1
|
Saad FA, Siciliano G, Angelini C. Advances in Dystrophinopathy Diagnosis and Therapy. Biomolecules 2023; 13:1319. [PMID: 37759719 PMCID: PMC10526396 DOI: 10.3390/biom13091319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.
Collapse
Affiliation(s)
- Fawzy A. Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Juhkentali 8, 10132 Tallinn, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Via Paradisa 2, 56100 Pisa, Italy;
| | - Corrado Angelini
- Department of Neurosciences, Padova University School of Medicine, Via Giustiniani 5, 35128 Padova, Italy;
| |
Collapse
|
2
|
Sheikh O, Yokota T. Advances in Genetic Characterization and Genotype-Phenotype Correlation of Duchenne and Becker Muscular Dystrophy in the Personalized Medicine Era. J Pers Med 2020; 10:E111. [PMID: 32899151 PMCID: PMC7565713 DOI: 10.3390/jpm10030111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, Duchenne muscular dystrophy (DMD) and the related condition Becker muscular dystrophy (BMD) can be usually diagnosed using physical examination and genetic testing. While BMD features partially functional dystrophin protein due to in-frame mutations, DMD largely features no dystrophin production because of out-of-frame mutations. However, BMD can feature a range of phenotypes from mild to borderline DMD, indicating a complex genotype-phenotype relationship. Despite two mutational hot spots in dystrophin, mutations can arise across the gene. The use of multiplex ligation amplification (MLPA) can easily assess the copy number of all exons, while next-generation sequencing (NGS) can uncover novel or confirm hard-to-detect mutations. Exon-skipping therapy, which targets specific regions of the dystrophin gene based on a patient's mutation, is an especially prominent example of personalized medicine for DMD. To maximize the benefit of exon-skipping therapies, accurate genetic diagnosis and characterization including genotype-phenotype correlation studies are becoming increasingly important. In this article, we present the recent progress in the collection of mutational data and optimization of exon-skipping therapy for DMD/BMD.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020; 28:1141-1159. [PMID: 32424326 PMCID: PMC7608854 DOI: 10.1038/s41431-020-0643-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Dystrophinopathies are X-linked diseases, including Duchenne muscular dystrophy and Becker muscular dystrophy, due to DMD gene variants. In recent years, the application of new genetic technologies and the availability of new personalised drugs have influenced diagnostic genetic testing for dystrophinopathies. Therefore, these European best practice guidelines for genetic testing in dystrophinopathies have been produced to update previous guidelines published in 2010.These guidelines summarise current recommended technologies and methodologies for analysis of the DMD gene, including testing for deletions and duplications of one or more exons, small variant detection and RNA analysis. Genetic testing strategies for diagnosis, carrier testing and prenatal diagnosis (including non-invasive prenatal diagnosis) are then outlined. Guidelines for sequence variant annotation and interpretation are provided, followed by recommendations for reporting results of all categories of testing. Finally, atypical findings (such as non-contiguous deletions and dual DMD variants), implications for personalised medicine and clinical trials and incidental findings (identification of DMD gene variants in patients where a clinical diagnosis of dystrophinopathy has not been considered or suspected) are discussed.
Collapse
|
4
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|
5
|
Pesaran T, Karam R, Huether R, Li S, Farber-Katz S, Chamberlin A, Chong H, LaDuca H, Elliott A. Beyond DNA: An Integrated and Functional Approach for Classifying Germline Variants in Breast Cancer Genes. Int J Breast Cancer 2016; 2016:2469523. [PMID: 27822389 PMCID: PMC5086358 DOI: 10.1155/2016/2469523] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/04/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Genetic testing for hereditary breast cancer is an integral part of individualized care in the new era of precision medicine. The accuracy of an assay is reliant on not only the technology and bioinformatics analysis utilized but also the experience and infrastructure required to correctly classify genetic variants as disease-causing. Interpreting the clinical significance of germline variants identified by hereditary cancer testing is complex and has a significant impact on the management of patients who are at increased cancer risk. In this review we give an overview of our clinical laboratory's integrated approach to variant assessment. We discuss some of the nuances that should be considered in the assessment of genomic variants. In addition, we highlight lines of evidence such as functional assays and structural analysis that can be useful in the assessment of rare and complex variants.
Collapse
Affiliation(s)
- T. Pesaran
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - R. Karam
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - R. Huether
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - S. Li
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - S. Farber-Katz
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - A. Chamberlin
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - H. Chong
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - H. LaDuca
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| | - A. Elliott
- Ambry Genetics Corp., 15 Argonaut, Aliso Viejo, CA 92656, USA
| |
Collapse
|
6
|
Alame M, Lacourt D, Zenagui R, Mechin D, Danton F, Koenig M, Claustres M, Cossée M. Implementation of a Reliable Next-Generation Sequencing Strategy for Molecular Diagnosis of Dystrophinopathies. J Mol Diagn 2016; 18:731-740. [DOI: 10.1016/j.jmoldx.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
|
7
|
Giugliano T, Fanin M, Savarese M, Piluso G, Angelini C, Nigro V. Identification of an intragenic deletion in the SGCB gene through a re-evaluation of negative next generation sequencing results. Neuromuscul Disord 2016; 26:367-9. [PMID: 27108072 PMCID: PMC4879147 DOI: 10.1016/j.nmd.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
504 myopathic patients have been screened by an NGS approach. A patient with a strong suspicion of sarcoglycanopathy, due to WB and immunohistochemical studies, was investigated. The absence of reads on the sixth exon of the β-sarcoglycan gene was identified by a careful re-evaluation of the NGS data. Subsequent array CGH analysis identified a novel 3.3 kb intragenic deletion in the SGCB gene. A strong collaboration between clinicians and molecular geneticists is crucial for a careful interpretation of NGS results.
