1
|
Xu N, Liu K, Yang Y, Li X, Zhong Y. Chinese patients with 3M syndrome: clinical manifestations and two novel pathogenic variants. Front Genet 2023; 14:1164936. [PMID: 37719700 PMCID: PMC10501862 DOI: 10.3389/fgene.2023.1164936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background: 3M syndrome is a rare autosomal recessive disease, characterized by intrauterine and postnatal growth retardation, facial dysmorphism, large head circumference, and skeletal changes, has rarely been reported in the Chinese population. Methods: We describe the clinical manifestations and gene variants in four sporadic cases of 3M syndrome in Chinese individuals from different families. Results: All cases had significant growth retardation, relative macrocephaly, and typical facial features. Exome sequencing revealed that two patients with 3M syndrome had homozygous variants of the CUL7 gene: one novel pathogenic variant and one previously reported pathogenic variant; the other two patients were heterozygous for variants in OBSL1, one of which had not been reported previously. Clinical evaluation indicated that these Chinese patients with 3M syndrome shared similar recognizable features with those reported in patients of other ethnic backgrounds, but not all patients with 3M syndrome in this study had normal development milestones. Two patients underwent recombinant human growth hormone (rhGH) therapy and showed accelerated growth in the first 2 years; however, the growth rate slowed in the third year in one case. There were no obvious adverse reactions during rhGH treatment. Conclusion: We report one novel CUL7 and one novel OBSL1 mutation in patients with 3M syndrome. Children with short stature, specific facial features, and physical symptoms should be referred for genetic testing to obtain precise diagnosis and appropriate treatment. The effects of rhGH treatment on adult height requires long-term observation and study in a large sample.
Collapse
Affiliation(s)
- Ningan Xu
- Department of Child Healthcare, Hunan Children’s Hospital, University of South China, Changsha, Hunan, China
- The Laboratory of Developmental and Behavioral Pediatrics, Hunan Children’s Hospital Changsha, University of South China, Changsha, Hunan, China
| | - Kangxiang Liu
- Department of Child Healthcare, Hunan Children’s Hospital, University of South China, Changsha, Hunan, China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Hunan Children’s Research Institute (HCRI), Hunan Children’s Hospital, University of South China, Changsha, China
| | - Xiaoming Li
- Department of Radiology, Hunan Children’s Hospital, University of South China, Changsha, Hunan, China
| | - Yan Zhong
- Department of Child Healthcare, Hunan Children’s Hospital, University of South China, Changsha, Hunan, China
- The Laboratory of Developmental and Behavioral Pediatrics, Hunan Children’s Hospital Changsha, University of South China, Changsha, Hunan, China
| |
Collapse
|
2
|
Isik E, Arican D, Atik T, Ooi JE, Darcan S, Ozen S, Simsek Kiper PO, Utine E, Cogulu O, Ozkinay F. A rare cause of syndromic short stature: 3M syndrome in three families. Am J Med Genet A 2020; 185:461-468. [PMID: 33258289 DOI: 10.1002/ajmg.a.61989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 11/14/2020] [Indexed: 11/11/2022]
Abstract
3M syndrome is a rare autosomal recessive genetic disorder characterized by severe growth retardation, dysmorphic facial features, skeletal dysplasia, and normal intelligence. Variants in CUL7, OBSL1, and CCDC8 genes have been reported to be responsible for this syndrome. In this study, the clinical and molecular findings of four 3M syndrome cases from three families are presented. All cases had growth retardation, relative macrocephaly, and typical dysmorphic facial features. Their neurological developments were normal. Sequencing of CUL7, OBSL1, and CCDC8 genes revealed two different novel homozygous variants in CUL7 in Families 1 and 3 and a previously reported homozygous pathogenic variant in OBSL1 in Family 2. In conclusion, a comprehensive dysmorphological evaluation should be obtained in individuals presenting with short stature and in such individuals with typical facial and skeletal findings, 3M syndrome should be considered. Our report expands the genotype of 3M syndrome and emphasizes the importance of thorough physical and dysmorphological examination.
