1
|
Gao J, Li C, Lin X, Zhuang Y, Wang M, Lin H, Zhu X. Role of IRF4 in mediating plasmablast differentiation in diffuse large B-cell lymphomas via mTORC1 pathway. Ann Hematol 2025; 104:2449-2459. [PMID: 40204935 PMCID: PMC12053343 DOI: 10.1007/s00277-025-06273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025]
Abstract
Autoimmune haemolytic anaemia (AIHA) is common secondary to diffuse large B-cell lymphoma (DLBCL). However, there are no reports on tumour B-cells differentiating into plasmablasts in DLBCL secondary AIHA. To state impact of the interferon regulatory factor 4 (IRF4) on DLBCL and explore the mechanism of IRF4 on plasmablast differentiation.We analysed the expression of immunity-related genes from the Gene Expression Omnibus and correlated predictors from clinical and laboratory data using R package and various statistical tools. Western blotting (WB) was used to detect protein levels in DLBCL cell lines of different subtypes to investigate the plasmablast and activation of mTORC1. To furtherly validate mTOR regulation of plasmablast differentiation, mTOR-activated and -inhibited cell models were constructed by CCK8 and flow cytometry (FCM) was used to assess the proportion of CD38 positive cells. We found that IRF4 was highly expressed in activated B-cell-like (ABC) DLBCL vs. germinal centre B-cell-like (GCB) DLBCL. Positive MUM-1and low haemoglobin values were corrected to non-CGB patients. Plasmablast indictors (BLIMP-1, ARF4, IRE1α, and IRF4) and mTORC1 pathway indictors (mTOR, p70S6K and phosphorylated-p70S6K) were different level in ABC cell lines. After successfully constructing cell models, the proportion of CD38+ cells changed in mTOR-activated and -inhibited ABC-DLBCL cell models. We first pointed out that the role of the IRF4 invovling in DLBCL cell plasmablast differentiation via mTORC1 pathway. These findings could be extended to provide experimental evidence for novel treatments of secondary AIHA in ABC-DLBCL.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xingzhi Lin
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Yanling Zhuang
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Mingquan Wang
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Hongjun Lin
- Medical College of Huaqiao University, Quanzhou, Fujian, 362000, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
2
|
Syed Ahamed Kabeer B, Subba B, Rinchai D, Toufiq M, Khan T, Yurieva M, Chaussabel D. From gene modules to gene markers: an integrated AI-human approach selects CD38 to represent plasma cell-associated transcriptional signatures. Front Med (Lausanne) 2025; 12:1510431. [PMID: 40144871 PMCID: PMC11936944 DOI: 10.3389/fmed.2025.1510431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background Knowledge-driven prioritization of candidate genes derived from large-scale molecular profiling data for targeted transcriptional profiling assays is challenging due to the vast amount of biomedical literature that needs to be harnessed. We present a workflow leveraging Large Language Models (LLMs) to prioritize candidate genes within module M12.15, a plasma cell-associated module from the BloodGen3 repertoire, by integrating knowledge-driven prioritization with data-driven analysis of transcriptome profiles. Methods The workflow involves a two-step process: (1) high-throughput screening using LLMs to score and rank the 17 genes of module M12.15 based on six predefined criteria, and (2) prioritization employing high-resolution scoring and fact-checking, with human experts validating and refining AI-generated scores. Results The first step identified five candidate genes (CD38, TNFRSF17, IGJ, TOP2A, and TYMS). Following human-augmented LLM scoring and fact checking, as part of the second step, CD38 and TNFRSF17 emerged as the top candidates. Next, transcriptome profiling data from three datasets was incorporated in the workflow to assess expression levels and correlations with the module average across various conditions and cell types. It is on this basis that CD38 was prioritized as the top candidate, with TNFRSF17 and IGJ identified as promising alternatives. Conclusion This study introduces a systematic framework that integrates LLMs with human expertise for gene prioritization. Our analysis identified CD38, TNFRSF17, and IGJ as the top candidates within the plasma cell-associated module M12.15 from the BloodGen3 repertoire, with their relative rankings varying systematically based on specific evaluation criteria, from plasma cell biology to therapeutic relevance. This criterion-dependent ranking demonstrates the ability of the framework to perform nuanced, multi-faceted evaluations. By combining knowledge-driven analysis with data-driven metrics, our approach provides a balanced and comprehensive method for biomarker selection. The methodology established here offers a reproducible and scalable approach that can be applied across diverse biological contexts and extended to analyze large module repertoires.