A large mutation screening of 504 patients with muscular dystrophy or myopathy has been performed by next generation sequencing (NGS). Among this cohort of patients, we report a case with a severe form of muscular dystrophy with a proximal weakness in the limb-girdle muscles. Her biopsy revealed typical dystrophic features and immunohistochemistry for α- and γ-sarcoglycans showed an absent reaction, addressing the clinical diagnosis toward a sarcoglycanopathy. Considering that no causative point mutation was detected in any of the four sarcoglycan genes, we re-evaluated the NGS data by careful quantitative analysis of the specific reads mapping on the four sarcoglycan genes. A complete absence of reads from the sixth exon of the β-sarcoglycan gene was found. Subsequent array comparative genomic hybridization (CGH) analysis confirmed the result with the identification of a novel 3.3 kb intragenic deletion in the SGCB gene. This case illustrates the importance of a multidisciplinary approach involving clinicians and molecular geneticists and the need for a careful re-evaluation of NGS data.
Collapse
Affiliation(s)
- Teresa Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marina Fanin
- Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
| | - Marco Savarese
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy
| | | | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
8
|
Abstract
Mutations in the DMD gene result in Duchenne or Becker muscular dystrophy due to absent or altered expression of the dystrophin protein. The more severe Duchenne muscular dystrophy typically presents around ages 2 to 5 with gait disturbance, and historically has led to the loss of ambulation by age 12. It is important for the practicing pediatrician, however, to be aware of other presenting signs, such as delayed motor or cognitive milestones, or elevated serum transaminases. Becker muscular dystrophy is milder, often presenting after age 5, with ambulation frequently preserved past 20 years and sometimes into late decades.
Collapse
Affiliation(s)
- Nicolas Wein
- The Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Lindsay Alfano
- The Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Physical Therapy, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Kevin M Flanigan
- The Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA; Department of Neurology, Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
9
|
|
10
|
Nigro V, Piluso G. Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochim Biophys Acta Mol Basis Dis 2014; 1852:585-93. [PMID: 25086336 DOI: 10.1016/j.bbadis.2014.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/31/2023]
Abstract
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30 years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
11
|
Askree SH, Chin ELH, Bean LH, Coffee B, Tanner A, Hegde M. Detection limit of intragenic deletions with targeted array comparative genomic hybridization. BMC Genet 2013; 14:116. [PMID: 24304607 PMCID: PMC4235222 DOI: 10.1186/1471-2156-14-116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022] Open
Abstract
Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered.
Collapse
Affiliation(s)
| | | | | | | | | | - Madhuri Hegde
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, 2165 N Decatur Road, Decatur, GA 30033, USA.
| |
Collapse
|
12
|
Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet 2013; 22:792-800. [PMID: 24253858 DOI: 10.1038/ejhg.2013.248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023] Open
Abstract
Intellectual disability affects about 3% of individuals globally, with∼50% idiopathic. We designed an exonic-resolution array targeting all known submicroscopic chromosomal intellectual disability syndrome loci, causative genes for intellectual disability, and potential candidate genes, all genes encoding glutamate receptors and epigenetic regulators. Using this platform, we performed chromosomal microarray analysis on 165 intellectual disability trios (affected child and both normal parents). We identified and independently validated 36 de novo copy-number changes in 32 trios. In all, 67% of the validated events were intragenic, involving only exon 1 (which includes the promoter sequence according to our design), exon 1 and adjacent exons, or one or more exons excluding exon 1. Seventeen of the 36 copy-number variants involve genes known to cause intellectual disability. Eleven of these, including seven intragenic variants, are clearly pathogenic (involving STXBP1, SHANK3 (3 patients), IL1RAPL1, UBE2A, NRXN1, MEF2C, CHD7, 15q24 and 9p24 microdeletion), two are likely pathogenic (PI4KA, DCX), two are unlikely to be pathogenic (GRIK2, FREM2), and two are unclear (ARID1B, 15q22 microdeletion). Twelve individuals with genomic imbalances identified by our array were tested with a clinical microarray, and six had a normal result. We identified de novo copy-number variants within genes not previously implicated in intellectual disability and uncovered pathogenic variation of known intellectual disability genes below the detection limit of standard clinical diagnostic chromosomal microarray analysis.
Collapse
|
13
|
Blattner A, Brunner-Agten S, Ludin K, Hergersberg M, Herklotz R, Huber AR, Röthlisberger B. Detection of germline rearrangements in patients with α- and β-thalassemia using high resolution array CGH. Blood Cells Mol Dis 2013; 51:39-47. [DOI: 10.1016/j.bcmd.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
14
|
Arnold WD, Flanigan KM. A practical approach to molecular diagnostic testing in neuromuscular diseases. Phys Med Rehabil Clin N Am 2013; 23:589-608. [PMID: 22938877 DOI: 10.1016/j.pmr.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular diagnosis is an important aspect in the care of patients with neuromuscular disorders. Because of the rapidly evolving nature of the field, the approach to obtaining a molecular diagnosis may be challenging. This article provides a general approach to molecular diagnostic testing while reviewing the principles of genetics and genetic disorders and the indications and limitations of testing methods in common hereditary neuromuscular disorders.
