1
|
Ielo C, Breccia M. Extracellular vesicles as source of biomarkers in hematological malignancies: looking towards clinical applications. Expert Rev Mol Diagn 2025:1-12. [PMID: 40178353 DOI: 10.1080/14737159.2025.2488919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION Extracellular vesicles are membranous particles released by cells in physiological and pathological conditions. Their cargo is heterogeneous since it includes different biomolecules such as nucleic acids and proteins. Oncogenic alterations affect the composition of extracellular vesicles and model their content during cancer evolution. AREAS COVERED This review provides an overview of the studies focused on extracellular vesicles as source of biomarkers in hematological malignancies. A special insight into extracellular vesicles-derived biomarkers as tools for evaluating the prognosis of hematological malignancies and their response to treatment is given. EXPERT OPINION Extracellular vesicles are a valuable source of biomarkers in hematological malignancies. However, the translation from the bench to the bedside is challenged by the lack of standardization of the preanalytical variables of the experimental workflow. The release of standard operating procedures and the validation of the extracellular vesicles-derived biomarkers in large cohort of patients will help in exploiting the potential of extracellular vesicles in the clinical setting.
Collapse
Affiliation(s)
- Claudia Ielo
- Department of Translational and Precision Medicine, Sapienza University of Rome - Azienda Policlinico Umberto I, Rome, Italy
| | - Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University of Rome - Azienda Policlinico Umberto I, Rome, Italy
| |
Collapse
|
2
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
3
|
Huo F, Zhang Q, Hu C, Chai F. Association between microRNA-451a expression in serum and survival and prognosis in patients with Hodgkin's lymphoma. Medicine (Baltimore) 2025; 104:e32587. [PMID: 40193657 PMCID: PMC11977740 DOI: 10.1097/md.0000000000032587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND MicroRNA-451a (miR-451a) is associated with the treatment response and outcomes in patients with Hodgkin lymphoma. The present study aimed to investigate the expression of miR-451a in patients with Hodgkin's lymphoma, and to analyze its association with survival and prognosis in clinical patients. METHODS A total of 164 patients with Hodgkin's lymphoma and 164 healthy controls (control group) were enrolled in this study. Blood samples were collected from participants and expression levels of miR-451a were detected using reverse transcription quantitative polymerase chain reaction. Multivariate Cox-regression analysis was used to analyze the association between serum level of miR-451a and overall survival, as well as prognosis of Hodgkin's lymphoma patients. Kaplan-Meier curve was used to analyze the five-year recurrence. RESULTS Outcomes demonstrated that Hodgkin's lymphoma patients had lower miR-451a serum level than healthy controls. The present results showed that expression of miR-451a was higher in the group where chemotherapy was effective than that patient where chemotherapy was ineffective. High serum levels of miR-451a were associated with longer overall survival and better prognosis of Hodgkin's lymphoma patients than patients who had lower serum miR-451a levels. Multivariate Cox-regression analysis identified miR-451a serum level was positively correlated with overall survival and prognosis in patients with Hodgkin's lymphoma. CONCLUSION The results of the present study demonstrate that serum levels of miR-451a is decreased in patients with Hodgkin's lymphoma. Data indicate that serum levels of miR-451a can be used as one of the potential biomarkers and prognosis for patients with Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Fuying Huo
- Department of Gynecology and Obstetrics, The Affiliated Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qi Zhang
- Department of Anesthesiology, The Affiliated Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Chunhuan Hu
- Department of Anesthesiology, The Affiliated Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Fangyuan Chai
- The Department of Urological Surgery, The Affiliated Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
4
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
5
