1
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Gauntner TD, Karumuri M, Guzman MA, Starnes SE, Besmer S, Pinz H, Braddock SR, Andreone TL. Hirschsprung Disease in an Infant with L1 syndrome: Report of a New Case and a novel L1CAM variant. Clin Case Rep 2021; 9:1518-1523. [PMID: 33768880 PMCID: PMC7981724 DOI: 10.1002/ccr3.3816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 11/09/2022] Open
Abstract
L1syndrome is an X-linked disorder manifesting with congenital hydrocephalus, adducted thumbs and spasticity. There are rare cases of L1 syndrome and coincident Hirschsprung disease, with mutations in the L1CAM gene thought to underlie both. We present a novel pathogenic L1CAM variant in someone with L1 syndrome and Hirschsprung disease.
Collapse
Affiliation(s)
| | - Manasa Karumuri
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Miguel A. Guzman
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Sara E. Starnes
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Sherri Besmer
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Hailey Pinz
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Genetics, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Stephen R. Braddock
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Genetics, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Teresa L. Andreone
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Critical Care, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
3
|
Marín R, Ley-Martos M, Gutiérrez G, Rodríguez-Sánchez F, Arroyo D, Mora-López F. Three cases with L1 syndrome and two novel mutations in the L1CAM gene. Eur J Pediatr 2015; 174:1541-4. [PMID: 25948108 DOI: 10.1007/s00431-015-2560-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. CONCLUSION L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.
Collapse
Affiliation(s)
- Rosario Marín
- Clinical Genetics Unit, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - Miriam Ley-Martos
- Department of Paediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - Gema Gutiérrez
- Department of Paediatrics, Hospital Universitario de Jerez, Jerez, Spain.
| | | | - Diego Arroyo
- Progenie molecular S. L. Laboratory, Valencia, Spain.
| | - Francisco Mora-López
- Molecular Diagnosis Laboratory, Immunology Department, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| |
Collapse
|
4
|
Genetic mosaics and the germ line lineage. Genes (Basel) 2015; 6:216-37. [PMID: 25898403 PMCID: PMC4488662 DOI: 10.3390/genes6020216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic mosaics provide information about cellular lineages that is otherwise difficult to obtain, especially in humans. De novo mutations act as cell markers, allowing the tracing of developmental trajectories of all descendants of the cell in which the new mutation arises. De novo mutations may arise at any time during development but are relatively rare. They have usually been observed through medical ascertainment, when the mutation causes unusual clinical signs or symptoms. Mutational events can include aneuploidies, large chromosomal rearrangements, copy number variants, or point mutations. In this review we focus primarily on the analysis of point mutations and their utility in addressing questions of germ line versus somatic lineages. Genetic mosaics demonstrate that the germ line and soma diverge early in development, since there are many examples of combined somatic and germ line mosaicism for de novo mutations. The occurrence of simultaneous mosaicism in both the germ line and soma also shows that the germ line is not strictly clonal but arises from at least two, and possibly multiple, cells in the embryo with different ancestries. Whole genome or exome DNA sequencing technologies promise to expand the range of studies of genetic mosaics, as de novo mutations can now be identified through sequencing alone in the absence of a medical ascertainment. These technologies have been used to study mutation patterns in nuclear families and in monozygotic twins, and in animal model developmental studies, but not yet for extensive cell lineage studies in humans.