Collapse
Affiliation(s)
- Basirudeen Syed Ahamed Kabeer
- Department of Pathology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Bishesh Subba
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Darawan Rinchai
- St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Mohammed Toufiq
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Taushif Khan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
3
|
Zaiema SEGE, Hafez HMS, El-Ela DEDMSA, Saad RAAAM. Illuminating the impact of CD38-induced adenosine formation in B-cell lymphoma. Sci Rep 2025; 15:1807. [PMID: 39805878 PMCID: PMC11731001 DOI: 10.1038/s41598-024-82800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis. Our study was conducted on 90 patients, CD38-positive and CD38-negative (measured by flow cytometry), with mature B-cell lymphoma divided into CLL and B-NHL subtypes. Their serum ADO, soluble PD-1, and PD-L1 levels were measured using a sandwich ELISA. Our study revealed a positive correlation between CD38 expression, sADO, sPD-1, and sPD-L1 in mature B-cell lymphoma patients. CD38-positive patients had higher sADO, sPD-1, and sPD-L1 levels. Higher CD38 expression and extracellular ADO negatively affected HB level and PLT count and positively correlated with the higher risk stratification in mature B-cell lymphoma patients. This study explored the potential impact of CD38 expression and elevated extracellular ADO on B-cell lymphoma alongside their link with the PD-1/PD-L1 axis. Our findings underscore the influence of extracellular ADO on the neoplastic process of mature B-cell lymphoma. We also propose targeting the CD38-induced-ADO formation pathway, which could serve as a promising therapeutic immune target with multifaceted effects within mature B-cell neoplasms.
Collapse
|
4
|
Chen L, Zhong Y, Li YS, Zhuang H, Li X, Liu SP, Li JG, Lin Q, Gao F. A Novel and Rapid Smear Cytomorphology Detection Strategy Based on Upconversion Nanoparticles Immunolabeling Integrated with Wright's Staining for Accurate Diagnosis of Leukemia. Int J Nanomedicine 2023; 18:5213-5224. [PMID: 37724289 PMCID: PMC10505403 DOI: 10.2147/ijn.s414586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
Background Accurate, sensitive, and rapid identification of leukemia cells in blood and bone marrow is of paramount significance for clinical diagnosis. An integrative technique combining traditional cytomorphology with immunophenotyping was proposed to improve the diagnostic efficiency in leukemia. On account of high photostability, biocompatibility, and signal-to-background ratio, upconversion nanoparticles (UCNPs) as luminescent labels have drawn substantial research scrutiny in immunolabeling. Methods To achieve simultaneous determination, NaYF4:Yb,Er UCNPs were coupled with CD38 antibodies to construct immunofluorescence probes that were developed to bind to diffuse large B cell lymphoma (DLBCL) cells, followed by Wright's staining that has been widely used in clinical work for morphological diagnosis. Further, the experimental conditions were optimized, such as medium, slice-making method, antibody dosage, incubation time, etc. Results The cell morphology and immunolabeling could be observed simultaneously, and its simple operation rendered it a possibility for clinical diagnosis. The developed immunolabeling assay could achieve DLBCL cell counting with high reproducibility and stability, and the detection limit was as low as 1.54 cell/slice (>3 σ/s). Moreover, the proposed method also realized real blood and bone marrow sample analysis, and the results were consistent with the clinical diagnosis. Conclusion Overall, this strategy can be carried out after simple laboratory training and has prospective biomedical applications in leukemia classification, diagnosis validation, and differential diagnostics.
Collapse
Affiliation(s)
- Lu Chen
- Department of Paediatrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Yong-Sheng Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - He Zhuang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Xin Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Sheng-Ping Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Jing-Gang Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Qiu Lin
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Fei Gao
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| |
Collapse
|
5
|
Singh AP, Courville EL. Advances in Monitoring and Prognostication for Lymphoma by Flow Cytometry. Clin Lab Med 2023; 43:351-361. [PMID: 37481316 DOI: 10.1016/j.cll.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Flow cytometry (FC) is a well-established method important in the diagnosis and subclassification of lymphoma. In this article, the role of FC in lymphoma prognostication will be explored, and the clinical role for FC minimal/measurable residual disease testing as a monitoring tool for mature lymphoma will be introduced. Potential pitfalls of monitoring for residual/recurrent disease following immunotherapy will be presented.