Collapse
Affiliation(s)
- Esra Isik
- Faculty of Medicine, Department of Pediatric Genetics, Ege University, Izmir, Turkey
| | - Duygu Arican
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Tahir Atik
- Faculty of Medicine, Department of Pediatric Genetics, Ege University, Izmir, Turkey
| | - Joo Enn Ooi
- University of Manchester, School of Medicine, Manchester, UK
| | - Sukran Darcan
- Faculty of Medicine, Department of Pediatric Endocrinology, Ege University, Izmir, Turkey
| | - Samim Ozen
- Faculty of Medicine, Department of Pediatric Endocrinology, Ege University, Izmir, Turkey
| | | | - Eda Utine
- Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Ozgur Cogulu
- Faculty of Medicine, Department of Pediatric Genetics, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Faculty of Medicine, Department of Pediatric Genetics, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Lee IK, Lim HH, Kim YM. The Effect of Combined Growth Hormone and a Gonadotropin-Releasing Hormone Agonist Therapy on Height in Korean 3-M Syndrome Siblings. Yonsei Med J 2020; 61:981-985. [PMID: 33107243 PMCID: PMC7593105 DOI: 10.3349/ymj.2020.61.11.981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 11/27/2022] Open
Abstract
3-M syndrome is a rare autosomal recessive growth disorder characterized by severe growth retardation, low birth weight, characteristic facial features, and skeletal anomalies, for which three causative genes (CUL7, OBSL1, and CCDC8) have been identified. We herein report two Korean siblings with 3-M syndrome caused by two novel OBSL1 mutations, and describe the effect of a combined treatment with growth hormone (GH) and a gonadotropin-releasing hormone (GnRH) agonist. A 7-year-old girl with short stature (-3.37 standard deviation score, SDS) and breast budding presented with subtle dysmorphic features, including macrocephaly, frontal bossing, a triangular face, prominent philtrum, full lips, a short neck, and fifth-finger clinodactyly. GnRH stimulation test revealed a pubertal pattern and advanced bone age of 8 years and 10 months. Her older sister, aged 10 years and 9 months, had experienced an early menarche, and had an advanced bone age (13.5 years) and predicted adult height of 142 cm (-4.04 SDS). Targeted exome sequencing identified that the siblings had two heteroallelic mutations in OBSL1. Both siblings underwent a combination therapy with GH and a GnRH agonist. A height gain was noted in both siblings even after short-term treatment. To fully elucidate the effects of the combined therapy, a larger cohort should be analyzed following a longer treatment period. However, such an analysis would be challenging due to the rarity of this disease.
Collapse
Affiliation(s)
- In Kyung Lee
- Department of Pediatrics, College of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Korea
| | - Han Hyuk Lim
- Department of Pediatrics, College of Medicine, Chungnam National University, Chungnam National University Hospital, Daejeon, Korea
| | - Yoo Mi Kim
- Department of Pediatrics, College of Medicine, Chungnam National University, Chungnam National University Sejong Hospital, Sejong, Korea.
| |
Collapse
|
4
|
Woolley SA, Hayes SE, Shariflou MR, Nicholas FW, Willet CE, O'Rourke BA, Tammen I. Molecular basis of a new ovine model for human 3M syndrome-2. BMC Genet 2020; 21:106. [PMID: 32933480 PMCID: PMC7493961 DOI: 10.1186/s12863-020-00913-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS, OMIA 001595–9940) is a previously reported recessively inherited disorder in Australian Poll Merino/Merino sheep. Affected lambs are stillborn with various congenital defects as reflected in the name of the disease, as well as short stature, a short and broad cranium, a small thoracic cavity, thin ribs and brachysternum. The BCRHS phenotype shows similarity to certain human short stature syndromes, in particular the human 3M syndrome-2. Here we report the identification of a likely disease-causing variant and propose an ovine model for human 3M syndrome-2. Results Eight positional candidate genes were identified among the 39 genes in the approximately 1 Mb interval to which the disease was mapped previously. Obscurin like cytoskeletal adaptor 1 (OBSL1) was selected as a strong positional candidate gene based on gene function and the resulting phenotypes observed in humans with mutations in this gene. Whole genome sequencing of an affected lamb (BCRHS3) identified a likely causal variant ENSOARG00000020239:g.220472248delC within OBSL1. Sanger sequencing of seven affected, six obligate carrier, two phenotypically unaffected animals from the original flock and one unrelated control animal validated the variant. A genotyping assay was developed to genotype 583 animals from the original flock, giving an estimated allele frequency of 5%. Conclusions The identification of a likely disease-causing variant resulting in a frameshift (p.(Val573Trpfs*119)) in the OBSL1 protein has enabled improved breeding management of the implicated flock. The opportunity for an ovine model for human 3M syndrome and ensuing therapeutic research is promising given the availability of carrier ram semen for BCRHS.