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Khanmohammadi S, Masrour M, Fallahtafti P, Hasani F. MicroRNA as a Potential Diagnostic and Prognostic Biomarker in Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancer Rep (Hoboken) 2025; 8:e70070. [PMID: 39854617 PMCID: PMC11760998 DOI: 10.1002/cnr2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 11/12/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Recently, microRNAs (miRNAs) have been applied as biomarkers for diffuse large B-cell lymphoma (DLBCL) patients. Early diagnosis and management of DLBCL can improve patient survival and prognosis. AIMS This systematic review and meta-analysis aimed to evaluate the diagnostic and prognostic accuracy of miRNA biomarkers in DLBCL patients. METHODS We used the keywords "diffuse large B-cell lymphoma" and "microRNA" to search databases for original publications until June 14, 2023. Specificity, sensitivity, and AUC were used to assess diagnostic accuracy, and the prognostic value was assessed using the overall survival (OS) and progression-free survival (PFS) hazard ratio (HR). A subgroup analysis was performed based on the sample type acquired to investigate the heterogeneity. RESULTS Thirteen diagnostic and 33 prognostic studies were included from 839 articles. The Reitsma bivariate model estimated a sensitivity of 0.788 (95% CI: 0.733-0.834, p < 0.001), a specificity of 0.727 (95% CI: 0.654-0.790, p < 0.001), and an AUC of 0.824 in. The pooled AUC was 0.7385 (95% CI: 0.6847-0.7923, p < 0.0001). The pooled OS and PFS HRs (> 1) were 2.2847 (95% CI: 1.7248-3.0263, p < 0.0001) and 2.4883 (95% CI: 1.7367-3.5650, p < 0.0001). The pooled OS and PFS HRs (< 1) were 0.4965 (95% CI: 0.3576-0.6894, p < 0.0001) and 2.4883 (95% CI: 1.7367-3.5650, p < 0.0001). MiR-155 diagnostic values had a sensitivity of 0.710 (p > 0.1) and a specificity of 0.725 (p < 0.05), with an AUC of 0.776. miR-21 diagnostic values had an AUC of 0.8468 (p < 0.0001) and OS HR of 2.8938. CONCLUSION MicroRNAs could serve as a powerful diagnostic and prognostic tool in DLBCL.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Parisa Fallahtafti
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Fatemeh Hasani
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| |
Collapse
|
7
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. The diagnostic and prognostic value of exosomal microRNAs in lung cancer: a systematic review. Clin Transl Oncol 2024; 26:1921-1933. [PMID: 38485857 DOI: 10.1007/s12094-024-03414-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies have shown that many exosomal microRNAs (miRNAs) can be used as non-invasive biomarkers of lung cancer, but their diagnostic and prognostic values need to be further clarified. METHODS We conducted a systematic literature search in Web of Science, PubMed, and ScienceDirect databases, obtained relevant articles and extracted data, and used statistical methods and statistical software to comprehensively evaluate the diagnostic and prognostic value of exosomal miRNAs in lung cancer. REGISTRATION NUMBER PROSPERO CRD42023447398. RESULTS In terms of diagnosis, two exosomal miRNAs (miR-486-5p and miR-451a) were reported with the highest frequency in lung cancer patients, both of which had good diagnostic value. Compared with the control group, the pooled sensitivities of miR-486-5p and miR-451a were 0.80 (95% CI: 0.73-0.86) and 0.76 (95% CI: 0.60-0.87), specificities: 0.93 (95% CI: 0.63-0.99) and 0.85 (95% CI: 0.72-0.92), and AUCs: 0.85 (95% CI: 0.81-0.88) and 0.88 (95% CI: 0.84-0.90), for the respective miRNAs. For prognosis, in lung cancer patients with abnormally expressed exosomal miRNAs, miR-1290 was associated with PFS outcome; miR-382, miR-1246, miR-23b-3p, miR-21-5p, and miR-10b-5p were associated with OS outcome; miR-21 and miR-4257 were associated with DFS outcome; miR-125a-3p and miR-625-5p were associated with PFS and OS outcomes; miR-216b and miR-451a were associated with OS and DFS outcomes. CONCLUSIONS Exosomal miRNAs are valuable biomarkers in lung cancer patients. Exosomal miR-486-5p and miR-451a can be used as new diagnostic biomarkers for lung cancer. Dysregulated exosomal miRNAs could serve as indicators of survival outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
8
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
10
|
Lee AA, Godwin AK, Abdelhakim H. The multifaceted roles of extracellular vesicles for therapeutic intervention with non-Hodgkin lymphoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:329-343. [PMID: 39639879 PMCID: PMC11618822 DOI: 10.20517/evcna.2024.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) contribute to the development of cancer in various ways. Non-Hodgkin lymphoma (NHL) is a cancer of mature lymphocytes and the most common hematological malignancy globally. The most common form of NHL, diffuse large B-cell lymphoma (DLBCL), is primarily treated with chemotherapy, autologous stem cell transplantation (ASCT), and/or chimeric antigen receptor T-cell (CAR-T) therapy. With NHL disease progression and its treatment, extracellular vesicles play remarkable roles in influencing outcomes. This finding can be utilized for therapeutic intervention to improve patient outcomes for NHL. This review focuses on the multifaceted roles of EVs with NHL and its potential for guiding patient care.
