1
|
Wit JM, Joustra SD, Losekoot M, van Duyvenvoorde HA, de Bruin C. Differential Diagnosis of the Short IGF-I-Deficient Child with Apparently Normal Growth Hormone Secretion. Horm Res Paediatr 2022; 94:81-104. [PMID: 34091447 DOI: 10.1159/000516407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Christiaan de Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
2
|
Esmaiel NN, Fayez AG, Thomas MM, Khalaf RI, Salem SM, Ramadan A, Helwa I, Raouf HA, El-Bassyouni HT, Ismaeil S. The association of +1150A polymorphism with low GH level in isolated growth hormone deficiency (IGHD) patients. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Sundralingam T, Tennekoon KH, de Silva S, De Silva S, Hewage AS. Pathogenic and likely pathogenic genetic alterations and polymorphisms in growth hormone gene (GH1) and growth hormone releasing hormone receptor gene (GHRHR) in a cohort of isolated growth hormone deficient (IGHD) children in Sri Lanka. Growth Horm IGF Res 2017; 36:22-29. [PMID: 28910730 DOI: 10.1016/j.ghir.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Genetic alterations in GH1 and GHRHR genes are known to cause isolated growth hormone deficiency (IGHD). Of these, GHRHR codon 72 mutation has been reported to be highly prevalent in the Indian subcontinent, but among Sri Lankans its prevalence was low compared to reports from neighboring countries. The present study was therefore carried out to identify genetic alterations in the GH1 gene and rest of the GHRHR gene in a cohort of Sri Lankan IGHD patients who tested negative for GHRHR codon 72 mutation. METHODS Fifty five IGHD children negative for codon 72 (GHRHR) mutation were screened for gross GH1 gene deletion by polymerase chain reaction (PCR) and restriction fragment length polymorphism technique. The coding, intronic and promoter regions of the GH1 gene were sequenced in children who were negative for GH1 deletion (N=53). In a subset (N=40), coding, flanking intronic and promoter regions of the GHRHR gene were screened by single strand conformation polymorphism/sequencing. Identified coding region and intronic variants were subjected to in silico analysis to ascertain pathogenicity. Family members available were screened for the significant variants observed in the index child. RESULTS Gross GH1 gene deletions, 6.7kb and 7.0kb were observed in one child each. One novel and 24 reported single nucleotide variants (SNVs) were observed in the GH1 gene and its promoter. These included one reported pathogenic splice site mutation (c.172-2A>T) and one reported likely pathogenic missense mutation (c.406G>T). One large novel deletion of 5875 base pairs that included exon 1, one likely pathogenic novel SNV (c.211G>T) and 18 reported SNVs were observed in the GHRHR gene. Fourteen variants observed were of uncertain significance (8 in GH1 and 6 in GHRHR), twenty three variants were likely benign (11 in GH1 and 12 in GHRHR) and four variants were benign (4 in GH1 and none in GHRHR). CONCLUSION In a cohort of IGHD children, six pathogenic or likely pathogenic genetic alterations of either GH1 gene or GHRHR gene were found. These affected a total of six children. Pathogenic status of four of these had been reported in the literature. Novel SNV in the GHRHR gene was predicted to be pathogenic through in silico analysis. The large novel deletion is likely to be pathogenic as it included exon 1 of GHRHR gene. Analysis of other genes will be needed to ascertain the genetic cause of IGHD in the remaining children.
Collapse
Affiliation(s)
- Tharmini Sundralingam
- Institute of Biochemistry, Molecular Biology and Biotechnology, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Shamya de Silva
- Department of Paediatrics, Faculty of Medicine, PO Box 271, Kynsey Road, Colombo 08, Sri Lanka; Lady Ridgeway Hospital, Dr. Danister de Silva Mawatha, Colombo 08, Sri Lanka
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Asanka Sudeshini Hewage
- Institute of Biochemistry, Molecular Biology and Biotechnology, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| |
Collapse
|
5
|
Klimentidis YC, Bea JW, Thompson P, Klimecki WT, Hu C, Wu G, Nicholas JS, Ryckman KK, Chen Z. Genetic Variant in ACVR2B Is Associated with Lean Mass. Med Sci Sports Exerc 2017; 48:1270-5. [PMID: 26848890 DOI: 10.1249/mss.0000000000000889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Low lean mass (LM) is a risk factor for chronic disease, a major cause of disability and diminished quality of life, and is a heritable trait. However, relatively few specific genetic factors have been identified as potentially influencing this trait. METHODS In this study, we selected 1493 single-nucleotide polymorphisms (SNP) in 155 candidate genes involved in anabolic, catabolic, growth hormone, and other related pathways and examined their association with LM, assessed by dual-energy x-ray absorptiometry, in a sample of 2760 non-Hispanic and Hispanic white postmenopausal women from the Women's Health Initiative (WHI) Observational Study. We assessed the replication of our top findings in a meta-analysis of 20 genome-wide association studies (n = 38,292) conducted by the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium Musculoskeletal Working Group. RESULTS We identified 32 SNPs that had nominally significant associations with LM in the WHI cohort. In the replication stage, we find that SNP rs2276541 in the activin A receptor, type IIB (ACVR2B), was significantly associated with LM (β = 0.15, P = 2.17 × 10). ACVR2B codes for a receptor for a negative regulator of skeletal muscle, myostatin, and has previously been identified in a candidate gene study as a determinant of skeletal muscle mass. CONCLUSIONS Our findings support a previously proposed role of ACVR2B allelic variation as a determinant of muscle mass and extend prior findings in men and women. Additional large-scale studies will be needed to confirm our findings in different populations.
Collapse
Affiliation(s)
- Yann C Klimentidis
- 1Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ; 2University of Arizona Cancer Center, University of Arizona, Tucson, AZ; 3Department of Nutritional Sciences, University of Arizona, Tucson, AZ; 4Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ; 5Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ; 6Department of Epidemiology and Pediatrics, University of Iowa, Iowa City, IA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ponomarenko P, Chadaeva I, Rasskazov DA, Sharypova E, Kashina EV, Drachkova I, Zhechev D, Ponomarenko MP, Savinkova LK, Kolchanov N. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Aging Neurosci 2017; 9:231. [PMID: 28775688 PMCID: PMC5517495 DOI: 10.3389/fnagi.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become interesting to the general population [may help to choose a lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic AD, its comorbidities, and complications in the elderly].
Collapse
Affiliation(s)
- Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA, United States
| | - Irina Chadaeva
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry A Rasskazov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Ekaterina Sharypova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Elena V Kashina
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina Drachkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Dmitry Zhechev
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Mikhail P Ponomarenko
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Ludmila K Savinkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Nikolay Kolchanov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|
7
|
Miletta MC, Flück CE, Mullis PE. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II. Biochem Pharmacol 2017; 124:1-9. [PMID: 27457999 DOI: 10.1016/j.bcp.2016.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Christa E Flück
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Primus-E Mullis
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
8
|
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, Arshinova TV, Ponomarenko PM, Arkova OV, Bondar NP, Savinkova LK, Kolchanov NA. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2016; 17:995. [PMID: 28105927 PMCID: PMC5249025 DOI: 10.1186/s12864-016-3353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).