Collapse
Affiliation(s)
- S A Woolley
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - S E Hayes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - M R Shariflou
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - F W Nicholas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - C E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, 2006, Australia
| | - B A O'Rourke
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - I Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
5
|
The SSC15 QTL-Rich Region Mutations Affecting Intramuscular Fat and Production Traits in Pigs. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
One of the more interesting regions in the pig genome is on chromosome 15 (115,800,000-122,100,000, SSC15, Sus scrofa 11.1) that has high quantitative trait locus (QTL) density associated with fattening, slaughter and meat quality characteristics. The SSC15 region encodes over 80 genes and a few miRNA sequences where potential genetic markers can be found. The goal of the study was to evaluate the effects of SSC15 mutations associated with villin 1 (VIL1), tensin 1 (TNS1), obscurin-like 1 (OBSL1) genes and with one long non-coding RNA (lncRNA) on productive pig traits and to enrich the genetic marker pool in further selection purpose. The potential genetic markers were identified using the targeted enrichment DNA sequencing (TEDNA-seq) of chromosome 15 region. The selected mutations were genotyped by using HRM, PCR and PCRRFLP methods. The association study was performed using the general linear model (GLM) in the sas program that included over 600 pigs of 5 Polish populations. The rs332253419 VIL1 mutation shows a significant effect on intramuscular fat (IMF) content in Duroc population where AA pigs had a 16% higher level than heterozygotes. The IMF content is also affected by the OBSL1 mutation, and the differences between groups are even up to 30%, but it is strongly dependent on breed factor. The OBSL1 mutation also significantly influences the meat yellowness, backfat thickness and pH level. The performed study delivers valuable information that could be highly useful during the development of the high-throughput genotyping method for further selection purposes in pigs. The OBSL1 and VIL1 mutations seem to be the most promising DNA marker showing a high effect on IMF level.
Collapse
|
6
|
Hu L, Wang X, Jin T, Han Y, Liu J, Jiang M, Yan S, Fu X, An B, Huang S. Identification of two CUL7 variants in two Chinese families with 3-M syndrome by whole-exome sequencing. J Clin Lab Anal 2020; 34:e23265. [PMID: 32141654 PMCID: PMC7370744 DOI: 10.1002/jcla.23265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Background 3‐M syndrome is a rare autosomal recessive disorder characterized by primordial growth retardation, large head circumference, characteristic facial features, and mild skeletal changes, which is associated with the exclusive variants in three genes, namely CUL7, OBSL1, and CCDC8. Only a few 3‐M syndrome patients have been reported in Chinese population. Methods Children with unexplained severe short stature, facial dysmorphism, and normal intelligence in two Chinese families and their relatives were enrolled. Trio‐whole‐exome sequencing (trio‐WES) and pathogenicity prediction analysis were conducted on the recruited patients. A conservative analysis of the mutant amino acid sequences and function prediction analysis of the wild‐type (WT) and mutant CUL7 protein were performed. Results We identified a homozygous missense variant (NM_014780.4: c.4898C > T, p.Thr1633Met) in CUL7 gene in a 6‐month‐old female infant from a non‐consanguineous family, and a homozygous frameshift variant (NM_014780.4: c.3722_3749 dup GGCTGGCACAGCTGCAGCAATGCCTGCA, p. Val1252Glyfs*23) in CUL7 gene in two affected siblings from a consanguinity family. These two variants may affect the properties and structure of CUL7 protein. Conclusion These two rare variants were observed in Chinese population for the first time and have not been reported in the literature. Our findings expand the variant spectrum of 3‐M syndrome in Chinese population and provide valuable insights into the early clinical manifestations and pathogenesis of 3‐M syndrome for pediatricians and endocrinologists.