Collapse
|
5
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, Delezoide AL, Razavi F, Drouot N, Bazin A, Beaufrère AM, Bessières B, Blesson S, Bucourt M, Carles D, Devisme L, Dijoud F, Fabre B, Fernandez C, Gaillard D, Gonzales M, Jossic F, Joubert M, Laurent N, Leroy B, Loeuillet L, Loget P, Marcorelles P, Martinovic J, Perez MJ, Satge D, Sinico M, Tosi M, Benichou J, Gressens P, Frebourg T, Laquerrière A. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol 2013; 126:427-42. [PMID: 23820807 DOI: 10.1007/s00401-013-1146-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/30/2023]
Abstract
L1 syndrome results from mutations in the L1CAM gene located at Xq28. It encompasses a wide spectrum of diseases, X-linked hydrocephalus being the most severe phenotype detected in utero, and whose pathophysiology is incompletely understood. The aim of this study was to report detailed neuropathological data from patients with mutations, to delineate the neuropathological criteria required for L1CAM gene screening in foetuses by characterizing the sensitivity, specificity and positive predictive value of the cardinal signs, and to discuss the main differential diagnoses in non-mutated foetuses in order to delineate closely related conditions without L1CAM mutations. Neuropathological data from 138 cases referred to our genetic laboratory for screening of the L1CAM gene were retrospectively reviewed. Fifty-seven cases had deleterious L1CAM mutations. Of these, 100 % had hydrocephalus, 88 % adducted thumbs, 98 % pyramidal tract agenesis/hypoplasia, 90 % stenosis of the aqueduct of Sylvius and 68 % agenesis/hypoplasia of the corpus callosum. Two foetuses had L1CAM mutations of unknown significance. Seventy-nine cases had no L1CAM mutations; these were subdivided into four groups: (1) hydrocephalus sometimes associated with corpus callosum agenesis (44 %); (2) atresia/forking of the aqueduct of Sylvius/rhombencephalosynapsis spectrum (27 %); (3) syndromic hydrocephalus (9 %), and (4) phenocopies with no mutations in the L1CAM gene (20 %) and in whom family history strongly suggested an autosomal recessive mode of transmission. These data underline the existence of closely related clinical entities whose molecular bases are currently unknown. The identification of the causative genes would greatly improve our knowledge of the defective pathways involved in these cerebral malformations.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, APHP, 2 Rue Ambroise Paré, 75010, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takenouchi T, Nakazawa M, Kanemura Y, Shimozato S, Yamasaki M, Takahashi T, Kosaki K. Hydrocephalus with Hirschsprung disease: Severe end of X-linked hydrocephalus spectrum. Am J Med Genet A 2012; 158A:812-5. [DOI: 10.1002/ajmg.a.35245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/26/2011] [Indexed: 01/14/2023]
|
8
|
Fernández RM, Núñez-Torres R, García-Díaz L, de Agustín JC, Antiñolo G, Borrego S. Association of X-linked hydrocephalus and Hirschsprung disease: Report of a new patient with a mutation in the L1CAM gene. Am J Med Genet A 2012; 158A:816-20. [DOI: 10.1002/ajmg.a.35244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/26/2011] [Indexed: 11/08/2022]
|
9
|
Fernández RM, Núñez-Torres R, González-Meneses A, Antiñolo G, Borrego S. Novel association of severe neonatal encephalopathy and Hirschsprung disease in a male with a duplication at the Xq28 region. BMC MEDICAL GENETICS 2010; 11:137. [PMID: 20860806 PMCID: PMC2955569 DOI: 10.1186/1471-2350-11-137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/22/2010] [Indexed: 01/17/2023]
Abstract
Background Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of parasympathetic intrinsic ganglion cells in the submucosal and myenteric plexuses along a variable portion of the intestinal tract. In approximately 18% of the cases HSCR also presents with multiple congenital anomalies including recognized syndromes. Methods A combination of MLPA and microarray data analysis have been undertaken to refine a duplication at the Xq28 region. Results In this study we present a new clinical association of severe neonatal encephalopathy (Lubs syndrome) and HSCR, in a male patient carrying a duplication at the Xq28 region which encompasses the MECP2 and L1CAM genes. Conclusions While the encephalopathy has been traditionally attributed to the MECP2 gene duplication in patients with Lubs syndrome, here we propose that the enteric phenotype in our patient might be due to the dosage variation of the L1CAM protein, together with additional molecular events not identified yet. This would be in agreement with the hypothesis previously forwarded that mutations in L1CAM may be involved in HSCR development in association with a predisposing genetic background.