Collapse
Affiliation(s)
- Irina V. Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Dmitry A. Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ekaterina B. Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Elena V. Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Marina Yu Matveeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Tatjana V. Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Petr M. Ponomarenko
- Children’s Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027 USA
| | - Olga V. Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Vector-Best Inc, Koltsovo, Novosibirsk Region 630559 Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ludmila K. Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| |
Collapse
|
9
|
The genetic architecture of autism spectrum disorders (ASDs) and the potential importance of common regulatory genetic variants. SCIENCE CHINA-LIFE SCIENCES 2016; 58:968-75. [PMID: 26335735 DOI: 10.1007/s11427-012-4336-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, there is great interest in identifying genetic variants that contribute to the risk of developing autism spectrum disorders (ASDs), due in part to recent increases in the frequency of diagnosis of these disorders worldwide. While there is nearly universal agreement that ASDs are complex diseases, with multiple genetic and environmental contributing factors, there is less agreement concerning the relative importance of common vs rare genetic variants in ASD liability. Recent observations that rare mutations and copy number variants (CNVs) are frequently associated with ASDs, combined with reduced fecundity of individuals with these disorders, has led to the hypothesis that ASDs are caused primarily by de novo or rare genetic mutations. Based on this model, large-scale whole-genome DNA sequencing has been proposed as the most appropriate method for discovering ASD liability genes. While this approach will undoubtedly identify many novel candidate genes and produce important new insights concerning the genetic causes of these disorders, a full accounting of the genetics of ASDs will be incomplete absent an understanding of the contributions of common regulatory variants, which are likely to influence ASD liability by modifying the effects of rare variants or, by assuming unfavorable combinations, directly produce these disorders. Because it is not yet possible to identify regulatory genetic variants by examination of DNA sequences alone, their identification will require experimentation. In this essay, I discuss these issues and describe the advantages of measurements of allelic expression imbalance (AEI) of mRNA expression for identifying cis-acting regulatory variants that contribute to ASDs.
Collapse
|
10
|
Birla S, Khadgawat R, Jyotsna VP, Jain V, Garg MK, Bhalla AS, Sharma A. Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency. Growth Horm IGF Res 2016; 29:50-56. [PMID: 27114065 DOI: 10.1016/j.ghir.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Human growth is an elementary process which starts at conception and continues through different stages of development under the influence of growth hormone (GH) secreted by the anterior pituitary gland. Variation affecting the production, release and functional activity of GH leads to growth hormone deficiency (GHD), which is of two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD may result from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1, POU1F1 and HESX1. The present study reports on the molecular screening of GHRHR and GH1 in IGHD patients. METHODS A total of 116 clinically diagnosed IGHD patients and 100 controls were enrolled for the study after taking informed consent. Family history was noted and 5ml blood sample was drawn. Anatomical and/or morphological pituitary gland alterations were studied using magnetic resonance imaging (MRI). DNA from blood samples was processed for screening the GHRHR and GH1 by Sanger sequencing. RESULTS Mean age at presentation of the 116 patients (67 males and 49 females) was 11.71±3.5years. Mean height standard deviation score (SDS) and weight SDS were -4.5 and -3.5 respectively. Nine (7.8%) were familial and parental consanguinity was present in 21 (19.8%) families. Eighty-three patients underwent MRI and morphological alterations of the pituitary were observed in 39 (46.9%). GH1 and GHRHR screening revealed eleven variations in 24 (21%) patients of which, four were novel deleterious, one novel non-pathogenic and six reported changes. CONCLUSIONS GHRHR contributed more to IGHD in our patients which confirmed that GHRHR should be screened first before GH1 in our population. Identification of GH1 and GHRHR variations helped in defining our mutational spectrum which will play a crucial role in providing predictive and prenatal genetic testing to the patients.
Collapse
Affiliation(s)
- Shweta Birla
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - M K Garg
- Department of Endocrinology and Metabolism, Army Hospital (Referral and Research), Delhi Cantonment, India
| | - Ashu Seith Bhalla
- Department of Radio-diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Madeira JLO, Jorge AAL, Martin RM, Montenegro LR, Franca MM, Costalonga EF, Correa FA, Otto AP, Arnhold IJP, Freitas HS, Machado UF, Mendonca BB, Carvalho LR. A homozygous point mutation in the GH1 promoter (c.-223C>T) leads to reduced GH1 expression in siblings with isolated GH deficiency (IGHD). Eur J Endocrinol 2016; 175:K7-K15. [PMID: 27252485 DOI: 10.1530/eje-15-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022]
Abstract
CONTEXT Mutations in the GH1 promoter are a rare cause of isolated growth hormone deficiency (IGHD). OBJECTIVE To identify the molecular aetiology of a family with IGHD. DESIGN DNA sequencing, electromobility shift (EMSA) and luciferase reporter assays. SETTING University Hospital. PATIENTS Three siblings (2M) born to consanguineous parents presented with IGHD with normal pituitary on MRI. METHODS The GH1 proximal promoter, locus control region, five exons and four introns as well as GHRHR gene were sequenced in genomic DNA by Sanger method. DNA-protein interaction was evaluated by EMSA in nuclear extracts of GH3 pituitary cells. Dual-luciferase reporter assays were performed in cells transiently transfected with plasmids containing four different combinations of GH1 allelic variants (AV). RESULTS The patients harboured two homozygous variants (c.-185T>C and c.-223C>T) in the GH1 promoter within a highly conserved region and predicted binding sites for POU1F1/SP1 and SP1 respectively. The parents and brother were carriers and these variants were absent in 100 controls. EMSA demonstrated absent binding of GH3 nuclear extract to the c.-223C>T variant and normal binding of both POU1F1 protein and GH3 nuclear extract to the c.-185T>C variant. In contrast to GH1 promoter with AV only at c.-185, the GH1 promoter containing the AV only at c.-223 and at both positions drove significantly less expression of luciferase compared with the promoter containing either positions wild type in luciferase reporter assays. CONCLUSION To our knowledge, c.-223C>T is the first homozygous point mutation in the GH1 promoter that leads to short stature due to IGHD.