Collapse
Affiliation(s)
- Amrit P Singh
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA.
| |
Collapse
|
6
|
Lei T, Wu G, Xu Y, Zhuang W, Lu J, Han S, Zhuang Y, Dong X, Yang H. Peripheral immune cell profiling of double-hit lymphoma by mass cytometry. BMC Cancer 2023; 23:184. [PMID: 36823603 PMCID: PMC9948356 DOI: 10.1186/s12885-023-10657-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Double-hit or Triple-hit lymphoma (DHL/THL) is a subset of high-grade B cell lymphoma harboring rearrangements of MYC and BCL2 and/or BCL6, and usually associate with aggressive profile, while current therapies tend to provide poor clinical outcomes and eventually relapsed. Further explorations of DHL at cellular and molecular levels are in demand to offer guidance for clinical activity. METHODS We collected the peripheral blood of DHL patients and diffused large B cell lymphoma (DLBCL) patients from single institute and converted them into PBMC samples. Mass cytometry was then performed to characterize these samples by 42 antibody markers with samples of healthy people as control. We divided the immune cell subtypes based on the expression profile of surface antigens, and the proportion of each cell subtype was also analyzed. By comparing the data of the DLBCL group and the healthy group, we figured out the distinguished immune cell subtypes of DHL patients according to their abundance and marker expression level. We further analyzed the heterogeneity of DHL samples by pairwise comparison based on clinical characteristics. RESULTS We found double-positive T cells (DPT) cells were in a significantly high percentage in DHL patients, whereas the ratio of double-negative T cells (DNT) was largely reduced in patients. Besides, CD38 was uniquely expressed at a high level on some naïve B cells of DHL patients, which could be a marker for the diagnosis of DHL (distinguishing from DLBCL), or even be a drug target for the treatment of DHL. In addition, we illustrated the heterogeneity of DHL patients in terms of immune cell landscape, and highlighted TP53 as a major factor that contributes to the heterogeneity of the T cells profile. CONCLUSION Our study demonstrated the distinct peripheral immune cell profile of DHL patients by contrast to DLBCL patients and healthy people, as well as the heterogeneity within the DHL group, which could provide valuable guidance for the diagnosis and treatment of DHL.
Collapse
Affiliation(s)
- Tao Lei
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Gongqiang Wu
- grid.268099.c0000 0001 0348 3990Department of Hematology, Dongyang People’s Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang P. R. China
| | - Yongjin Xu
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Weihao Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jialiang Lu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Shuiyun Han
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Yuxin Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China. .,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, P. R. China. .,Cancer Center, Zhejiang University, Hangzhou, P. R. China.
| | - Haiyan Yang
- Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China.
| |
Collapse
|
7
|
Hadžisejdić I, Klarica L, Babarović E, Marijić B, Valković T, Jonjić N. Primary Nodal Unclassifiable CD20 Negative Diffuse Large B-cell Lymphoma With Dual IgK and TCR Gene Rearrangement: A Diagnostic Challenge. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X221149978. [PMID: 36684058 PMCID: PMC9846588 DOI: 10.1177/2632010x221149978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
Non-Hodgkin lymphomas are most frequently classified based on the lineage marker expression. However, lymphomas with aberrant marker expression as well as monoclonal IgH/IgΚ and TCR gene rearrangements may co-exist which can be misleading and confusing. Primary CD20 negative diffuse large B-cell lymphomas (DLBCL) represent a rare entity, and they account for 1% to 3% of cases. However, some CD20 negative DLBCLs could not be classified into known variants, creating both diagnostic and therapeutic dilemma's. Primary CD20 negative DLBCL are more likely to have a non-germinal centre subtype, a higher proliferation index, more frequent extra-nodal involvement, a poorer response, and poorer prognosis to conventional treatment compared to CD20 positive DLBCL. A 66- year-old postmenopausal lady, presented with palpable, bilateral neck lymphadenopathy and difficulty swallowing. She also had left leg lymphoedema, poor appetited, fatigue and weight loss. Her symptoms lasted approximately 1 month. After histological, immunohistochemical and clonality analysis of the lymph node the patient was diagnosed with primary nodal CD20 and PAX-5 negative DLBCL with dual immunoglobulin light-chain kappa (IgK) and T-cell receptor (TCR) gene rearrangement. This unusual and unique case presented a diagnostic challenge because it was CD20 and PAX-5 negative, had dual IgK and TCR gene rearrangement and, it could not be classified within the known and well established CD20 negative DLBCL variants. Describing such cases emphasises the fact that lymphomas unclassifiable within known variants of CD20 negative DLBCL do exist and that range and heterogeneity of CD20 negative DLBCL continues to evolve, and pathologist should be aware of these uncommon, atypical mature B-cell neoplasms.