Collapse
Affiliation(s)
- Arthur A. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 64111, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Haitham Abdelhakim
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
12
|
Besharat ZM, Trocchianesi S, Verrienti A, Ciampi R, Cantara S, Romei C, Sabato C, Noviello TMR, Po A, Citarella A, Caruso FP, Panariello I, Gianno F, Carpino G, Gaudio E, Chiacchiarini M, Masuelli L, Sponziello M, Pecce V, Ramone T, Maino F, Dotta F, Ceccarelli M, Pezzullo L, Durante C, Castagna MG, Elisei R, Ferretti E. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest 2023; 46:2583-2599. [PMID: 37286863 PMCID: PMC10632281 DOI: 10.1007/s40618-023-02115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE/METHODS The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated. RESULTS The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays. Lasso logistic regression analysis resulted in the identification of a set of circulating miRNAs as diagnostic biomarkers. Among them, miR-26b-5p and miR-451a, were highly expressed and their expression decreased during follow-up in disease-free patients in the discovery cohort. Circulating miR-26b-5p and miR-451a were validated using droplet digital PCR in a second independent cohort of 12 MTC patients. CONCLUSION This study allowed the identification and validation of a signature of two circulating miRNAs, miR-26b-5p and miR-451a, in two independent cohorts reporting a significant diagnostic performance for MTC. The results of this study offer advancements in molecular diagnosis of MTC proposing a novel non-invasive tool to use in precision medicine.
Collapse
Affiliation(s)
- Z M Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Trocchianesi
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - R Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - S Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - C Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - C Sabato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - T M R Noviello
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - A Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - A Citarella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - F P Caruso
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - I Panariello
- Thyroid Surgical Unit, IRCCS Fondazione G.Pascale, 80131, Naples, Italy
| | - F Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - G Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - E Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - M Chiacchiarini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - L Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - M Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - V Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - T Ramone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - F Maino
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - F Dotta
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100, Siena, Italy
| | - M Ceccarelli
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", 83031, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138, Naples, Italy
| | - L Pezzullo
- Thyroid Surgical Unit, IRCCS Fondazione G.Pascale, 80131, Naples, Italy
| | - C Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100, Siena, Italy
| | - R Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - E Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
13
|
Hu Y, Zhang Q, Wu Z, Chen K, Xu X, Ma W, Chen B, Jin L, Guan M. Exosomal miR-200c and miR-141 as cerebrospinal fluid biopsy biomarkers for the response to chemotherapy in primary central nervous system lymphoma. Discov Oncol 2023; 14:205. [PMID: 37971595 PMCID: PMC10654293 DOI: 10.1007/s12672-023-00812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND To improve early diagnosis and chemotherapy efficacy monitoring in primary central nervous system lymphoma (PCNSL), cerebrospinal fluid (CSF) exosomal microRNA (miRNA) studies were performed. METHOD Small RNA sequencing was performed to identify candidate exosomal miRNAs as CSF biopsy biomarkers from two patients with de novo PCNSL and two patients in remission after chemotherapy. miR-200c and miR-141 expression in CSF exosomes was further validated using relative quantitative real-time polymerase chain reaction in patients with PCNSL (n = 20), patients with other neurological diseases (n = 10), and normal subjects (n = 10). Receiver operating characteristic (ROC) curve analyses of miR-200c and miR-141 in the diagnosis and prediction of chemotherapy efficacy in PCNSL were performed in patients treated with methotrexate. Additionally, bioinformatics tools were utilized to predict the potential targets of miR-200c and miR-141. RESULTS Exosomal miR-200c and miR-141 levels in CSF from patients with PCNSL were significantly lower than those in control subjects. Importantly, miR-200c and miR-141 were upregulated in patients with PCNSL after chemotherapy (P = 0.002). There was a significant correlation between the levels of miR-141 and IL-10 in CSF (P = 0.04). The combination of miR-200c and miR-141 yielded an area under the ROC curve of 0.761 for distinguishing PCNSL with sensitivity and specificity of 60.0% and 96.7%, respectively. The potential target genes of miR-200c and miR-141 in PCNSL included ATP1B3, DYNC1H1, MATR3, NUCKS1, ZNF638, NUDT4, RCN2, GNPDA1, ZBTB38, and DOLK. CONCLUSION Collectively, miR-200c and miR-141 are likely to be upregulated in CSF exosomes after chemotherapy in patients with PCNSL, highlighting their potential as reliable liquid biopsy biomarkers for PCNSL diagnosis and chemotherapy efficacy monitoring.
