1
|
Voronin VV, Polynski MV, Ledovskaya MS. 1,2,4-Triazines and Calcium Carbide in the Catalyst-Free Synthesis of 2,3,6-Trisubstituted Pyridines and Their D-, 13 C-, and Doubly D 2 - 13 C 2 -Labeled Analogues. Chem Asian J 2023; 18:e202300781. [PMID: 37843978 DOI: 10.1002/asia.202300781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A novel synthetic approach to 2,3,6-trisubstituted pyridines, their 4,5-dideuterated derivatives, 4,5-13 C2 - and doubly-labeled D2 -13 C2 -pyridines has been developed using catalyst-free [4+2] cycloaddition of 1,2,4-triazines and in situ generated acetylene or labeled acetylene. Calcium carbide and water or deuterium oxide were used for the in situ generation of acetylene and dideuteroacetylene. Calcium carbide-13 C2 in the mixture with water or deuterium oxide was applied as 13 C2 -acetylene and D2 -13 C2 -acetylene source.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
- Current address: National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maria S Ledovskaya
- Saint Petersburg State University, Institute of Chemistry, Universitetsky Prospect 26, Saint Petersburg, 198504, Russia
| |
Collapse
|
2
|
Recent advances in transition metal-catalyzed reactions of chloroquinoxalines: Applications in bioorganic chemistry. Bioorg Chem 2022; 129:106195. [DOI: 10.1016/j.bioorg.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
3
|
Keivanloo A, Eshraghi H, Bakherad M, Fakharian M. Multi-component Synthesis of 1,2,3-Triazoles from Carboxylic Acids, 3-Bromoprop-1-yne and Azides Using Click Chemistry. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1935148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Hajar Eshraghi
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Mahsa Fakharian
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
4
|
Keivanloo A, Abbaspour S, Sepehri S, Bakherad M. Synthesis, Antibacterial Activity and Molecular Docking Study of a Series of 1,3-Oxazole-Quinoxaline Amine Hybrids. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1833052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Sima Abbaspour
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
5
|
Abbaspour S, Keivanloo A, Bakherad M, Sepehri S. Design, Synthesis, Antibacterial Evaluation and Molecular Docking Study of New 3‐Aminoquinoxaline‐2‐alkynyl Carboxylate Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202001841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sima Abbaspour
- Faculty of ChemistryShahrood University of Technology Shahrood 36199-95161 Iran
| | - Ali Keivanloo
- Faculty of ChemistryShahrood University of Technology Shahrood 36199-95161 Iran
| | - Mohammad Bakherad
- Faculty of ChemistryShahrood University of Technology Shahrood 36199-95161 Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of PharmacyArdabil University of Medical Sciences Ardabil 56189-53142 Iran
| |
Collapse
|
6
|
Ledovskaya MS, Voronin VV, Polynski MV, Lebedev AN, Ananikov VP. Primary Vinyl Ethers as Acetylene Surrogate: A Flexible Tool for Deuterium-Labeled Pyrazole Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maria S. Ledovskaya
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Vladimir V. Voronin
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Mikhail V. Polynski
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russia
| | - Andrey N. Lebedev
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Valentine P. Ananikov
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russia
| |
Collapse
|
7
|
Keivanloo A, Lashkari S, Sepehri S, Bakherad M, Abbaspour S. Ligand-assisted click reaction for the synthesis of new hybrid compounds based on 1,2,3-triazoles and 5,5-diphenylimidazolidine-2,4-dione and evaluation of their antibacterial activities. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02616-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Keivanloo A, Lashkari S, Bakherad M, Fakharian M, Abbaspour S. One-pot sequential coupling reactions as a new practical protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. Mol Divers 2020; 25:981-993. [PMID: 32301033 DOI: 10.1007/s11030-020-10083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
One palladium-catalyzed sequential coupling reactions were successfully used as a new protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. The one-pot two coupling reactions of 2,3-dichloroquinoxaline, with two different terminal alkynes, under controlled conditions produced selectively unsymmetrical 2,3-diethynyl quinoxalines with high yields. When one of the two terminal alkynes was 3-propyne-1-ol, in the presence of secondary amines, cyclization occurred and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines were successfully formed. All synthesized compounds were tested against the two bacterial strains including Micrococcus luteus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran.
| | - Saeed Lashkari
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Mahsa Fakharian
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Sima Abbaspour
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| |
Collapse
|
9
|
Keivanloo A, Fakharian M, Sepehri S. 1,2,3-Triazoles based 3-substituted 2-thioquinoxalines: Synthesis, anti-bacterial activities, and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Ledovskaya MS, Voronin VV, Rodygin KS, Ananikov VP. Efficient labeling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals. Org Chem Front 2020. [DOI: 10.1039/c9qo01357a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic methodology enabled by 13C-elemental carbon is reported. Calcium carbide Ca13C2 was applied to introduce a universal 13C2 unit in the synthesis of labeled alkynes, O,S,N-vinyl derivatives, labeled polymers and 13C2-pyridazine drug core.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
11
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00202j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the protection and deprotection of alcohols via vinylation and devinylation reactions is proposed. Stability of the vinyl protecting group under various conditions is studied and synthetic applicability is demonstrated.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
12
|
Rodygin KS, Vikenteva YA, Ananikov VP. Calcium-Based Sustainable Chemical Technologies for Total Carbon Recycling. CHEMSUSCHEM 2019; 12:1483-1516. [PMID: 30938099 DOI: 10.1002/cssc.201802412] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Calcium carbide, a stable solid compound composed of two atoms of carbon and one of calcium, has proven its effectiveness in chemical synthesis, due to the safety and convenience of handling the C≡C acetylenic units. The areas of CaC2 application are very diverse, and the development of calcium-mediated approaches resolves several important challenges. This Review aims to discuss the laboratory chemistry of calcium carbide, and to go beyond its frontiers to organic synthesis, life sciences, materials and construction, carbon dioxide capturing, alloy manufacturing, and agriculture. The recyclability of calcium carbide and the availability of large-scale industrial production facilities, as well as the future possibility of fossil-resource-independent manufacturing, position this compound as a key chemical platform for sustainable development. Easy regeneration and reuse of the carbide highlight calcium-based sustainable chemical technologies as promising instruments for total carbon recycling.
Collapse
Affiliation(s)
- Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Yulia A Vikenteva
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
13
|
Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018; 23:E2442. [PMID: 30250005 PMCID: PMC6222752 DOI: 10.3390/molecules23102442] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Alexander S Bogachenkov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|