Collapse
Affiliation(s)
- João L O Madeira
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Alexander A L Jorge
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42 Unidade de Endocrinologia-Genética - LIM/25Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Regina M Martin
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Luciana R Montenegro
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Marcela M Franca
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Everlayny F Costalonga
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Fernanda A Correa
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Aline P Otto
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Helayne S Freitas
- Laboratório de Metabolismo e Endocrinologia do Departamento de Fisiologia e Biofísica do Instituto de Ciências Biomédicas da Universidade de São Paulo (ICB-USP)São Paulo, Brazil
| | - Ubiratan F Machado
- Laboratório de Metabolismo e Endocrinologia do Departamento de Fisiologia e Biofísica do Instituto de Ciências Biomédicas da Universidade de São Paulo (ICB-USP)São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| | - Luciani R Carvalho
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM/42
| |
Collapse
|
12
|
Turnaev II, Rasskazov DA, Arkova OV, Ponomarenko MP, Ponomarenko PM, Savinkova LK, Kolchanov NA. Hypothetical SNP markers that significantly affect the affinity of the TATA-binding protein to VEGFA, ERBB2, IGF1R, FLT1, KDR, and MET oncogene promoters as chemotherapy targets. Mol Biol 2016. [DOI: 10.1134/s0026893316010209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ponomarenko M, Rasskazov D, Arkova O, Ponomarenko P, Suslov V, Savinkova L, Kolchanov N. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene's Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:359835. [PMID: 26516624 PMCID: PMC4609514 DOI: 10.1155/2015/359835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Valentin Suslov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Gao CM, Ding JH, Wu JS, Cao HX, Li SP, Liu YT, Tang JH, Tajima K. Growth Hormone 1 T1663A Polymorphism, Recreational Physical Activity and BMI, and Breast Cancer Risk in Chinese Women. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Miletta MC, Schöni MH, Kernland K, Mullis PE, Petkovic V. The role of zinc dynamics in growth hormone secretion. Horm Res Paediatr 2014; 80:381-9. [PMID: 24296719 DOI: 10.1159/000355408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University Children's Hospital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Sugita H, Ardiyanti A, Yokota S, Yonekura S, Hirayama T, Shoji N, Yamauchi E, Suzuki K, Katoh K, Roh SG. Effect of single nucleotide polymorphisms in GH gene promoter region on carcass traits and intramuscular fatty acid compositions in Japanese Black cattle. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
18
|
Castell AL, Sadoul JL, Bouvattier C. L’axe GH-IGF-I dans la croissance. ANNALES D'ENDOCRINOLOGIE 2013; 74 Suppl 1:S33-41. [DOI: 10.1016/s0003-4266(13)70019-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Birla S, Jyotsana PV, Sharma A, Khadgawat R, Garg MK, Jain V. Genetic characterization of growth hormone 1 gene in patients with isolated growth hormone deficiency. Indian J Endocrinol Metab 2012; 16:S310-S312. [PMID: 23565410 PMCID: PMC3603058 DOI: 10.4103/2230-8210.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Growth hormone (GH) secretion and release is a complex and highly regulated process. Any alteration disturbing synthesis, secretion or biological action of GH, results into growth hormone deficiency (GHD). GHD is of two types-isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD), of which IGHDis more common. The genes implicated in its etiology are growth hormone 1(GH1) and receptor of growth hormone-releasing hormone (GHRHR). Mutations within the coding region and/or either entire or partial deletions of the GH1gene lead to IGHD. In addition, GH1 possesses upstream regulatory elements and a promoter with binding sites for various transcription factors, which control its expression. AIM The study was planned with an aim to identify entire GH1 locus deletion, mutations in the GH1 coding region and sequence variations (polymorphisms) in the promoter region of the gene in patients with IGHD. MATERIALS AND METHODS Thirty patients clinically diagnosed with IGHD and 30 healthy individuals who formed the controls were enrolled for the study. Genomic DNA was isolated from peripheral blood sample and processed for amplification of the desired regions followed by direct sequencing and/or restriction endonuclease digestion. RESULTS Out of the 30 IGHD patients screened, 20% of the cases showed consanguinity and 16% had a positive family history. Seven percentage of the patients showed homozygous deletion of the GH1gene while rest of them had heterozygous deletion. Screening of the coding region of GH1 showed sequence variations in exon 1 in 20% of the patients whereas the promoter region showed the presence of polymorphisms-rs2005171 in 20%, rs2005172 in 15% and rs11568828 in 18% of the cases. The haplotype comprising rs2005171 and rs2005172 was observed in four patients. CONCLUSION The present study is an attempt to characterize the GH1 locus in IGHD patients. To the best of our knowledge this is the first study of its kind where entire GH1locus, upstream regulatory elements and promoter region have been studied. Such an analysis would provide valuable information on the etiology of IGHD.
Collapse
Affiliation(s)
| | | | | | - Rajesh Khadgawat
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - MK Garg
- Department of Endocrinology, R&R Army Hospital, New Delhi, India
| | - Vandana Jain
- Department of Pediatrics, AIIMS, New Delhi, India
| |
Collapse
|
20
|
Hendriks AEJ, Brown MR, Boot AM, Oostra BA, de Jong FH, Drop SLS, Parks JS. Common polymorphisms in the GH/IGF-1 axis contribute to growth in extremely tall subjects. Growth Horm IGF Res 2011; 21:318-324. [PMID: 21944866 DOI: 10.1016/j.ghir.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 12/15/2022]
Abstract
CONTEXT/OBJECTIVE The growth hormone (GH)/insulin-like growth factor-1(IGF-1) axis is the key regulator of somatic growth in humans and its genes are plausible candidates to study the genetics of height variation. Here, we studied polymorphic variation in the GH/IGF-1 axis in the extremely tall Dutch. METHODS Case-control study of 166 tall cases with height >2 SDS and 206 controls with normally distributed height <2 SDS. Excluded were subjects with endocrine disorders or growth syndromes. We analyzed genomic DNA at 7 common polymorphisms in the GH-1, GH receptor (GHR), IGF-1 and IGFBP-3 genes. RESULTS The association of the GH-1 1663 SNP with tall stature approached statistical significance, with the T-allele more present in the tall (allele frequency (AF): 0.44 vs. 0.36; p=0.084). Moreover, haplotype frequencies at this locus were significantly different between cases and controls, with the GGT haplotype most commonly seen in cases (p=0.01). Allele frequencies of GHR polymorphisms were not different. For the IGF-1 CA-repeat we observed a higher frequency of homozygous 192-bp carriers among tall males compared to control males (AF: 0.62 vs. 0.55; p=0.02). The IGFBP-3 -202 C-allele occurred more frequently in cases than in controls (AF: 0.58 vs. 0.50; p=0.002). Within cases, those carrying one or two copies of the -202 C-allele were significantly taller than AA genotype carriers (AC, p=0.028 and CC, p=0.009). Serum IGFBP-3 levels were highest in AA genotype carriers, the -202 SNP explained 5.8% of the variation. CONCLUSION Polymorphic variation in the GH-1, IGF-1 and IGFBP-3 genes is associated with extremely tall stature. In particular, the IGFBP-3 -202 SNP is associated not only with being very tall but also with height variation within the tall.