Collapse
Affiliation(s)
- Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qingyun Zhang
- Department of Central Laboratory, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Central Laboratory, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Weizhe Ma
- Department of Central Laboratory, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
| | - Limin Jin
- Department of Laboratory Medicine, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001, Zhejiang, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
14
|
Gong Y, Tong H, Yu F, Liu Q, Huang X, Ren G, Fan Z, Wang Z, Zhao J, Mao Z, Zhang J, Zhou R. CCDC50, an essential driver involved in tumorigenesis, is a potential severity marker of diffuse large B cell lymphoma. Ann Hematol 2023; 102:3153-3165. [PMID: 37684379 PMCID: PMC10567943 DOI: 10.1007/s00277-023-05409-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Diffuse Large B Cell Lymphoma (DLBCL) is the most common form of blood cancer. Among the subtypes, the activated B-cell (ABC) subtype is typically more aggressive and associated with worse outcomes. However, the underlying mechanisms are not fully understood. In this study, we performed microarray analysis to identify potential ABC-DLBCL-associated genes. We employed Kaplan-Meier methods and cox univariate analysis to explore the prognostic value of the identified candidate gene Coiled-coil domain containing 50 (CCDC50). Additionally, we used DLBCL cell lines and mouse models to explore the functions and mechanisms of CCDC50. Finally, we isolated CCDC50-bearing exosomes from clinical patients to study the correlation between these exosomes and disease severity. Our results demonstrated that CCDC50 not only showed significantly positive correlations with ABC subtype, tumor stage and number of extranodal sites, but also suggested poor outcomes in DLBCL patients. We further found that CCDC50 promoted ABC-DLBCL proliferation in vitro and in vivo. Mechanistically, CCDC50 inhibited ubiquitination-mediated c-Myc degradation by stimulating the PI3K/AKT/GSK-3β pathway. Moreover, CCDC50 expression was positively correlated with c-Myc at protein levels in DLBCL patients. Additionally, in two clinical cohorts, the plasma CCDC50-positive exosomes differentiated DLBCL subtypes robustly (AUC > 0.80) and predicted disease severity effectively (p < 0.05). Our findings suggest that CCDC50 likely drives disease progression in ABC-DLBCL patients, and the CCDC50-bearing exosome holds great potential as a non-invasive biomarker for subtype diagnosis and prognosis prediction of DLBCL patients.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Humans
- Animals
- Female
- Mice
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Cell Line, Tumor
- Prognosis
- Exosomes/metabolism
- Exosomes/genetics
- Gene Expression Regulation, Neoplastic
- Carcinogenesis/genetics
- Severity of Illness Index
- Cell Proliferation
Collapse
Affiliation(s)
- Yuqi Gong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ren Zhou
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Jiang S, Xiao M, Shi Y, Wang Y, Xu Z, Wang K. Identification of m7G-Related miRNA Signatures Associated with Prognosis, Oxidative Stress, and Immune Landscape in Lung Adenocarcinoma. Biomedicines 2023; 11:1569. [PMID: 37371664 DOI: 10.3390/biomedicines11061569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The role of N7-methylguanosine(m7G)-related miRNAs in lung adenocarcinoma (LUAD) remains unclear. We used LUAD data from The Cancer Genome Atlas (TCGA) to establish a risk model based on the m7G-related miRNAs, and divided patients into high-risk or low-risk subgroups. A nomogram for predicting overall survival (OS) was then constructed based on the independent risk factors. In addition, we performed a functional enrichment analysis and defined the oxidative stress-related genes, immune landscape as well as a drug response profile in the high-risk and low-risk subgroups. This study incorporated 28 m7G-related miRNAs into the risk model. The data showed a significant difference in the OS between the high-risk and low-risk subgroups. The receiver operating characteristic curve (ROC) predicted that the area under the curve (AUC) of one-year, three-year and five-year OS was 0.781, 0.804 and 0.853, respectively. The C-index of the prognostic nomogram for predicting OS was 0.739. We then analyzed the oxidative stress-related genes and immune landscape in the high-risk and low-risk subgroups. The data demonstrated significant differences in the expression of albumin (ALB), estimated score, immune score, stromal score, immune cell infiltration and functions between the high-risk and low-risk subgroups. In addition, the drug response analysis showed that low-risk subgroups may be more sensitive to tyrosine kinase inhibitor (TKI) and histone deacetylase (HDAC) inhibitors. We successfully developed a novel risk model based on m7G-related miRNAs in this study. The model can predict clinical prognosis and guide therapeutic regimens in patients with LUAD. Our data also provided new insights into the molecular mechanisms of m7G in LUAD.