Collapse
Affiliation(s)
- W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center at the Ohio State University, The Ohio State University, 395 W. 12th Avenue, 7th Floor, Columbus, OH 43210, USA.
| | | |
Collapse
|
15
|
|
16
|
Marquis-Nicholson R, Doherty E, Love JM, Lan CC, George AM, Thrush A, Love DR. Array-based Identification of Copy Number Changes in a Diagnostic Setting: Simultaneous gene-focused and low resolution whole human genome analysis. Sultan Qaboos Univ Med J 2013; 13:69-79. [PMID: 23573385 DOI: 10.12816/0003198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/06/2012] [Accepted: 10/06/2012] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of this study was to develop and validate a comparative genomic hybridisation (CGH) array that would allow simultaneous targeted analysis of a panel of disease genes and low resolution whole genome analysis. METHODS A bespoke Roche NimbleGen 12x135K CGH array (Roche NimbleGen Inc., Madison, Wisconsin, USA) was designed to interrogate the coding regions of 66 genes of interest, with additional widely-spaced backbone probes providing coverage across the whole genome. We analysed genomic deoxyribonucleic acid (DNA) from 20 patients with a range of previously characterised copy number changes and from 8 patients who had not previously undergone any form of dosage analysis. RESULTS The custom-designed Roche NimbleGen CGH array was able to detect known copy number changes in all 20 patients. A molecular diagnosis was also made for one of the additional 4 patients with a clinical diagnosis that had not been confirmed by sequence analysis, and carrier testing for familial copy number variants was successfully completed for the remaining four patients. CONCLUSION The custom-designed CGH array described here is ideally suited for use in a small diagnostic laboratory. The method is robust, accurate, and cost-effective, and offers an ideal alternative to more conventional targeted assays such as multiplex ligation-dependent probe amplification.
Collapse
|
17
|
A Streamlined Protocol for Molecular Testing of the DMD Gene within a Diagnostic Laboratory: A Combination of Array Comparative Genomic Hybridization and Bidirectional Sequence Analysis. ISRN NEUROLOGY 2013; 2013:908317. [PMID: 23476807 PMCID: PMC3583148 DOI: 10.1155/2013/908317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/30/2012] [Indexed: 12/27/2022]
Abstract
Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy.
Collapse
|
18
|
Vasson A, Leroux C, Orhant L, Boimard M, Toussaint A, Leroy C, Commere V, Ghiotti T, Deburgrave N, Saillour Y, Atlan I, Fouveaut C, Beldjord C, Valleix S, Leturcq F, Dodé C, Bienvenu T, Chelly J, Cossée M. Custom oligonucleotide array-based CGH: a reliable diagnostic tool for detection of exonic copy-number changes in multiple targeted genes. Eur J Hum Genet 2013; 21:977-87. [PMID: 23340513 PMCID: PMC3746255 DOI: 10.1038/ejhg.2012.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022] Open
Abstract
The frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability 'homemade' make it a valuable tool as a new diagnostic approach of CNMs.
Collapse
Affiliation(s)
- Aurélie Vasson
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, APHP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mercier S, Toutain A, Toussaint A, Raynaud M, de Barace C, Marcorelles P, Pasquier L, Blayau M, Espil C, Parent P, Journel H, Lazaro L, Andoni Urtizberea J, Moerman A, Faivre L, Eymard B, Maincent K, Gherardi R, Chaigne D, Ben Yaou R, Leturcq F, Chelly J, Desguerre I. Genetic and clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age. Eur J Hum Genet 2013; 21:855-63. [PMID: 23299919 DOI: 10.1038/ejhg.2012.269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/30/2012] [Accepted: 09/25/2012] [Indexed: 01/30/2023] Open
Abstract
The molecular basis underlying the clinical variability in symptomatic Duchenne muscular dystrophy (DMD) carriers are still to be precised. We report 26 cases of early symptomatic DMD carriers followed in the French neuromuscular network. Clinical presentation, muscular histological analysis and type of gene mutation, as well as X-chromosome inactivation (XCI) patterns using DNA extracted from peripheral blood or muscle are detailed. The initial symptoms were significant weakness (88%) or exercise intolerance (27%). Clinical severity varied from a Duchenne-like progression to a very mild Becker-like phenotype. Cardiac dysfunction was present in 19% of the cases. Cognitive impairment was worthy of notice, as 27% of the carriers are concerned. The muscular analysis was always contributive, revealing muscular dystrophy (83%), mosaic in immunostaining (81%) and dystrophin abnormalities in western blot analysis (84%). In all, 73% had exonic deletions or duplications and 27% had point mutations. XCI pattern was biased in 62% of the cases. In conclusion, we report the largest series of manifesting DMD carriers at pediatric age and show that exercise intolerance and cognitive impairment may reveal symptomatic DMD carriers. The complete histological and immunohistological study of the muscle is the key of the diagnosis leading to the dystrophin gene analysis. Our study shows also that cognitive impairment in symptomatic DMD carriers is associated with mutations in the distal part of the DMD gene. XCI study does not fully explain the mechanisms as well as the wide spectrum of clinical phenotype, though a clear correlation between the severity of the phenotype and inactivation bias was observed.