Collapse
Affiliation(s)
- A E J Hendriks
- Pediatric Endocrinology, Erasmus Medical Center-Sophia, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu X, Wang H, Zhu M, Sun Y, Tao Y, He Q, Wang J, Chen L, Saffen D. Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain. BMC Genomics 2011; 12:518. [PMID: 22013986 PMCID: PMC3228908 DOI: 10.1186/1471-2164-12-518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common genetic variants that regulate gene expression are widely suspected to contribute to the etiology and phenotypic variability of complex diseases. Although high-throughput, microarray-based assays have been developed to measure differences in mRNA expression among independent samples, these assays often lack the sensitivity to detect rare mRNAs and the reproducibility to quantify small changes in mRNA expression. By contrast, PCR-based allelic expression imbalance (AEI) assays, which use a "marker" single nucleotide polymorphism (mSNP) in the mRNA to distinguish expression from pairs of genetic alleles in individual samples, have high sensitivity and accuracy, allowing differences in mRNA expression greater than 1.2-fold to be quantified with high reproducibility. In this paper, we describe the use of an efficient PCR/next-generation DNA sequencing-based assay to analyze allele-specific differences in mRNA expression for candidate neuropsychiatric disorder genes in human brain. RESULTS Using our assay, we successfully analyzed AEI for 70 candidate neuropsychiatric disorder genes in 52 independent human brain samples. Among these genes, 62/70 (89%) showed AEI ratios greater than 1 ± 0.2 in at least one sample and 8/70 (11%) showed no AEI. Arranging log2AEI ratios in increasing order from negative-to-positive values revealed highly reproducible distributions of log2AEI ratios that are distinct for each gene/marker SNP combination. Mathematical modeling suggests that these log2AEI distributions can provide important clues concerning the number, location and contributions of cis-acting regulatory variants to mRNA expression. CONCLUSIONS We have developed a highly sensitive and reproducible method for quantifying AEI of mRNA expressed in human brain. Importantly, this assay allowed quantification of differential mRNA expression for many candidate disease genes entirely missed in previously published microarray-based studies of mRNA expression in human brain. Given the ability of next-generation sequencing technology to generate large numbers of independent sequencing reads, our method should be suitable for analyzing from 100- to 200-candidate genes in 100 samples in a single experiment. We believe that this is the appropriate scale for investigating variation in mRNA expression for defined sets candidate disorder genes, allowing, for example, comprehensive coverage of genes that function within biological pathways implicated in specific disorders. The combination of AEI measurements and mathematical modeling described in this study can assist in identifying SNPs that correlate with mRNA expression. Alleles of these SNPs (individually or as sets) that accurately predict high- or low-mRNA expression should be useful as markers in genetic association studies aimed at linking candidate genes to specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiang Xu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Functional characterisation of the bovine neuropeptide Y gene promoter and evaluation of the transcriptional activities of promoter haplotypes. Mol Biol Rep 2011; 39:919-28. [PMID: 21562764 DOI: 10.1007/s11033-011-0817-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic agent. The molecular mechanisms underlying the regulation of bovine NPY gene expression by its promoter region is currently unknown. The objectives of this research were to: (i) identify the SNPs in the promoter region of the bovine NPY gene, (ii) investigate the effects of these SNPs by measuring promoter transcriptional activities of different bovine NPY promoter haplotypes and; (iii) identify the minimal promoter region (MPR) required for basal activity of the NPY gene in vitro. Seventeen SNPs were identified in the promoter region. Of these, 14 affected putative transcription factors binding motifs including a TATA binding protein factor at -20, GC-Box factors SP1 at -170 and GATA binding motifs at -120 and -347. The SNPs were assigned to five major haplotypes (BtNPY_H1-5), of which BtNPY_H5 had maximum transcriptional activity. The region extending to -134 nt was identified as the MPR. This MPR was confirmed by the identification of a putative TATA box (-29 nt) and two SP1/GC binding sites (-94 and -118 nt), within this region. However, promoter expression was significantly enhanced when the construct contained the -614 to -1019 nt region. In conclusion, a number of SNPs characterised in the bovine NPY promoter especially those affecting the transcription factor binding sites, enhancer and repressor regions have the potential to affect NPY gene expression. Natural variation exists in the promoter region of the bovine NPY gene, which should be further explored for selection of energetic efficiency in cattle.
Collapse
|
23
|
Zhang X, Cal AJ, Borevitz JO. Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res 2011; 21:725-33. [PMID: 21467266 DOI: 10.1101/gr.115337.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.2, an associated single nucleotide polymorphism (SNP) explains >38% of trait variation. In comparison with SNPs that are distant from the genes to which they were associated, locally associated SNPs are preferentially found in regions with extended linkage disequilibrium (LD) and have distinct population frequencies of the derived alleles (where Arabidopsis lyrata has the ancestral allele), suggesting that different selective forces are acting. Locally associated SNPs tend to have additive inheritance, whereas distantly associated SNPs are primarily dominant. In contrast to results from mapping of expression quantitative trait loci (eQTL) in linkage studies, we observe extensive allelic heterogeneity for local regulatory loci in our diversity panel. By association mapping of allele-specific expression (ASE), we detect a significant enrichment for cis-acting variation in local regulatory variation. In addition to gene expression variation, association mapping of splicing variation reveals both local and distant genetic regulation for intron and exon level traits. Finally, we identify candidate genes for 59 diverse phenotypic traits that were mapped to eQTL.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
24
|
Millar DS, Horan M, Chuzhanova NA, Cooper DN. Characterisation of a functional intronic polymorphism in the human growth hormone (GH1) gene. Hum Genomics 2011; 4:289-301. [PMID: 20650818 PMCID: PMC3500161 DOI: 10.1186/1479-7364-4-5-289] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The +1169A allele of the A/T single nucleotide polymorphism (SNP; rs2665802), located within intron 4 of the human growth hormone I (GHI) gene, has been associated with reduced levels of circulating GH and insulin-like growth factor I, a reduced risk of colorectal cancer and a predisposition to osteoporosis. Whether this intronic SNP is itself the functional polymorphism responsible for exerting a direct effect on GHI gene expression, however, or whether it is instead in linkage disequilibrium with the functional SNP, has been an open question. The evolutionary conservation of the +1169T allele (and the surrounding intronic sequence) in the bovine genome, as well as in primate genomes, is, however, suggestive of its functionality. Although a potential alternative splice site spans the location of the +1169 SNP, polymerase chain reaction-based assays failed to yield any evidence for alternative splicing associated with either allele. To determine whether the +1169 SNP, in different allelic combinations with SNPs at -278 (G/T), -57 (T/G) and +2103 (C/T), exerts a direct effect on gene expression and/or GH secretion, we performed a series of transfections of various GHI haplotype-expressing constructs into rat GC (somatotroph) cells. The results obtained provided evidence to support the contention that the +1169A allele contributes directly to the observed reduction in both GHI gene expression and GH secretion. Part of the apparent influence of the +1169A-bearing allele on GHI gene expression and GH secretion may still, however, be attributable to alleles of additional SNPs in cis to +1169A and located within either the promoter or the 3'-flanking region.
Collapse
Affiliation(s)
- David S Millar
- Institute of Medical Genetics, Cardiff University, Heath Park, UK.
| | | | | | | |
Collapse
|
25
|
Abstract
Contemporary sequencing studies often ignore the diploid nature of the human genome because they do not routinely separate or 'phase' maternally and paternally derived sequence information. However, many findings - both from recent studies and in the more established medical genetics literature - indicate that relationships between human DNA sequence and phenotype, including disease, can be more fully understood with phase information. Thus, the existing technological impediments to obtaining phase information must be overcome if human genomics is to reach its full potential.