Collapse
Affiliation(s)
- Sujing Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yongfang Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
16
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
17
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|
18
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23:6686738. [PMID: 36056743 DOI: 10.1093/bib/bbac358] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 12/12/2022] Open
Abstract
Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
19
|
Yazdanparast S, Huang Z, Keramat S, Izadirad M, Li YD, Bo L, Gharehbaghian A, Chen ZS. The Roles of Exosomal microRNAs in Diffuse Large B-Cell Lymphoma: Diagnosis, Prognosis, Clinical Application, and Biomolecular Mechanisms. Front Oncol 2022; 12:904637. [PMID: 35719983 PMCID: PMC9202611 DOI: 10.3389/fonc.2022.904637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous neoplasm and is characterized as the most common subtype of non-Hodgkin lymphoma (NHL). Despite 60–70% of all patients being cured with R-CHOP therapeutic regimen (Cyclophosphamide, doxorubicin, vincristine, and prednisone, combined with rituximab), remaining patients display aggressive disease. Therefore, there is an urgent need to develop novel diagnostic, prognostic, and predictive biomarkers. Recently, exosomal miRNAs have been approved as novel biomarkers in DLBCL due to their potential involvement in lymphomagenesis. Material and Methods We conducted an investigation on the potential role of exosomal miRNAs as diagnostic, prognostic, and predictive biomarkers in DLBCL in the PubMed, Scopus, and Web of Science search engines. We searched by using a combination of keywords, such as diffuse large B-cell lymphoma, DLBCL, miRNA, microRNA, miR, exosome, exosomes, exosomal, extracellular vesicles, EVs, and secretome. Then, search results were narrowed based on specific inclusion and exclusion criteria. Results Twelve articles were eligible for our systematic reviews. Among them, nine discussed diagnostic biomarkers, three considered prognostic significance, four evaluated therapeutic efficacy, two studies were conducted in vitro, and three assessed molecular pathways associated with these exosomal miRNAs in DLBCL. Discussion According to our systematic review, exosomal miRNAs are not only useful for diagnosis and prognosis in DLBCL but are also promising therapeutic tools and predictors of response to therapy. Although promising results so far, more research is required to develop innovative biomarkers.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shayan Keramat
- Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, St John's University, New York, NY, United States
| | - Letao Bo
- Department of Pharmaceutical Sciences, St John's University, New York, NY, United States
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John's University, New York, NY, United States
| |
Collapse
|
20
|
Non-invasive Molecular Biomarkers for Predicting Outcomes of Micro-TESE in Patients with Idiopathic Non-obstructive Azoospermia. Expert Rev Mol Med 2022; 24:e22. [PMID: 35659383 DOI: 10.1017/erm.2022.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ke H, Wu S, Zhang Y, Zhang G. miR-139-3p/Kinesin family member 18B axis suppresses malignant progression of gastric cancer. Bioengineered 2022; 13:4528-4536. [PMID: 35137670 PMCID: PMC8974075 DOI: 10.1080/21655979.2022.2033466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miR-139-3p exerts tumor-suppressing functions in various cancers. We analyzed and identified that miR-139-3p expression was notably low in gastric cancer (GC) via edgeR differential analysis based on The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction (qRT-PCR) assay. The binding relationship between Kinesin Family Member 18B (KIF18B) and miR-139-3p was predicted by bioinformatics databases, and verified through dual-luciferase assay. Western blot and qRT-PCR results also indicated that miR-139-3p restrained KIF18 expression at mRNA and protein levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell, flow cytometry assays were introduced to evaluate cell proliferation, migration, invasion, and cell cycle, respectively, where the results indicated that upregulating miR-139-3p inhibited proliferative, migratory, and invasive abilities of GC cells, while caused cell-cycle arrest. Moreover, the results of rescue experiments illustrated that miR-139-3p hampered the progression of GC cells by targeting and suppressing KIF18B. To sum up, we concluded that miR-139-3p suppressed GC progression by targeting KIF18B.
Collapse
Affiliation(s)
- Hailin Ke
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Songling Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yueyi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|