Collapse
|
20
|
Abstract
Infancy- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, cardiac and respiratory functions, while those of late onset may be mild and associated with slight weakness or fatigability induced by effort. In addition to the distribution of muscle weakness, symptoms, and course of the disease, the diagnosis of muscular dystrophy is usually ascertained by histological findings. There is connective tissue proliferation in the perimysium and endomysium, variation in muscle fiber size, cytoarchitectural alterations of myofibers such as internal nuclei, myofibrillar whorls, and fiber splitting and lobulation, but, most of all, degeneration and regeneration of myofibers. Causes of muscular dystrophies characterized by muscle weakness and wasting are heterogeneous and include dysfunction of diverse genetic pathways and genes encoding proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. Duchenne and Becker muscular dystrophies are prototypes illustrating advances in the field of myology. Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous, some with autosomal dominant (LGMD1) and others with autosomal recessive (LGMD2) inheritance. Neither clinical and genetic grounds nor biopsy patterns are specific enough to distinguish them, but two common denominators are: (1) weakness and wasting predominating in pelvic and shoulder girdle muscles, with occasional involvement of the myocardium; and (2) necrosis and regeneration of myofibers. While identification of genetic causes and molecular diagnosis are increasingly improved, especially with the advent of new generation sequencing technologies, optimized care, information for the family, and prevention, including genetic counseling and prenatal diagnosis, require multidisciplinary follow-up with genetic, pediatric, and psychological involvement.
Collapse
Affiliation(s)
- Jamel Chelly
- Cochin Institute - Cochin Hospital, INSERM U1016 and Université Paris Descartes, Paris, France
| | | |
Collapse
|
21
|
Takizawa M, Iwasaki N, Yamamoto T, Uchigata Y, Iwamoto Y. Whole gene deletion mutation of HNF1B and exonic aberration mutations of GCK and HNF1B in patients with MODY in Japan. Diabetol Int 2012. [DOI: 10.1007/s13340-012-0084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Next generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol 2012; 124:273-83. [PMID: 22526018 PMCID: PMC3400754 DOI: 10.1007/s00401-012-0982-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Inherited neuromuscular disorders (NMD) are chronic genetic diseases posing a significant burden on patients and the health care system. Despite tremendous research and clinical efforts, the molecular causes remain unknown for nearly half of the patients, due to genetic heterogeneity and conventional molecular diagnosis based on a gene-by-gene approach. We aimed to test next generation sequencing (NGS) as an efficient and cost-effective strategy to accelerate patient diagnosis. We designed a capture library to target the coding and splice site sequences of all known NMD genes and used NGS and DNA multiplexing to retrieve the pathogenic mutations in patients with heterogeneous NMD with or without known mutations. We retrieved all known mutations, including point mutations and small indels, intronic and exonic mutations, and a large deletion in a patient with Duchenne muscular dystrophy, validating the sensitivity and reproducibility of this strategy on a heterogeneous subset of NMD with different genetic inheritance. Most pathogenic mutations were ranked on top in our blind bioinformatic pipeline. Following the same strategy, we characterized probable TTN, RYR1 and COL6A3 mutations in several patients without previous molecular diagnosis. The cost was less than conventional testing for a single large gene. With appropriate adaptations, this strategy could be implemented into a routine genetic diagnosis set-up as a first screening approach to detect most kind of mutations, potentially before the need of more invasive and specific clinical investigations. An earlier genetic diagnosis should provide improved disease management and higher quality genetic counseling, and ease access to therapy or inclusion into therapeutic trials.
Collapse
|
23
|
Mosaic DCX deletion causes subcortical band heterotopia in males. Neurogenetics 2012; 13:367-73. [DOI: 10.1007/s10048-012-0339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
24
|
Abstract
Neuromuscular disorders affect the peripheral nervous system and muscle. The principle effect of neuromuscular disorders is therefore on the ability to perform voluntary movements. Neuromuscular disorders cause significant incapacity, including, at the most extreme, almost complete paralysis. Neuromuscular diseases include some of the most devastating disorders that afflict mankind, for example motor neuron disease. Neuromuscular diseases have onset any time from in utero until old age. They are most often genetic. The last 25 years has been the golden age of genetics, with the disease genes responsible for many genetic neuromuscular disorders now identified. Neuromuscular disorders may be inherited as autosomal dominant, autosomal recessive, or X-linked traits. They may also result from mutations in mitochondrial DNA or from de novo mutations not present in the peripheral blood DNA of either parent. The high incidence of de novo mutation has been one of the surprises of the recent increase in information about the genetics of neuromuscular disorders. The disease burden imposed on families is enormous including decision making in relation to presymptomatic diagnosis for late onset neurodegenerative disorders and reproductive choices. Diagnostic molecular neurogenetics laboratories have been faced with an ever-increasing range of disease genes that could be tested for and usually a finite budget with which to perform the possible testing. Neurogenetics has moved from one known disease gene, the Duchenne muscular dystrophy gene in July 1987, to hundreds of disease genes in 2011. It can be anticipated that with the advent of next generation sequencing (NGS), most, if not all, causative genes will be identified in the next few years. Any type of mutation possible in human DNA has been shown to cause genetic neuromuscular disorders, including point mutations, small insertions and deletions, large deletions and duplications, repeat expansions or contraction and somatic mosaicism. The diagnostic laboratory therefore has to be capable of a large number of techniques in order to identify the different mutation types and requires highly skilled staff. Mutations causing neuromuscular disorders affect the largest human proteins for example titin and nebulin. Successful molecular diagnosis can make invasive and expensive diagnostic procedures such as muscle biopsy unnecessary. Molecular diagnosis is currently largely based on Sanger sequencing, which at most can sequence a small number of exons in one gene at a time. NGS techniques will facilitate molecular diagnostics, but not for all types of mutations. For example, NGS is not good at identifying repeat expansions or copy number variations. Currently, diagnostic molecular neurogenetics is focused on identifying the causative mutation(s) in a patient. In the future, the focus might move to prevention, by identifying carriers of recessive diseases before they have affected children. The pathobiology of many of the diseases remains obscure, as do factors affecting disease severity. The aim of this review is to describe molecular diagnosis of genetic neuromuscular disorders in the past, the present and speculate on the future.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