Collapse
|
26
|
Composite effects of polymorphisms near multiple regulatory elements create a major-effect QTL. PLoS Genet 2011; 7:e1001275. [PMID: 21249179 PMCID: PMC3020931 DOI: 10.1371/journal.pgen.1001275] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/13/2010] [Indexed: 01/29/2023] Open
Abstract
Many agriculturally, evolutionarily, and medically important characters vary in a quantitative fashion. Unfortunately, the genes and sequence variants accounting for this variation remain largely unknown due to a variety of biological and technical challenges. Drosophila melanogaster contains high levels of sequence variation and low linkage disequilibrium, allowing us to dissect the effects of many causative variants within a single locus. Here, we take advantage of these features to identify and characterize the sequence polymorphisms that comprise major effect QTL alleles segregating at the bric-a-brac locus. We show that natural bric-a-brac alleles with large effects on cuticular pigmentation reflect a cumulative impact of polymorphisms that affect three functional regions: a promoter, a tissue-specific enhancer, and a Polycomb response element. Analysis of allele-specific expression at the bric-a-brac locus confirms that these polymorphisms modulate transcription at the cis-regulatory level. Our results establish that a single QTL can act through a confluence of multiple molecular mechanisms and that sequence variation in regions flanking experimentally validated functional elements can have significant quantitative effects on transcriptional activity and phenotype. These findings have important design and conceptual implications for basic and medical genomics.
Collapse
|
27
|
Polymorphisms in the pituitary growth hormone gene and its receptor associated with coronary artery disease in a predisposed cohort from India. J Genet 2010; 89:437-47. [DOI: 10.1007/s12041-010-0062-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Abstract
Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.
Collapse
|
29
|
Ponomarenko PM, Suslov VV, Savinkova LK, Ponomarenko MP, Kolchanov NA. A precise equation of equilibrium of four steps of TBP binding with the TATA box for prognosis of phenotypic manifestation of mutations. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910030036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Männik J, Vaas P, Rull K, Teesalu P, Rebane T, Laan M. Differential expression profile of growth hormone/chorionic somatomammotropin genes in placenta of small- and large-for-gestational-age newborns. J Clin Endocrinol Metab 2010; 95:2433-42. [PMID: 20233782 PMCID: PMC2869554 DOI: 10.1210/jc.2010-0023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/18/2010] [Indexed: 11/19/2022]
Abstract
CONTEXT The human growth hormone/chorionic somatomammotropin (hGH/CSH) locus at 17q22-24, consisting of one pituitary-expressed postnatal (GH1) and four placenta-expressed genes (GH2, CSH1, CSH2, and CSHL1), is implicated in regulation of postnatal and intrauterine growth. A positive correlation has been reported between the offspring's birth weight and serum placental GH (coded by GH2) and placental lactogen (coded by CSH1, CSH2) levels in pregnant women. OBJECTIVE The objective of the study was the investigation of the hypothesis that the mRNA expression profile of placental hGH/CSH genes contributes to the determination of birth weight. DESIGN AND SUBJECTS We developed a sensitive, fluorescent-labeled semiquantitative RT-PCR assay coupled with gene-specific restriction analysis, capable of distinguishing alternative splice-products of individual placental hGH/CSH genes and quantification of their relative expression levels. The detailed profile of alternative transcripts of GH2, CSH1, CSH2, and CSHL1 genes in placenta from uncomplicated term pregnancies of the REPROMETA sample collection was addressed in association with the birth weight of newborns, grouped as appropriate for gestational age (AGA; n = 23), small for gestational age (SGA; n = 15), and large for gestational age (LGA; n = 34). RESULTS The majority of pregnancies with SGA newborn showed down-regulation of the entire hGH/CSH cluster in placenta, whereas in the case of LGA, the expression of CSH1-1, CSH2-1, and CSHL1-4 mRNA transcripts in placenta was significantly increased compared with AGA newborns (P < 0.0001, P = 0.009, P = 0.002, respectively). CONCLUSION The expression profile of placental hGH/CSH genes in placenta is altered in pregnancies accompanied by SGA and LGA compared with AGA newborns, and thus, it may directly affect the circulating fetal and maternal placental GH and placental lactogen levels.
Collapse
Affiliation(s)
- Jaana Männik
- Institute of Molecular and Cell Biology, University of Tartu, Riia Street 23, 51010 Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
31
|
Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA. Multiple Functional Variants in cis Modulate PDYN Expression. Mol Biol Evol 2009; 27:465-79. [PMID: 19910384 DOI: 10.1093/molbev/msp276] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.
Collapse
|
32
|
Warner LR, Babbitt CC, Primus AE, Severson TF, Haygood R, Wray GA. Functional consequences of genetic variation in primates on tyrosine hydroxylase (TH) expression in vitro. Brain Res 2009; 1288:1-8. [DOI: 10.1016/j.brainres.2009.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/22/2009] [Accepted: 06/25/2009] [Indexed: 11/16/2022]
|
33
|
Ponomarenko PM, Ponomarenko MP, Drachkova IA, Lysova MV, Arshinova TV, Savinkova LK, Kolchanov NA. Prediction of the affinity of the TATA-binding protein to TATA boxes with single nucleotide polymorphisms. Mol Biol 2009. [DOI: 10.1134/s0026893309030157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Savinkova LK, Ponomarenko MP, Ponomarenko PM, Drachkova IA, Lysova MV, Arshinova TV, Kolchanov NA. TATA box polymorphisms in human gene promoters and associated hereditary pathologies. BIOCHEMISTRY (MOSCOW) 2009; 74:117-29. [PMID: 19267666 DOI: 10.1134/s0006297909020011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TATA-binding protein (TBP) is the first basal factor that recognizes and binds a TATA box on TATA-containing gene promoters transcribed by RNA polymerase II. Data available in the literature are indicative of admissible variability of the TATA box. The TATA box flanking sequences can influence TBP affinity as well as the level of basal and activated transcription. The possibility of mediated involvement in in vivo gene expression regulation of the TBP interactions with variant TATA boxes is supported by data on TATA box polymorphisms and associated human hereditary pathologies. A table containing data on TATA element polymorphisms in human gene promoters (about 40 mutations have been described), associated with particular pathologies, their short functional characteristics, and manifestation mechanisms of TATA-box SNPs is presented. Four classes of polymorphisms are considered: TATA box polymorphisms that weaken and enhance promoter, polymorphisms causing TATA box emergence and disappearance, and human virus TATA box polymorphisms. The described examples are indicative of the polymorphism-associated severe pathologies like thalassemia, the increased risk of hepatocellular carcinoma, sensitivity to H. pylori infection, oral cavity and lung cancers, arterial hypertension, etc.