Collapse
Affiliation(s)
- Li Hu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xike Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tingting Jin
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanyuan Han
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Juan Liu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Minmin Jiang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shujuan Yan
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoling Fu
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bangquan An
- Department of Blood Transfusion, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shengwen Huang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Pan ZQ. Cullin-RING E3 Ubiquitin Ligase 7 in Growth Control and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:285-296. [PMID: 31898234 PMCID: PMC8343956 DOI: 10.1007/978-981-15-1025-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CRL7Fbxw8 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7Fbxw8 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7Fbxw8 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi. At least ten mammalian cellular proteins were identified or implicated as CRL7Fbxw8 substrates. Discussion focuses on the possible impact of CRL7Fbxw8-mediated proteolytic or non-proteolytic pathways in growth control and cancer.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Blondelle J, Marrocco V, Clark M, Desmond P, Myers S, Nguyen J, Wright M, Bremner S, Pierantozzi E, Ward S, Estève E, Sorrentino V, Ghassemian M, Lange S. Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Commun Biol 2019; 2:178. [PMID: 31098411 PMCID: PMC6509138 DOI: 10.1038/s42003-019-0405-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Biological roles of obscurin and its close homolog Obsl1 (obscurin-like 1) have been enigmatic. While obscurin is highly expressed in striated muscles, Obsl1 is found ubiquitously. Accordingly, obscurin mutations have been linked to myopathies, whereas mutations in Obsl1 result in 3M-growth syndrome. To further study unique and redundant functions of these closely related proteins, we generated and characterized Obsl1 knockouts. Global Obsl1 knockouts are embryonically lethal. In contrast, skeletal muscle-specific Obsl1 knockouts show a benign phenotype similar to obscurin knockouts. Only deletion of both proteins and removal of their functional redundancy revealed their roles for sarcolemmal stability and sarcoplasmic reticulum organization. To gain unbiased insights into changes to the muscle proteome, we analyzed tibialis anterior and soleus muscles by mass spectrometry, uncovering additional changes to the muscle metabolism. Our analyses suggest that all obscurin protein family members play functions for muscle membrane systems.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Patrick Desmond
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Stephanie Myers
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Jim Nguyen
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Matthew Wright
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Samuel Ward
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Eric Estève
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Université Grenoble Alpes, HP2, Grenoble, 38706 France
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 92093 CA USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, 413 45 Sweden
| |
Collapse
|
10
|
Simsek-Kiper PO, Taskiran E, Kosukcu C, Arslan UE, Cormier-Daire V, Gonc N, Ozon A, Alikasifoglu A, Kandemir N, Utine GE, Alanay Y, Alikasifoglu M, Boduroglu K. Further expanding the mutational spectrum and investigation of genotype-phenotype correlation in 3M syndrome. Am J Med Genet A 2019; 179:1157-1172. [PMID: 30980518 DOI: 10.1002/ajmg.a.61154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/10/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
3M syndrome is characterized by severe pre- and postnatal growth retardation, typical facial features, and normal intelligence. Homozygous or compound heterozygous mutations in either CUL7, OBSL1, or CCDC8 have been identified in the etiology so far. Clinical and molecular features of 24 patients (23 patients and a fetus) from 19 unrelated families with a clinical diagnosis of 3M syndrome were evaluated and genotype-phenotype correlations were investigated with the use of DNA sequencing, chromosomal microarray, and whole exome sequencing accordingly. A genetic etiology could be established in 20 patients (n = 20/24, 83%). Eleven distinct CUL7 or OBSL1 mutations, among which eight was novel, were identified in 18 patients (n = 18/24, 75%). Ten patients had CUL7 (n = 10/18, 56%) while eight had OBSL1 (n = 8/18, 44%) mutations. Birth weight and height standard deviation scores at admission were significantly (p < 0.05) lower in patients with CUL7 mutation compared to that of patients with OBSL1 mutation. Two patients with a similar phenotype had a de novo 20p13p deletion involving BMP2. No genetic etiology could be established in four patients (n = 4/28, 17%). This study yet represents the largest cohort of 3M syndrome patients from a single center in Turkey. Microdeletions involving BMP2 may cause a phenotype similar to 3M syndrome with some distinctive features. Larger cohort of patients are required to establish genotype-phenotype correlations in 3M syndrome.