25
|
Ishmukhametova A, Khau Van Kien P, Méchin D, Thorel D, Vincent MC, Rivier F, Coubes C, Humbertclaude V, Claustres M, Tuffery-Giraud S. Comprehensive oligonucleotide array-comparative genomic hybridization analysis: new insights into the molecular pathology of the DMD gene. Eur J Hum Genet 2012; 20:1096-100. [PMID: 22510846 DOI: 10.1038/ejhg.2012.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report on the effectiveness of a custom-designed oligonucleotide-based comparative genomic hybridization microarray (array-CGH) to interrogate copy number across the entire 2.2-Mb genomic region of the DMD gene and its applicability in diagnosis. The high-resolution array-CGH, we developed, successfully detected a series of 42 previously characterized large rearrangements of various size, localization and type (simple or complex deletions, duplications, triplications) and known intronic CNVs/Indels. Moreover, the technique succeeded in identifying a small duplication of only 191 bp in one patient previously negative for DMD mutation. Accurate intronic breakpoints localization by the technique enabled subsequent junction fragments identification by sequencing in 86% of cases (all deletion cases and 62.5% of duplication cases). Sequence examination of the junctions supports a role of microhomology-mediated processes in the occurrence of DMD large rearrangements. In addition, the precise knowledge of the sequence context at the breakpoints and analysis of the resulting consequences on maturation of pre-mRNA contribute to elucidating the cause of discrepancies in phenotype/genotype correlations in some patients. Thereby, the array-CGH proved to be a highly efficient and reliable diagnostic tool, and the new data it provides will have many potential implications in both, clinics and research.
Collapse
|
26
|
Bartoli M, Nègre P, Wein N, Bourgeois P, Pécheux C, Lévy N, Krahn M. Validation of comparative genomic hybridization arrays for the detection of genomic rearrangements of the calpain-3 and dysferlin genes. Clin Genet 2012; 81:99-101. [PMID: 22150418 DOI: 10.1111/j.1399-0004.2011.01708.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
A wide methodological approach to identify a large duplication in CFTR gene in a CF patient uncharacterised by sequencing analysis. J Cyst Fibros 2012; 10:412-7. [PMID: 21852204 DOI: 10.1016/j.jcf.2011.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND PCR-based diagnostic procedures are not able to characterise 6% of CF alleles. Recently, the application of array-CGH and of CFTR mRNA analysis has allowed the identification of new copy number mutations and splicing defects, that account for 2% and 13% of CF alleles, respectively, in the Italian population. METHODS Here, we report the characterisation of a large duplication in CFTR gene through different methods: MLPA assay, RT-PCR and high-resolution array-CGH. RESULTS We identified a large duplication, involving exons 6b-16, in a patient heterozygous for F508del mutation. This duplication produces an abnormal transcript with an out of frame addition of 2244 nucleotides and leads to the insertion of 8 amino-acid residues in the protein, followed by a stop codon. CONCLUSIONS We propose a wide methodological approach based on MLPA assay, RT-PCR and high-resolution array-CGH to routinely analyse CF patients uncharacterised for one or both CFTR alleles.
Collapse
|
28
|
Bayat V, Thiffault I, Jaiswal M, Tétreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ, Mathieu J, Vanasse M, Bouchard JP, Rioux MF, Lourenco CM, Li Z, Haueter C, Shoubridge EA, Graham BH, Brais B, Bellen HJ. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol 2012; 10:e1001288. [PMID: 22448145 PMCID: PMC3308940 DOI: 10.1371/journal.pbio.1001288] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 02/08/2012] [Indexed: 11/23/2022] Open
Abstract
An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.
Collapse
Affiliation(s)
- Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Isabelle Thiffault
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Human Genetics, Montreal Neurological Institute–McGill University, Montréal, Québec, Canada
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Martine Tétreault
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Florin Sasarman
- Department of Human Genetics, Montreal Neurological Institute–McGill University, Montréal, Québec, Canada
| | - Geneviève Bernard
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Julie Demers-Lamarche
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marie-Josée Dicaire
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean Mathieu
- Clinique des Maladies Neuromusculaires, Centre de Santé et de Services Sociaux de Jonquière, Saguenay, Québec, Canada
| | - Michel Vanasse
- Clinique des Maladies Neuromusculaires, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Jean-Pierre Bouchard
- Service de Neurologie, Centre Hospitalier Affilié Universitaire de Québec–Hôpital de l'Enfant-Jésus, Université Laval, Québec, Québec, Canada
| | - Marie-France Rioux
- Service de Neurologie, Centre hospitalier de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charles M. Lourenco
- Department of Medical Genetics, University of São Paulo, Ribeirao Preto–São Paulo, Brazil
| | - Zhihong Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claire Haueter
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eric A. Shoubridge
- Department of Human Genetics, Montreal Neurological Institute–McGill University, Montréal, Québec, Canada
| | - Brett H. Graham
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bernard Brais
- Laboratoire de Neurogénétique de la Motricité, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Human Genetics, Montreal Neurological Institute–McGill University, Montréal, Québec, Canada
- Clinique des Maladies Neuromusculaires, Centre de Santé et de Services Sociaux de Jonquière, Saguenay, Québec, Canada
- Clinique des Maladies Neuromusculaires, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
29
|
Flanigan KM, Dunn D, Larsen CA, Medne L, Bönnemann CB, Weiss RB. Becker muscular dystrophy due to an inversion of exons 23 and 24 of the DMD gene. Muscle Nerve 2011; 44:822-5. [PMID: 22006698 DOI: 10.1002/mus.22226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of hybridization-based methods for Duchenne muscular dystrophy (DMD) mutation analysis is increasingly common. We report a case of Becker muscular dystrophy in which discrepant results between a polymerase chain reaction (PCR)-based single-condition amplification/internal primer (SCAIP) and a comparative genomic hybridization assay incompletely characterized the mutation (an inversion of exons 23 and 24). These results demonstrate the limits of sensitivity and specificity of both tests, and highlight the need for more detailed analysis when intronic deletions are detected by comparative genome hybridization methods.