Collapse
Affiliation(s)
- L K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Perina A, Cristani M, Xumerle L, Murino V, Pignatti PF, Malerba G. Fully non-homogeneous hidden Markov model double net: A generative model for haplotype reconstruction and block discovery. Artif Intell Med 2009; 45:135-50. [DOI: 10.1016/j.artmed.2008.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|
36
|
|
37
|
Millar DS, Lewis MD, Horan M, Newsway V, Rees DA, Easter TE, Pepe G, Rickards O, Norin M, Scanlon MF, Krawczak M, Cooper DN. Growth hormone (GH1) gene variation and the growth hormone receptor (GHR) exon 3 deletion polymorphism in a West-African population. Mol Cell Endocrinol 2008; 296:18-25. [PMID: 18950677 DOI: 10.1016/j.mce.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/21/2008] [Accepted: 09/22/2008] [Indexed: 11/22/2022]
Abstract
Among Europeans, functionally significant GH1 gene variants occur not only in individuals with idiopathic growth hormone (GH) deficiency and/or short stature but also fairly frequently in the general population. To assess the generality of these findings, 163 individuals from Benin, West Africa were screened for mutations and polymorphisms in their GH1 genes. A total of 37 different sequence variants were identified in the GH1 gene region, 24 of which occurred with a frequency of >1%. Although four of these variants were novel missense substitutions (Ala13Val, Arg19His, Phe25Tyr and Ser95Arg), none of these had any measurable effect on either GH function or secretion in vitro. Some 37 different GH1 promoter haplotypes were identified, 23 of which are as yet unreported in Europeans. The mean in vitro expression level of the GH1 promoter haplotypes observed in the African population was significantly higher than that previously measured in Britons (p<0.001). A gene conversion in the GH1 promoter, previously reported in a single individual of British origin, was found to occur at polymorphic frequency (5%) in the West-African population and was associated with a 1.7-fold increase in promoter activity relative to the wild-type. The d3 allele of the GHR exon 3 deletion polymorphism, known to be associated with increased GH responsiveness, was also found to occur at an elevated frequency in these individuals from Benin. We speculate that both elevated GH1 gene expression and increased GHR-mediated GH responsiveness may constitute adaptive responses to the effects of scarce food supply in this West-African population since increased circulating GH appears to form part of a physiological response to nutritional deprivation.
Collapse
Affiliation(s)
- David S Millar
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 2008; 9:540. [PMID: 19087329 PMCID: PMC2647951 DOI: 10.1186/1471-2105-9-540] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 12/16/2008] [Indexed: 11/10/2022] Open
Abstract
Background We have developed a new computational algorithm, Shape-IT, to infer haplotypes under the genetic model of coalescence with recombination developed by Stephens et al in Phase v2.1. It runs much faster than Phase v2.1 while exhibiting the same accuracy. The major algorithmic improvements rely on the use of binary trees to represent the sets of candidate haplotypes for each individual. These binary tree representations: (1) speed up the computations of posterior probabilities of the haplotypes by avoiding the redundant operations made in Phase v2.1, and (2) overcome the exponential aspect of the haplotypes inference problem by the smart exploration of the most plausible pathways (ie. haplotypes) in the binary trees. Results Our results show that Shape-IT is several orders of magnitude faster than Phase v2.1 while being as accurate. For instance, Shape-IT runs 50 times faster than Phase v2.1 to compute the haplotypes of 200 subjects on 6,000 segments of 50 SNPs extracted from a standard Illumina 300 K chip (13 days instead of 630 days). We also compared Shape-IT with other widely used software, Gerbil, PL-EM, Fastphase, 2SNP, and Ishape in various tests: Shape-IT and Phase v2.1 were the most accurate in all cases, followed by Ishape and Fastphase. As a matter of speed, Shape-IT was faster than Ishape and Fastphase for datasets smaller than 100 SNPs, but Fastphase became faster -but still less accurate- to infer haplotypes on larger SNP datasets. Conclusion Shape-IT deserves to be extensively used for regular haplotype inference but also in the context of the new high-throughput genotyping chips since it permits to fit the genetic model of Phase v2.1 on large datasets. This new algorithm based on tree representations could be used in other HMM-based haplotype inference software and may apply more largely to other fields using HMM.
Collapse
|
39
|
Sedman L, Padhukasahasram B, Kelgo P, Laan M. Complex signatures of locus-specific selective pressures and gene conversion on Human Growth Hormone/Chorionic Somatomammotropin genes. Hum Mutat 2008; 29:1181-93. [PMID: 18473352 PMCID: PMC2599906 DOI: 10.1002/humu.20767] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reduced birth weight and slow neonatal growth are risks correlated with the development of common diseases in adulthood. The Human Growth Hormone/Chorionic Somatomammotropin (hGH/CSH) gene cluster (48 kb) at 17q22-24, consisting of one pituitary-expressed postnatal (GH1) and four placental genes (GH2, CSH1, CSH2, and CSHL1) may contribute to common variation in intrauterine and infant growth, and also to the regulation of feto-maternal and adult glucose metabolism. In contrast to GH1, there are limited genetic data on the hGH/CSH genes expressed in utero. We report the first survey of sequence variation encompassing all five hGH/CSH genes. Resequencing identified 113 SNPs/indels (ss86217675-ss86217787 in dbSNP) including 66 novel variants, and revealed remarkable differences in diversity patterns among the homologous duplicated genes as well as between the study populations of European (Estonians), Asian (Han Chinese), and African (Mandenkalu) ancestries. A dominant feature of the hGH/CSH region is hyperactive gene conversion, with the rate exceeding tens to hundreds of times the rate of reciprocal crossing-over and resulting in near absence of linkage disequilibrium. The initiation of gene conversion seems to be uniformly distributed because the data do not predict any recombination hotspots. Signatures of different selective constraints acting on each gene indicate functional specification of the hGH/CSH genes. Most strikingly, the GH2 coding for placental growth hormone shows strong intercontinental diversification (F(ST)=0.41-0.91; p<10(-6)) indicative of balancing selection, whereas the flanking CSH1 exhibits low population differentiation (F(ST)=0.03-0.09), low diversity (non-Africans, pi=8-9 x 10(-5); Africans, pi=8.2 x 10(-4)), and one dominant haplotype worldwide, consistent with purifying selection. The results imply that the success of an association study targeted to duplicated genes may be enhanced by prior resequencing of the study population in order to determine polymorphism distribution and relevant tag-SNPs.
Collapse
Affiliation(s)
- Laura Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
40
|
Hong X, Tsai HJ, Liu X, Li Z, Liu X, Tang G, Xing H, Yang J, Wang B, Feng Y, Xu X, Xu X, Wang X. A large-scale genome-wide linkage analysis to map loci linked to stature in Chinese population. J Clin Endocrinol Metab 2008; 93:4511-8. [PMID: 18728177 PMCID: PMC2582574 DOI: 10.1210/jc.2008-0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT A number of genome-wide scans of stature have been reported previously, but with inconsistent results. The inconsistency may be partly due to differential population characteristics and gender- and/or age-specific effects on this trait. OBJECTIVE This study aimed to identify the quantitative trait loci (QTLs) underlying the variation of stature in Chinese population, and to evaluate age- and gender-specific linkage for stature. METHODS We conducted a large-scale, genome-wide linkage scan using the data from three independent samples (a total of 7112 subjects from 1811 pedigrees) enrolled from the same geographical region in China. Linkage analyses were performed in the pooled samples and in subgroups defined by age (<or=25 vs. >25 yr), gender, or both, using the model-free regression method implemented in MERLIN-REGRESS. RESULTS The strongest linkage signal was obtained on 17q24 (LOD=3.82) in the pooled samples. Age-specific analysis revealed two additional significant QTLs on 13q34 and 18p11.3 among subjects 25 yr or younger. In gender-specific analyses, males showed suggestive QTLs on 12q21 (LOD=2.31) and 17q22 (LOD=2.60), and females showed a suggestive QTL on 13q31.1 (LOD=2.68). Age- and gender-specific linkage analyses suggested that males older than 25 yr contributed more signals to QTLs on 12q21 and 17q22, with a LOD score of 3.00 and 2.26, respectively, whereas females older than 25 yr presented a suggestive QTL on 8q24.3 (LOD=2.57). CONCLUSION Our study identified a strong linkage of chromosome 17q24 to stature in this Chinese population, and indicated that it may be informative to consider differential age and gender effects in the genetic dissection of stature.