Collapse
Affiliation(s)
- Ita Hadžisejdić
- Clinical Department of Pathology and
Cytology, Clinical Hospital Center Rijeka, Rijeka, Croatia,Department of Pathology, Faculty of
Medicine, University of Rijeka, Rijeka, Croatia,Ita Hadžisejdić, Clinical Department of
Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, Rijeka
51000, Croatia.
| | - Lucia Klarica
- Department of Pathology, Faculty of
Medicine, University of Rijeka, Rijeka, Croatia
| | - Emina Babarović
- Clinical Department of Pathology and
Cytology, Clinical Hospital Center Rijeka, Rijeka, Croatia,Department of Pathology, Faculty of
Medicine, University of Rijeka, Rijeka, Croatia
| | - Blažen Marijić
- Department of Otorhinolaryngology and
Head and Neck Surgery, Clinical Hospital Center Rijeka, Rijeka, Croatia,Department of Otorhinolaryngology,
Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toni Valković
- Department of Haematology, Clinical
Hospital Center Rijeka, Rijeka, Croatia,Department of Internal Medicine,
Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nives Jonjić
- Clinical Department of Pathology and
Cytology, Clinical Hospital Center Rijeka, Rijeka, Croatia,Department of Pathology, Faculty of
Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Kubacz M, Kusowska A, Winiarska M, Bobrowicz M. In Vitro Diffuse Large B-Cell Lymphoma Cell Line Models as Tools to Investigate Novel Immunotherapeutic Strategies. Cancers (Basel) 2022; 15:cancers15010235. [PMID: 36612228 PMCID: PMC9818372 DOI: 10.3390/cancers15010235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Despite the high incidence of diffuse large B-cell lymphoma (DLBCL), its management constitutes an ongoing challenge. The most common DLBCL variants include activated B-cell (ABC) and germinal center B-cell-like (GCB) subtypes including DLBCL with MYC and BCL2/BCL6 rearrangements which vary among each other with sensitivity to standard rituximab (RTX)-based chemoimmunotherapy regimens and lead to distinct clinical outcomes. However, as first line therapies lead to resistance/relapse (r/r) in about half of treated patients, there is an unmet clinical need to identify novel therapeutic strategies tailored for these patients. In particular, immunotherapy constitutes an attractive option largely explored in preclinical and clinical studies. Patient-derived cell lines that model primary tumor are indispensable tools that facilitate preclinical research. The current review provides an overview of available DLBCL cell line models and their utility in designing novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
Molecular Determinants Underlying the Anti-Cancer Efficacy of CD38 Monoclonal Antibodies in Hematological Malignancies. Biomolecules 2022; 12:biom12091261. [PMID: 36139103 PMCID: PMC9496523 DOI: 10.3390/biom12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
CD38 was first discovered as a T-cell antigen and has since been found ubiquitously expressed in various hematopoietic cells, including plasma cells, NK cells, B cells, and granulocytes. More importantly, CD38 expression levels on malignant hematopoietic cells are significantly higher than counterpart healthy cells, thus presenting itself as a promising therapeutic target. In fact, for many aggressive hematological cancers, including CLL, DLBCL, T-ALL, and NKTL, CD38 expression is significantly associated with poorer prognosis and a hyperproliferative or metastatic phenotype. Studies have shown that, beyond being a biomarker, CD38 functionally mediates dysregulated survival, adhesion, and migration signaling pathways, as well as promotes an immunosuppressive microenvironment conducive for tumors to thrive. Thus, targeting CD38 is a rational approach to overcoming these malignancies. However, clinical trials have surprisingly shown that daratumumab monotherapy has not been very effective in these other blood malignancies. Furthermore, extensive use of daratumumab in MM is giving rise to a subset of patients now refractory to daratumumab treatment. Thus, it is important to consider factors modulating the determinants of response to CD38 targeting across different blood malignancies, encompassing both the transcriptional and post-transcriptional levels so that we can diversify the strategy to enhance daratumumab therapeutic efficacy, which can ultimately improve patient outcomes.
Collapse
|
10
|
Wada F, Shimomura Y, Kamijo K, Yamashita D, Ohno A, Himeno M, Maruoka H, Hara S, Ishikawa T. Prognostic impact of CD38 expression in relapsed or refractory diffuse large B-cell lymphoma and follicular lymphoma transformation. Leuk Lymphoma 2022; 63:1484-1487. [PMID: 35045767 DOI: 10.1080/10428194.2021.2024820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fumiya Wada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kimimori Kamijo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Aya Ohno
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Mayuko Himeno
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hayato Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|