprising findings in domains of social vision and spatial navigation along with shifts in thinking that have begun to emanate from this approach.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Han CZ, Donoghue T, Cao R, Kunz L, Wang S, Jacobs J. Using multi-task experiments to test principles of hippocampal function. Hippocampus 2023; 33:646-657. [PMID: 37042212 PMCID: PMC10249632 DOI: 10.1002/hipo.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Investigations of hippocampal functions have revealed a dizzying array of findings, from lesion-based behavioral deficits, to a diverse range of characterized neural activations, to computational models of putative functionality. Across these findings, there remains an ongoing debate about the core function of the hippocampus and the generality of its representation. Researchers have debated whether the hippocampus's primary role relates to the representation of space, the neural basis of (episodic) memory, or some more general computation that generalizes across various cognitive domains. Within these different perspectives, there is much debate about the nature of feature encodings. Here, we suggest that in order to evaluate hippocampal responses-investigating, for example, whether neuronal representations are narrowly targeted to particular tasks or if they subserve domain-general purposes-a promising research strategy may be the use of multi-task experiments, or more generally switching between multiple task contexts while recording from the same neurons in a given session. We argue that this strategy-when combined with explicitly defined theoretical motivations that guide experiment design-could be a fruitful approach to better understand how hippocampal representations support different behaviors. In doing so, we briefly review key open questions in the field, as exemplified by articles in this special issue, as well as previous work using multi-task experiments, and extrapolate to consider how this strategy could be further applied to probe fundamental questions about hippocampal function.
Collapse
Affiliation(s)
- Claire Z. Han
- Department of Biomedical Engineering, Columbia University
| | | | - Runnan Cao
- Department of Radiology, Washington University in St. Louis
| | - Lukas Kunz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University
| |
Collapse
|