Collapse
Affiliation(s)
- Xiumei Hong
- Mary Ann and J. Milburn Smith Child Health Research Program, Children's Memorial Hospital and Children's Memorial Research Center, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wit JM, Clayton PE, Rogol AD, Savage MO, Saenger PH, Cohen P. Idiopathic short stature: definition, epidemiology, and diagnostic evaluation. Growth Horm IGF Res 2008; 18:89-110. [PMID: 18182313 DOI: 10.1016/j.ghir.2007.11.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 02/08/2023]
Abstract
Idiopathic short stature is a condition in which the height of the individual is more than 2 SD below the corresponding mean height for a given age, sex and population, in whom no identifiable disorder is present. It can be subcategorized into familial and non-familial ISS, and according to pubertal delay. It should be differentiated from dysmorphic syndromes, skeletal dysplasias, short stature secondary to a small birth size (small for gestational age, SGA), and systemic and endocrine diseases. ISS is the diagnostic group that remains after excluding known conditions in short children.
Collapse
Affiliation(s)
- J M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Perry JK, Mohankumar KM, Emerald BS, Mertani HC, Lobie PE. The contribution of growth hormone to mammary neoplasia. J Mammary Gland Biol Neoplasia 2008; 13:131-45. [PMID: 18253708 PMCID: PMC2665193 DOI: 10.1007/s10911-008-9070-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022] Open
Abstract
While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer.
Collapse
Affiliation(s)
- Jo K Perry
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Kumarasamypet M Mohankumar
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - B Starling Emerald
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Hichem C Mertani
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois
43, Bvd du 11 Novembre 1918
69622 VILLEURBANNE CEDEX,FR
| | - Peter E Lobie
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
- Department of Molecular Medicine and Pathology
University of AucklandFaculty of Medical and Health Sciences, Private Bag 92019, Auckland, New Zealand,NZ
- * Correspondence should be adressed to: Peter E Lobie
| |
Collapse
|
43
|
Giordano M, Godi M, Mellone S, Petri A, Vivenza D, Tiradani L, Carlomagno Y, Ferrante D, Arrigo T, Corneli G, Bellone S, Giacopelli F, Santoro C, Bona G, Momigliano-Richiardi P. A functional common polymorphism in the vitamin D-responsive element of the GH1 promoter contributes to isolated growth hormone deficiency. J Clin Endocrinol Metab 2008; 93:1005-12. [PMID: 18160466 DOI: 10.1210/jc.2007-1918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Causal mutations have been detected only in a minority of isolated GH deficiency (IGHD) patients. Idiopathic IGHD might be the result of the interaction between several low-penetrance genetic factors and the environment. OBJECTIVE The aim of this study was to test the contribution to IGHD of genetic variations in the GH1 gene regulatory regions. DESIGN AND PATIENTS A case-control association study was performed including 118 sporadic IGHD patients with a nonsevere phenotype (height -4/-1 sd score and partial GH deficiency) and two control groups, normal stature (n=200) and short-stature individuals with normal GH secretion (n=113). Seven single-nucleotide polymorphisms in the GH1 promoter, one in the IVS4 region, and two in the locus control region were analyzed. RESULTS The -57T allele within the vitamin D-responsive element showed a positive significant association when comparing patients with normal (P=0.006) or short stature (P=0.0011) controls. The genotype -57TT showed an odds ratio of 2.93 (1.44-5.99) and 2.99 (1.42-6.31), respectively. The functional relevance of the -57 variation was demonstrated by the luciferase assay in the presence of vitamin D. The vitamin D-induced inhibition of luciferase activity was significantly (P=0.012) stronger for the promoter haplotype carrying the associated variation -57T [haplotype #1 (hp#1)] with respect to hp#2, bearing -57G. Replacement of the T with a G at -57 on hp#1 abolished the repression, demonstrating that the T at position -57 is necessary to determine the greater vitamin D-induced inhibitory effect of hp#1. EMSA experiments showed a different band-shift pattern of the T and G sequences. CONCLUSION The common -57G-->T polymorphism contributes to IGHD susceptibility, indicating that it may have a multifactorial etiology.
Collapse
Affiliation(s)
- Mara Giordano
- Laboratory of Human Genetics, Department of Medical Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
ISHAPE: new rapid and accurate software for haplotyping. BMC Bioinformatics 2007; 8:205. [PMID: 17573965 PMCID: PMC1919397 DOI: 10.1186/1471-2105-8-205] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have developed a new haplotyping program based on the combination of an iterative multiallelic EM algorithm (IEM), bootstrap resampling and a pseudo Gibbs sampler. The use of the IEM-bootstrap procedure considerably reduces the space of possible haplotype configurations to be explored, greatly reducing computation time, while the adaptation of the Gibbs sampler with a recombination model on this restricted space maintains high accuracy. On large SNP datasets (>30 SNPs), we used a segmented approach based on a specific partition-ligation strategy. We compared this software, Ishape (Iterative Segmented HAPlotyping by Em), with reference programs such as Phase, Fastphase, and PL-EM. Analogously with Phase, there are 2 versions of Ishape: Ishape1 which uses a simple coalescence model for the pseudo Gibbs sampler step, and Ishape2 which uses a recombination model instead. RESULTS We tested the program on 2 types of real SNP datasets derived from Hapmap: adjacent SNPs (high LD) and SNPs spaced by 5 Kb (lower level of LD). In both cases, we tested 100 replicates for each size: 10, 20, 30, 40, 50, 60, and 80 SNPs. For adjacent SNPs Ishape2 is superior to the other software both in terms of speed and accuracy. For SNPs spaced by 5 Kb, Ishape2 yields similar results to Phase2.1 in terms of accuracy, and both outperform the other software. In terms of speed, Ishape2 runs about 4 times faster than Phase2.1 with 10 SNPs, and about 10 times faster with 80 SNPs. For the case of 5kb-spaced SNPs, Fastphase may run faster with more than 100 SNPs. CONCLUSION These results show that the Ishape heuristic approach for haplotyping is very competitive in terms of accuracy and speed and deserves to be evaluated extensively for possible future widespread use.