Collapse
Affiliation(s)
- Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pyatt RE, Astbury C. Interpretation of copy number alterations identified through clinical microarray-comparative genomic hybridization. Clin Lab Med 2011; 31:565-80, viii. [PMID: 22118737 DOI: 10.1016/j.cll.2011.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many copy number alterations (CNA) currently interpreted as variants of unknown significance (VUS) will ultimately be determined to be benign; however, their classification requires a more extensive characterization of the human genome than currently exists. There is no definitive set of rules or level of evidence required to define a CNA as benign. The information needed to accurately assess the pathogenic impact of CNA is beginning to be assembled. Although the lack of understanding of the human genome can make clinical array-comparative genomic hybridization interpretation frustrating, it is precisely why clinical human genetics is an exciting arena in which to work.
Collapse
Affiliation(s)
- Robert E Pyatt
- Cytogenetics and Molecular Genetics Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
| | | |
Collapse
|
31
|
Piluso G, Dionisi M, Del Vecchio Blanco F, Torella A, Aurino S, Savarese M, Giugliano T, Bertini E, Terracciano A, Vainzof M, Criscuolo C, Politano L, Casali C, Santorelli FM, Nigro V. Motor Chip: A Comparative Genomic Hybridization Microarray for Copy-Number Mutations in 245 Neuromuscular Disorders. Clin Chem 2011; 57:1584-96. [DOI: 10.1373/clinchem.2011.168898] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND
Array-based comparative genomic hybridization (aCGH) is a reference high-throughput technology for detecting large pathogenic or polymorphic copy-number variations in the human genome; however, a number of quantitative monogenic mutations, such as smaller heterozygous deletions or duplications, are usually missed in most disease genes when proper multiplex ligation-dependent probe assays are not performed.
METHODS
We developed the Motor Chip, a customized CGH array with exonic coverage of 245 genes involved in neuromuscular disorders (NMDs), as well as 180 candidate disease genes. We analyzed DNA samples from 26 patients with known deletions or duplications in NMDs, 11 patients with partial molecular diagnoses, and 19 patients with a clinical diagnosis alone.
RESULTS
The Motor Chip efficiently confirmed and refined the copy-number mutations in all of the characterized patients, even when only a single exon was involved. In noncharacterized or partially characterized patients, we found deletions in the SETX (senataxin), SGCG [sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein)], and LAMA2 (laminin, alpha 2) genes, as well as duplications involving LAMA2 and the DYSF [dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive)] locus.
CONCLUSIONS
The combination of exon-specific gene coverage and optimized platform and probe selection makes the Motor Chip a complementary tool for molecular diagnosis and gene investigation in neuromuscular diseases.
Collapse
Affiliation(s)
- Giulio Piluso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Manuela Dionisi
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | | | - Annalaura Torella
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Stefania Aurino
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Marco Savarese
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Teresa Giugliano
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Enrico Bertini
- Dipartimento di Neuroscienze, Unità di Medicina Molecolare, Ospedale Pediatrico “Bambino Gesù,” Rome, Italy
| | - Alessandra Terracciano
- Dipartimento di Neuroscienze, Unità di Medicina Molecolare, Ospedale Pediatrico “Bambino Gesù,” Rome, Italy
| | - Mariz Vainzof
- The Human Genome Research Center (HGRC), University of São Paulo, São Paulo, Brazil
| | - Chiara Criscuolo
- Dipartimento di Scienze Neurologiche, Università degli Studi “Federico II,” Naples, Italy
| | - Luisa Politano
- Servizio di Cardiomiologia e Genetica Medica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Carlo Casali
- Dipartimento di Neurologia e ORL, Università di Roma “La Sapienza” – Polo Pontino, Latina, Italy
| | | | - Vincenzo Nigro
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
32
|
Detection of mosaicism for genome imbalance in a cohort of 3,042 clinical cases using an oligonucleotide array CGH platform. Eur J Med Genet 2011; 54:121-9. [DOI: 10.1016/j.ejmg.2010.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/24/2010] [Indexed: 11/23/2022]
|
33
|
Krahn M, Wein N, Bartoli M, Lostal W, Courrier S, Bourg-Alibert N, Nguyen K, Vial C, Streichenberger N, Labelle V, DePetris D, Pécheux C, Leturcq F, Cau P, Richard I, Lévy N. A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. Sci Transl Med 2011; 2:50ra69. [PMID: 20861509 DOI: 10.1126/scitranslmed.3000951] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysferlinopathies are autosomal recessive, progressive muscle dystrophies caused by mutations in DYSF, leading to a loss or a severe reduction of dysferlin, a key protein in sarcolemmal repair. Currently, no etiological treatment is available for patients affected with dysferlinopathy. As for other muscular dystrophies, gene therapy approaches based on recombinant adeno-associated virus (rAAV) vectors are promising options. However, because dysferlin messenger RNA is far above the natural packaging size of rAAV, full-length dysferlin gene transfer would be problematic. In a patient presenting with a late-onset moderate dysferlinopathy, we identified a large homozygous deletion, leading to the production of a natural "minidysferlin" protein. Using rAAV-mediated gene transfer into muscle, we demonstrated targeting of the minidysferlin to the muscle membrane and efficient repair of sarcolemmal lesions in a mouse model of dysferlinopathy. Thus, as previously demonstrated in the case of dystrophin, a deletion mutant of the dysferlin gene is also functional, suggesting that dysferlin's structure is modular. This minidysferlin protein could be used as part of a therapeutic strategy for patients affected with dysferlinopathies.