Collapse
Affiliation(s)
| | - Ekim Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Kosukcu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Turkey
| | - Umut Ece Arslan
- Department of Health Research, Institute of Public Health, Hacettepe University, Ankara, Turkey
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Nazlı Gonc
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alev Ozon
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayfer Alikasifoglu
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nurgun Kandemir
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Alanay
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Genetics, Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Alikasifoglu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroglu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Shapiro L, Chatterjee S, Ramadan DG, Davies KM, Savage MO, Metherell LA, Storr HL. Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity. Eur J Endocrinol 2017; 177:485-501. [PMID: 28870985 DOI: 10.1530/eje-17-0453] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND GH insensitivity (GHI) is characterised by short stature, IGF-1 deficiency and normal/elevated serum GH. IGF-1 insensitivity results in pre- and post-natal growth failure with normal/high IGF-1 levels. The prevalence of genetic defects is unknown. OBJECTIVE To identify the underlying genetic diagnoses in a paediatric cohort with GH or IGF-1 insensitivity using candidate gene (CGS) and whole-exome sequencing (WES) and assess factors associated with the discovery of a genetic defect. METHODS We undertook a prospective study of 132 patients with short stature and suspected GH or IGF-1 insensitivity referred to our centre for genetic analysis. 107 (96 GHI, 88 probands; 11 IGF-1 insensitivity, 9 probands) underwent CGS. WES was performed in those with no defined genetic aetiology following CGS. RESULTS A genetic diagnosis was discovered 38/107 (36%) patients (32% probands) by CGS. WES revealed 11 patients with genetic variants in genes known to cause short stature. A further 2 patients had hypomethylation in the H19/IGF2 region or mUPD7 consistent with Silver-Russell Syndrome (total with genetic diagnosis 51/107, 48% or 41/97, 42% probands). WES also identified homozygous putative variants in FANCA and PHKB in 2 patients. Low height SDS and consanguinity were highly predictive for identifying a genetic defect. CONCLUSIONS Comprehensive genetic testing confirms the genetic heterogeneity of GH/IGF-1 insensitivity and successfully identified the genetic aetiology in a significant proportion of cases. WES is rapid and may isolate genetic variants that have been missed by traditional clinically driven genetic testing. This emphasises the benefits of specialist diagnostic centres.
Collapse
Affiliation(s)
- Lucy Shapiro
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dina G Ramadan
- Department of Pediatrics and Endocrinology Unit, Sabah Hospital, Safat, Kuwait
| | - Kate M Davies
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Hu X, Li H, Gui B, Xu Y, Wang J, Li N, Su J, Zhang S, Song Y, Wang Y, Luo J, Fan X, Wang J, Chen S, Gong C, Shen Y. Prenatal and early diagnosis of Chinese 3-M syndrome patients with novel pathogenic variants. Clin Chim Acta 2017; 474:159-164. [PMID: 28969986 DOI: 10.1016/j.cca.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND 3-M syndrome is a clinically recognizable yet under-diagnosed primordial growth retardation disorder. Molecular testing for CUL7, OBSL1 or CCDC8 genes can provide confirmed diagnosis for patients at prenatal or early age. So far, the clinical and molecular features of Chinese 3-M syndrome patients have not been reported. METHODS In this article, the authors performed prenatal and early diagnosis of Chinese patients with 3-M syndrome by Next-Generation Sequencing. RESULTS The authors reported six unrelated Chinese 3-M syndrome patients. Five of the six patients were diagnosed before two years of age including one prenatal case. The authors identified six novel pathogenic variants and five previously reported pathogenic variants. The authors' clinical evaluations indicated that Chinese 3-M syndrome patients share similar recognizable features as those reported in patients of other ethnic background. The authors noticed some uncommon features in this small cohort of Chinese patients such as delayed motor development at early ages, undelayed bone age and presence of lower eyelid fat pads. CONCLUSION The authors' study of Chinese 3-M syndrome patients revealed novel mutations and clinical phenotypes.
Collapse
Affiliation(s)
- Xuyun Hu
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China; Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongdou Li
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Baoheng Gui
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Yufei Xu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Niu Li
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jiasun Su
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, P.R. China; National Children's Medical Center, Beijing, PR China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, P.R. China; National Children's Medical Center, Beijing, PR China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Jian Wang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, P.R. China; National Children's Medical Center, Beijing, PR China.