Collapse
|
47
|
Rodriguez S, Gaunt TR, Day INM. Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 2007; 122:1-21. [PMID: 17534663 DOI: 10.1007/s00439-007-0378-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 05/08/2007] [Indexed: 12/29/2022]
Abstract
The human growth hormone gene (GH1) and the insulin-like growth factor 1 and 2 genes (IGF1 and IGF2) encode the central elements of a key pathway influencing growth in humans. This "growth pathway" also includes transcription factors, agonists, antagonists, receptors, binding proteins, and endocrine factors that constitute an intrincate network of feedback loops. GH1 is evolutionarily coupled with other genes in linkage disequilibrium in 17q24.2, and the same applies to IGF2 in 11p15.5. In contrast, IGF1 in 12q22-24.1 is not in strong linkage disequilibrium with neighbouring genes. Knowledge of the functional architecture of these regions is important for the understanding of the combined evolution and function of GH1, IGF2 and IGF1 in relation to complex diseases. A number of mutations accounting for rare Mendelian disorders have been described in GH-IGF elements. The constellation of genes in this key pathway contains potential candidates in a number of complex diseases, including growth disorders, metabolic syndrome, diabetes (notably IGF2BP2) cardiovascular disease, and central nervous system diseases, and in longevity, aging and cancer. We review these genes and their associations with disease phenotypes, with special attention to metabolic risk traits.
Collapse
Affiliation(s)
- Santiago Rodriguez
- Bristol Genetic Epidemiology Laboratories and MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE), Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, BS8 2PR, UK.
| | | | | |
Collapse
|
48
|
Rojas-Gil AP, Ziros PG, Kanetsis E, Papathanassopoulou V, Nikolakopoulou NM, He K, Frank SJ, Papavassiliou AG, Spiliotis BE. Combined effect of mutations of the GH1 gene and its proximal promoter region in a child with growth hormone neurosecretory dysfunction (GHND). J Mol Med (Berl) 2007; 85:1005-13. [PMID: 17479231 DOI: 10.1007/s00109-007-0200-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Mutational analysis of the growth hormone 1 (GH1) gene and its promoter in a patient with GH neurosecretory dysfunction (GHND) revealed a heterozygous new deletion of one base 7-bp downstream from the 3'-splice site of exon 4 (IVS4'del+7) of the GH1 gene and two new heterozygous mutations at sites -135 and -138 of the GH1 promoter. In addition, two polymorphisms at sites -301 and -308 of the GH1 promoter were observed. All other family members had either the -301/-308 polymorphisms or the IVS4'del+7 mutation, but none had both. The IVS4'del+7 mutation located close to the splice donor site possibly interferes with the success of the splicing process, or the mutant transcripts are highly unstable because of nonsense-mediated mRNA decay. The -135/-138 mutations, albeit in close proximity to a putative Pit-1 recognition site, do not seem to affect binding of this transcription factor. The combination of the two polymorphisms, -301/-308, results in significantly reduced DNA-binding activity as monitored by electrophoretic mobility-shift assay. Transcription factor recognition site analysis of the GH1 promoter (MatInspector) revealed that HES1, one of the effectors of the Notch signalling system, is the only transcription factor whose binding is expected to be disrupted by each haplotype or by their combination. We provide evidence that the combination of -301/-308 polymorphisms with the IVS4'del+7 mutation in a GHND patient probably accounts for the reduced amount of growth hormone spontaneously secreted from his pituitary gland and for the severe growth delay.
Collapse
Affiliation(s)
- Andrea Paola Rojas-Gil
- Laboratory of Molecular Pediatric Endocrinology, Division of Pediatric Endocrinology, Department of Pediatrics, University of Patras School of Medicine, 26504, Rio-Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quigley CA. Growth hormone treatment of non-growth hormone-deficient growth disorders. Endocrinol Metab Clin North Am 2007; 36:131-86. [PMID: 17336739 DOI: 10.1016/j.ecl.2006.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although a large body of data on efficacy and safety of growth hormone (GH) treatment for various non-growth hormone-deficient (GHD) growth disorders has accumulated from a combination of clinical trial and postmarketing sources in the last 20 years or more, there remain limitations. Clinical trial data have the advantage of direct comparison of well-matched, randomized patient groups receiving treatment (or not) under comparable conditions and, as such, provide the highest quality evidence of efficacy. Clinical trials, however, are typically too small for any statistically valid assessment for safety, which is more comprehensively addressed using postmarketing data. Consequently, while the efficacy of GH treatment in children with non-GHD growth disorders has been solidly established and, based on the combination of the rigor of the clinical trial data and numerical power of the postmarketing data, no major concerns exist regarding safety, additional long-term data are required.
Collapse
Affiliation(s)
- Charmian A Quigley
- Lilly Research Laboratories, Drop Code 5015, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
50
|
Esteban C, Audí L, Carrascosa A, Fernández-Cancio M, Pérez-Arroyo A, Ulied A, Andaluz P, Arjona R, Albisu M, Clemente M, Gussinyé M, Yeste D. Human growth hormone (GH1) gene polymorphism map in a normal-statured adult population. Clin Endocrinol (Oxf) 2007; 66:258-68. [PMID: 17223997 PMCID: PMC1859974 DOI: 10.1111/j.1365-2265.2006.02718.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE GH1 gene presents a complex map of single nucleotide polymorphisms (SNPs) in the entire promoter, coding and noncoding regions. The aim of the study was to establish the complete map of GH1 gene SNPs in our control normal population and to analyse its association with adult height. DESIGN, SUBJECTS AND MEASUREMENTS A systematic GH1 gene analysis was designed in a control population of 307 adults of both sexes with height normally distributed within normal range for the same population: -2 standard deviation scores (SDS) to +2 SDS. An analysis was performed on individual and combined genotype associations with adult height. RESULTS Twenty-five SNPs presented a frequency over 1%: 11 in the promoter (P1 to P11), three in the 5'UTR region (P12 to P14), one in exon 1 (P15), three in intron 1 (P16 to P18), two in intron 2 (P19 and P20), two in exon 4 (P21 and P22) and three in intron 4 (P23 to P25). Twenty-nine additional changes with frequencies under 1% were found in 29 subjects. P8, P19, P20 and P25 had not been previously described. P6, P12, P17 and P25 accounted for 6.2% of the variation in adult height (P = 0.0007) in this population with genotypes A/G at P6, G/G at P6 and A/G at P12 decreasing height SDS (-0.063 +/- 0.031, -0.693 +/- 0.350 and -0.489 +/- 0.265, Mean +/- SE) and genotypes A/T at P17 and T/G at P25 increasing height SDS (+1.094 +/- 0.456 and +1.184 +/- 0.432). CONCLUSIONS This study established the GH1 gene sequence variation map in a normal adult height control population confirming the high density of SNPs in a relatively small gene. Our study shows that the more frequent SNPs did not significantly contribute to height determination, while only one promoter and two intronic SNPs contributed significantly to it. Studies in larger populations will have to confirm the associations and in vitro functional studies will elucidate the mechanisms involved. Systematic GH1 gene analysis in patients with growth delay and suspected GH deficiency/insufficiency will clarify whether different SNP frequencies and/or the presence of different sequence changes may be associated with phenotypes in them.
Collapse
|