Collapse
Affiliation(s)
- Martin Krahn
- Inserm UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de Marseille, Université de la Méditerranée, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Basak AN, Tuzmen S. Genetic predisposition to β-thalassemia and sickle cell anemia in Turkey: a molecular diagnostic approach. Methods Mol Biol 2011; 700:291-307. [PMID: 21204041 DOI: 10.1007/978-1-61737-954-3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalassemia syndromes are a diverse group of inherited disorders that can be characterized according to their insufficient synthesis or absent production of one or more of the globin chains. They are classified in to α, β, γ, δβ, δ, and εγδβ thalassemias depending on the globin chain(s) affected. The β-thalassemias refer to that group of inherited hemoglobin disorders, which are characterized by a reduced synthesis (β(+)-thalassemia) or absence (β(0)-thalassemia) of beta globin (β-globin) chain production (1). Though known as single-gene disorders, hemoglobinopathies such as β-thalassemia and sickle cell anemia are far from being fully resolved in terms of cure, considering the less complex nature of the beta globin (β-globin) gene family compared to more complex multifactorial genetic disorders such as cancer. Currently, there are no definitive therapeutic options for patients with β-thalassemia and sickle cell anemia, and new insights into the pathogenesis of these devastating diseases are urgently needed. Here we address in detail the overall picture utilizing molecular diagnostic approaches that contribute to unraveling the population-specific mutational analysis of β-globin gene. We also present approaches for molecular diagnostic strategies that are applicable to β-thalassemia, sickle cell anemia, and other genetic disorders.
Collapse
Affiliation(s)
- A Nazli Basak
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | |
Collapse
|
35
|
Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SHL, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai ACH, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, Patel A, Lupski JR, Cheung SW, Stankiewicz P. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 2010; 31:1326-42. [PMID: 20848651 DOI: 10.1002/humu.21360] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Quemener S, Chen JM, Chuzhanova N, Bénech C, Casals T, Macek M, Bienvenu T, McDevitt T, Farrell PM, Loumi O, Messaoud T, Cuppens H, Cutting GR, Stenson PD, Giteau K, Audrézet MP, Cooper DN, Férec C. Complete ascertainment of intragenic copy number mutations (CNMs) in the CFTR gene and its implications for CNM formation at other autosomal loci. Hum Mutat 2010; 31:421-8. [PMID: 20052766 DOI: 10.1002/humu.21196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the last 20 years since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more than 1,600 different putatively pathological CFTR mutations have been identified. Until now, however, copy number mutations (CNMs) involving the CFTR gene have not been methodically analyzed, resulting almost certainly in the underascertainment of CFTR gene duplications compared with deletions. Here, high-resolution array comparative genomic hybridization (averaging one interrogating probe every 95 bp) was used to analyze the entire length of the CFTR gene (189 kb) in 233 cystic fibrosis chromosomes lacking conventional mutations. We succeeded in identifying five duplication CNMs that would otherwise have been refractory to analysis. Based upon findings from this and other studies, we propose that deletion and duplication CNMs in the human autosomal genome are likely to be generated in the proportion of approximately 2-3:1. We further postulate that intragenic gene duplication CNMs in other disease loci may have been routinely underascertained. Finally, our analysis of +/-20 bp flanking each of the 40 CFTR breakpoints characterized at the DNA sequence level provide support for the emerging concept that non-B DNA conformations in combination with specific sequence motifs predispose to both recurring and nonrecurring genomic rearrangements.