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, PR China; Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
13
|
Pernigo S, Fukuzawa A, Beedle AEM, Holt M, Round A, Pandini A, Garcia-Manyes S, Gautel M, Steiner RA. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection. Structure 2016; 25:107-120. [PMID: 27989621 PMCID: PMC5222588 DOI: 10.1016/j.str.2016.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/03/2022]
Abstract
The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signaling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here, using a combination of structural, cellular, and single-molecule force spectroscopy techniques, we decode the architectural and functional determinants defining the obscurin(-like-1):myomesin complex. The crystal structure reveals a trans-complementation mechanism whereby an incomplete immunoglobulin-like domain assimilates an isoform-specific myomesin interdomain sequence. Crucially, this unconventional architecture provides mechanical stability up to forces of ∼135 pN. A cellular competition assay in neonatal rat cardiomyocytes validates the complex and provides the rationale for the isoform specificity of the interaction. Altogether, our results reveal a novel binding strategy in sarcomere assembly, which might have implications on muscle nanomechanics and overall M-band organization. The structure of the human obscurin-like-1:myomesin complex has been determined A myomesin sequence complements an immunoglobulin fold of obscurin-like-1 This binding mechanism provides mechanical stability up to forces of ∼135 pN Possible implications on muscle nanomechanics and M-band organization are discussed
Collapse
Affiliation(s)
- Stefano Pernigo
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Atsushi Fukuzawa
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK
| | - Amy E M Beedle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Mark Holt
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France; School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Alessandro Pandini
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Computer Science and Synthetic Biology Theme, Brunel University London, London UB8 3PH, UK
| | - Sergi Garcia-Manyes
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Cardiovascular Division, King's College London BHF Centre of Research Excellence, London SE1 1UL, UK.
| | - Roberto A Steiner
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
14
|
Kurt-Sukur ED, Simsek-Kiper PO, Utine GE, Boduroglu K, Alanay Y. Experience of a skeletal dysplasia registry in Turkey: A five-years retrospective analysis. Am J Med Genet A 2015; 167A:2065-74. [DOI: 10.1002/ajmg.a.37122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/04/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Eda Didem Kurt-Sukur
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Pelin Ozlem Simsek-Kiper
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Gülen Eda Utine
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Koray Boduroglu
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
- Pediatric Genetics, Department of Pediatrics; Acibadem University School of Medicine; İstanbul Turkey
| |
Collapse
|
15
|
Izumi K, Kellogg E, Fujiki K, Kaur M, Tilton RK, Noon S, Wilkens A, Shirahige K, Krantz ID. Elevation of insulin-like growth factor binding protein-2 level in Pallister-Killian syndrome: implications for the postnatal growth retardation phenotype. Am J Med Genet A 2015; 167:1268-74. [PMID: 25900123 DOI: 10.1002/ajmg.a.36976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/24/2014] [Indexed: 11/09/2022]
Abstract
Pallister-Killian syndrome (PKS) is a multi-system developmental disorder caused by tetrasomy 12p that exhibits tissue-limited mosaicism. Probands with PKS often demonstrate a unique growth profile consisting of macrosomia at birth with deceleration of growth postnatally. We have previously demonstrated that cultured skin fibroblasts from PKS probands have significantly elevated expression of insulin-like growth factor binding protein-2 (IGFBP2). To further evaluate the role of IGFBP2 in PKS, the amount of IGFBP2 secreted from cultured skin fibroblast cell lines and serum IGFBP2 levels were measured in probands with PKS. Approximately 60% of PKS fibroblast cell lines secreted higher levels of IGFBP2 compared to control fibroblasts, although the remaining 40% of PKS samples produced comparable level of IGFBP2 to that of control fibroblasts. Serum IGFBP2 levels were also measured in PKS probands and were elevated in 40% of PKS probands. PKS probands with elevated IGFBP2 manifested with severe postnatal growth retardation. IGFBPs are the family of related proteins that bind IGFs with high affinity and are typically thought to attenuate IGF action. We suggest that elevated IGFBP2 levels might play a role in the growth retardation phenotype of PKS.
Collapse
Affiliation(s)
- Kosuke Izumi
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania.,Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emily Kellogg
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katsunori Fujiki
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Maninder Kaur
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Richard K Tilton
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania.,Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Noon
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alisha Wilkens
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ian D Krantz
- Divisionof Human Genetics, The Children Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Pernigo S, Fukuzawa A, Pandini A, Holt M, Kleinjung J, Gautel M, Steiner RA. The Crystal Structure of the Human Titin:Obscurin Complex Reveals a Conserved yet Specific Muscle M-Band Zipper Module. J Mol Biol 2015; 427:718-736. [DOI: 10.1016/j.jmb.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
17
|
Marshall CR, Farrell SA, Cushing D, Paton T, Stockley TL, Stavropoulos DJ, Ray PN, Szego M, Lau L, Pereira SL, Cohn RD, Wintle RF, Abuzenadah AM, Abu-Elmagd M, Scherer SW. Whole-exome analysis of foetal autopsy tissue reveals a frameshift mutation in OBSL1, consistent with a diagnosis of 3-M Syndrome. BMC Genomics 2015; 16 Suppl 1:S12. [PMID: 25923536 PMCID: PMC4315153 DOI: 10.1186/1471-2164-16-s1-s12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. RESULTS Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. CONCLUSIONS Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.