Collapse
Affiliation(s)
- Raquel M Fernández
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | |
Collapse
|
10
|
Okamoto N, Del Maestro R, Valero R, Monros E, Poo P, Kanemura Y, Yamasaki M. Hydrocephalus and Hirschsprung's disease with a mutation of L1CAM. J Hum Genet 2004; 49:334-337. [PMID: 15148591 DOI: 10.1007/s10038-004-0153-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 03/16/2004] [Indexed: 10/26/2022]
Abstract
Abnormalities of the L1CAM gene, a member of the immunoglobulin gene superfamily of neural-cell adhesion molecules, are associated with X-linked hydrocephalus and some allelic disorders. Hirschsprung's disease (HSCR) is characterized by the absence of ganglion cells and the presence of hypertrophic nerve trunks in the distal bowel. There have been three reports of patients with X-linked hydrocephalus and HSCR with a mutation in the L1CAM gene. We report three more patients with similar conditions. We suspect that decreased L1CAM may be a modifying factor in the development of HSCR.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Planning and Research, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan.
| | - Rolando Del Maestro
- Brain Tumor Research Center, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Rebeca Valero
- Genetics Section, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Eugenia Monros
- Genetics Section, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Pilar Poo
- Neurology Section, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Yonehiro Kanemura
- Tissue Engineering Research Center, National Institute of Advanced Industrial Science and Technology, Amagasaki, Hyogo, Japan
- Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
| | - Mami Yamasaki
- Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
- Department of Neurosurgery, Osaka National Hospital, Osaka, Japan
| |
Collapse
|
11
|
Parisi MA, Kapur RP, Neilson I, Hofstra RMW, Holloway LW, Michaelis RC, Leppig KA. Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in Hirschsprung disease? AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 108:51-6. [PMID: 11857550 DOI: 10.1002/ajmg.10185] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Congenital hydrocephalus associated with aqueductal stenosis and/or agenesis of the corpus callosum has been described in newborn males with mutations in L1CAM, a gene that encodes a neural cell adhesion molecule. These males usually have severe mental retardation and may have spastic paraplegia and adducted thumbs. In contrast, Hirschsprung disease, or absence of ganglion cells in the distal gut, has rarely been described in such individuals. We report a male infant who had severe hydrocephalus identified in the prenatal period with evidence of aqueductal stenosis and adducted thumbs at birth. He developed chronic constipation, and rectal biopsy confirmed the diagnosis of Hirschsprung disease. Molecular testing of the L1CAM gene revealed a G2254A mutation, resulting in a V752M amino acid substitution. A common polymorphism in RET, but no mutation, was identified. Our patient represents the third example of coincident hydrocephalus and Hirschsprung disease in an individual with an identified L1CAM mutation. We hypothesize that L1CAM-mediated cell adhesion may be important for the ability of ganglion cell precursors to populate the gut, and that L1CAM may modify the effects of a Hirschsprung disease-associated gene to cause intestinal aganglionosis.
Collapse
Affiliation(s)
- Melissa A Parisi
- Division of Genetics and Development, Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Weller S, Gärtner J. Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Hum Mutat 2002; 18:1-12. [PMID: 11438988 DOI: 10.1002/humu.1144] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L1 disease is a group of overlapping clinical phenotypes including X-linked hydrocephalus, MASA syndrome, spastic paraparesis type 1, and X-linked agenesis of corpus callosum. The patients are characterized by hydrocephalus, agenesis or hypoplasia of corpus callosum and corticospinal tracts, mental retardation, spastic paraplegia, and adducted thumbs. The responsible gene, L1CAM, encodes the L1 protein which is a member of the immunoglobulin superfamily of neuronal cell adhesion molecules. The L1 protein is expressed in neurons and Schwann cells and seems to be essential for nervous system development and function. The patients' gene mutations are distributed over the functional protein domains. The exact mechanisms by which these mutations cause a loss of L1 protein function are unknown. There appears to be a relationship between the patients' clinical phenotype and the genotype. Missense mutations in extracellular domains or mutations in cytoplasmic regions cause milder phenotypes than those leading to truncation in extracellular domains or to non-detectable L1 protein. Diagnosis of patients and carriers, including prenatal testing, is based on the characteristic clinical picture and DNA mutation analyses. At present, there is no therapy for the prevention or cure of patients' neurological disabilities.
Collapse
Affiliation(s)
- S Weller
- Department of Pediatrics, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
13
|
|