Collapse
Affiliation(s)
- Sylvia Quemener
- INSERM U613, and Université de Bretagne Occidentale, 46 rue Félix Le Dantec, Brest, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bovolenta M, Rimessi P, Dolcini B, Ravani A, Ferlini A, Gualandi F. Prenatal diagnosis of Duchenne muscular dystrophy by comparative genomic hybridization. Clin Genet 2010; 77:503-6. [DOI: 10.1111/j.1399-0004.2009.01340.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Bovolenta M, Neri M, Martoni E, Urciuolo A, Sabatelli P, Fabris M, Grumati P, Mercuri E, Bertini E, Merlini L, Bonaldo P, Ferlini A, Gualandi F. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies. BMC MEDICAL GENETICS 2010; 11:44. [PMID: 20302629 PMCID: PMC2850895 DOI: 10.1186/1471-2350-11-44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/19/2010] [Indexed: 01/03/2023]
Abstract
Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Department of Experimental and Diagnostic Medicine - Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bahi-Buisson N, Girard B, Gautier A, Nectoux J, Fichou Y, Saillour Y, Poirier K, Chelly J, Bienvenu T. Epileptic encephalopathy in a girl with an interstitial deletion of Xp22 comprising promoter and exon 1 of the CDKL5 gene. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:202-7. [PMID: 19455595 DOI: 10.1002/ajmg.b.30974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report a 2-year-old girl with early onset seizures variant of Rett syndrome with a deletion at Xp22 detected by multiplex ligation-dependent probe amplification (MLPA) technique. This patient presented with tonic seizures at 7 days of life. Subsequently, she developed infantile spasms at three months and finally refractory myoclonic epilepsy. She demonstrated severe encephalopathy with hypotonia, deceleration of head growth, with eye gaze but limited eye pursuit, no language, limited hand use, and intermittent hand stereotypies. This combination of clinical features, suggestive of early onset variant of Rett syndrome led us to screen the CDKL5 gene. In a first step, screening of the whole coding sequence of the CDKL5 gene revealed no point mutations. In a second step, we searched gross rearrangements by MLPA and identified a microdeletion affecting both the promoter and exon 1 in CDKL5. Subsequent analysis on a Nimblegen HD2 microarray confirmed a deletion of approximately 300 kb at Xp22, including the BEND2, SCML2, and CDKL5 genes. In conclusion, our report suggests that searching for large rearrangements in CDKL5 should be considered in girls with early onset seizures and Rett-like features.
Collapse
Affiliation(s)
- Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, Département de Pédiatrie, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rushlow D, Piovesan B, Zhang K, Prigoda-Lee NL, Marchong MN, Clark RD, Gallie BL. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum Mutat 2009; 30:842-51. [PMID: 19280657 DOI: 10.1002/humu.20940] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The RB1 gene mutation detection rate in 1,020 retinoblastoma families was increased by the use of highly sensitive allele specific-PCR (AS-PCR) to detect low-level mosaicism for 11 recurrent RB1 CGA>TGA nonsense mutations. For bilaterally affected probands, AS-PCR increased the RB1 mutation detection sensitivity from 92.6% to 94.8%. Both RB1 oncogenic changes were detected in 92.7% of sporadic unilateral tumors (357/385); 14.6% (52/357) of unilateral probands with both tumor mutations identified carried one of the tumor mutations in blood. Mosaicism was evident in 5.5% of bilateral probands (23 of 421), in 3.8% of unilateral probands (22 of 572), and in one unaffected mother of a unilateral proband. Half of the mosaic mutations were only detectable by AS-PCR for the 11 recurrent CGA>TGA mutations, and not by standard sequencing. This suggests that significant numbers of low-level mosaics with other classes of RB1 mutations remain unidentified by current technology. We show that the use of linkage analysis in a two-generation retinoblastoma family resulted in the erroneous conclusion that a child carried the parental mutation, because the founder parent was mosaic for the RB1 mutation. Of 142 unaffected parental pairs tested, only one unaffected parent of a proband (0.7%) showed somatic mosaicism for the proband's mutation, in contrast to an overall 4.5% somatic mosaicism rate for retinoblastoma probands, suggesting that mosaicism for an RB1 mutation is highly likely to manifest as retinoblastoma.
Collapse
Affiliation(s)
- Diane Rushlow
- Retinoblastoma Solutions, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Shen Y, Wu BL. Microarray-Based Genomic DNA Profiling Technologies in Clinical Molecular Diagnostics. Clin Chem 2009; 55:659-69. [PMID: 19233918 DOI: 10.1373/clinchem.2008.112821] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Microarray-based genomic DNA profiling (MGDP) technologies are rapidly moving from translational research to clinical diagnostics and have revolutionized medical practices. Such technologies have shown great advantages in detecting genomic imbalances associated with genomic disorders and single-gene diseases.
Content: We discuss the development and applications of the major array platforms that are being used in both academic and commercial laboratories. Although no standardized platform is expected to emerge soon, comprehensive oligonucleotide microarray platforms—both comparative genomic hybridization arrays and genotyping hybrid arrays—are rapidly becoming the methods of choice for their demonstrated analytical validity in detecting genomic imbalances, for their flexibility in incorporating customized designs and updates, and for the advantage of being easily manufactured. Copy number variants (CNVs), the form of genomic deletions/duplications detected through MGDP, are a common etiology for a variety of clinical phenotypes. The widespread distribution of CNVs poses great challenges in interpretation. A broad survey of CNVs in the healthy population, combined with the data accumulated from the patient population in clinical laboratories, will provide a better understanding of the nature of CNVs and enhance the power of identifying genetic risk factors for medical conditions.
Summary: MGDP technologies for molecular diagnostics are still at an early stage but are rapidly evolving. We are in the process of extensive clinical validation and utility evaluation of different array designs and technical platforms. CNVs of currently unknown importance will be a rich source of novel discoveries.
Collapse
Affiliation(s)
- Yiping Shen
- Children’s Hospital Boston, Boston, MA
- Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bai-Lin Wu
- Children’s Hospital Boston, Boston, MA
- Harvard Medical School, Boston, MA
- Fudan University, Shanghai, China
| |
Collapse
|
42
|
Watson MS. Moving Microarrays Into Clinical Care. Hum Mutat 2008; 29:1081-2. [DOI: 10.1002/humu.20856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|