Collapse
|
18
|
Pulavarti SVSRK, Huang YJ, Pederson K, Acton TB, Xiao R, Everett JK, Prestegard JH, Montelione GT, Szyperski T. Solution NMR structures of immunoglobulin-like domains 7 and 12 from obscurin-like protein 1 contribute to the structural coverage of the Human Cancer Protein Interaction Network. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2014; 15:209-214. [PMID: 24989974 PMCID: PMC4945113 DOI: 10.1007/s10969-014-9185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/14/2014] [Indexed: 06/03/2023]
Abstract
High-quality solution NMR structures of immunoglobulin-like domains 7 and 12 from human obscurin-like protein 1 were solved. The two domains share 30% sequence identity and their structures are, as expected, rather similar. The new structures contribute to structural coverage of human cancer associated proteins. Mutations of Arg 812 in domain 7 cause the rare 3-M syndrome, and this site is located in a surface area predicted to be involved in protein-protein interactions.
Collapse
Affiliation(s)
- Surya VSRK Pulavarti
- Department of Chemistry, The State University of New York at Buffalo, and Northeast Structural Genomics Consortium, Buffalo, NY 14260, USA
| | - Yuanpeng J. Huang
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Kari Pederson
- Complex Carbohydrate Research Center, University of Georgia, and Northeast Structural Genomics Consortium, Athens, GA 30602, USA
| | - Thomas B. Acton
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - John K. Everett
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, and Northeast Structural Genomics Consortium, Athens, GA 30602, USA
| | - Gaetano T. Montelione
- Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey and Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, and Northeast Structural Genomics Consortium, Buffalo, NY 14260, USA
| |
Collapse
|
19
|
Yan J, Yan F, Li Z, Sinnott B, Cappell KM, Yu Y, Mo J, Duncan JA, Chen X, Cormier-Daire V, Whitehurst AW, Xiong Y. The 3M complex maintains microtubule and genome integrity. Mol Cell 2014; 54:791-804. [PMID: 24793695 DOI: 10.1016/j.molcel.2014.03.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/22/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
Abstract
CUL7, OBSL1, and CCDC8 genes are mutated in a mutually exclusive manner in 3M and other growth retardation syndromes. The mechanism underlying the function of the three 3M genes in development is not known. We found that OBSL1 and CCDC8 form a complex with CUL7 and regulate the level and centrosomal localization of CUL7, respectively. CUL7 depletion results in altered microtubule dynamics, prometaphase arrest, tetraploidy, and mitotic cell death. These defects are recaptured in CUL7 mutated 3M cells and can be rescued by wild-type, but not by 3M patient-derived CUL7 mutants. Depletion of either OBSL1 or CCDC8 results in defects and sensitizes cells to microtubule damage similarly to loss of CUL7 function. Microtubule damage reduces the level of CCDC8 that is required for the centrosomal localization of CUL7. We propose that CUL7, OBSL1, and CCDC8 proteins form a 3M complex that functions in maintaining microtubule and genome integrity and normal development.
Collapse
Affiliation(s)
- Jun Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Becky Sinnott
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kathryn M Cappell
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yanbao Yu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Jinyao Mo
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Joseph A Duncan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Valerie Cormier-Daire
- University Paris Descartes, Department of Genetics and INSERM U781, Hospital Necker Enfants-Malades, 75015 Paris, France
| | - Angelique W Whitehurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA; Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
20
|
Murray PG, Hanson D, Coulson T, Stevens A, Whatmore A, Poole RL, Mackay DJ, Black GCM, Clayton PE. 3-M syndrome: a growth disorder associated with IGF2 silencing. Endocr Connect 2013; 2:225-35. [PMID: 24148222 PMCID: PMC3847915 DOI: 10.1530/ec-13-0065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
Abstract
3-M syndrome is an autosomal recessive disorder characterised by pre- and post-natal growth restriction, facial dysmorphism, normal intelligence and radiological features (slender long bones and tall vertebral bodies). It is known to be caused by mutations in the genes encoding cullin 7, obscurin-like 1 and coiled-coil domain containing 8. The mechanisms through which mutations in these genes impair growth are unclear. The aim of this study was to identify novel pathways involved in the growth impairment in 3-M syndrome. RNA was extracted from fibroblast cell lines derived from four 3-M syndrome patients and three control subjects, hybridised to Affymetrix HU 133 plus 2.0 arrays with quantitative real-time PCR used to confirm changes found on microarray. IGF-II protein levels in conditioned cell culture media were measured by ELISA. Of the top 10 downregulated probesets, three represented IGF2 while H19 was identified as the 23rd most upregulated probeset. QRT-PCR confirmed upregulation of H19 (P<0.001) and downregulation of IGF2 (P<0.001). Levels of IGF-II secreted into conditioned cell culture medium were higher for control fibroblasts than those for 3-M fibroblasts (10.2±2.9 vs 0.6±0.9 ng/ml, P<0.01). 3-M syndrome is associated with a gene expression profile of reduced IGF2 expression and increased H19 expression similar to that found in Silver-Russell syndrome. Loss of autocrine IGF-II in the growth plate may be associated with the short stature seen in children with 3-M syndrome.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
- 5th Floor Research, Royal Manchester Children's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| | - D Hanson
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - T Coulson
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - A Stevens
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - A Whatmore
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
| | - R L Poole
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - D J Mackay
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - G C M Black
- Centre for Genetic Medicine, Institute of Human DevelopmentFaculty of Medical and Human Sciences, University of ManchesterManchesterUK
- Genetic Medicine, St Mary's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of ManchesterManchesterUK
- 5th Floor Research, Royal Manchester Children's HospitalCentral Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences CentreOxford Road, Manchester, M13 9WLUK
| |
Collapse
|
21
|
|
22
|
Hanson D, Murray PG, Coulson T, Sud A, Omokanye A, Stratta E, Sakhinia F, Bonshek C, Wilson LC, Wakeling E, Temtamy SA, Aglan M, Rosser EM, Mansour S, Carcavilla A, Nampoothiri S, Khan WI, Banerjee I, Chandler KE, Black GCM, Clayton PE. Mutations in CUL7, OBSL1 and CCDC8 in 3-M syndrome lead to disordered growth factor signalling. J Mol Endocrinol 2012; 49:267-75. [PMID: 23018678 DOI: 10.1530/jme-12-0034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
3-M syndrome is a primordial growth disorder caused by mutations in CUL7, OBSL1 or CCDC8. 3-M patients typically have a modest response to GH treatment, but the mechanism is unknown. Our aim was to screen 13 clinically identified 3-M families for mutations, define the status of the GH-IGF axis in 3-M children and using fibroblast cell lines assess signalling responses to GH or IGF1. Eleven CUL7, three OBSL1 and one CCDC8 mutations in nine, three and one families respectively were identified, those with CUL7 mutations being significantly shorter than those with OBSL1 or CCDC8 mutations. The majority of 3-M patients tested had normal peak serum GH and normal/low IGF1. While the generation of IGF binding proteins by 3-M cells was dysregulated, activation of STAT5b and MAPK in response to GH was normal in CUL7(-/-) cells but reduced in OBSL1(-/-) and CCDC8(-/-) cells compared with controls. Activation of AKT to IGF1 was reduced in CUL7(-/-) and OBSL1(-/-) cells at 5 min post-stimulation but normal in CCDC8(-/-) cells. The prevalence of 3-M mutations was 69% CUL7, 23% OBSL1 and 8% CCDC8. The GH-IGF axis evaluation could reflect a degree of GH resistance and/or IGF1 resistance. This is consistent with the signalling data in which the CUL7(-/-) cells showed impaired IGF1 signalling, CCDC8(-/-) cells showed impaired GH signalling and the OBSL1(-/-) cells showed impairment in both pathways. Dysregulation of the GH-IGF-IGF binding protein axis is a feature of 3-M syndrome.
Collapse
Affiliation(s)
- D Hanson
- Paediatric Endocrinology, School of Biomedicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9WL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Clayton PE, Hanson D, Magee L, Murray PG, Saunders E, Abu-Amero SN, Moore GE, Black GCM. Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clin Endocrinol (Oxf) 2012; 77:335-42. [PMID: 22624670 DOI: 10.1111/j.1365-2265.2012.04428.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3-M syndrome is an autosomal recessive primordial growth disorder characterized by small birth size and post-natal growth restriction associated with a spectrum of minor anomalies (including a triangular-shaped face, flat cheeks, full lips, short chest and prominent fleshy heels). Unlike many other primordial short stature syndromes, intelligence is normal and there is no other major system involvement, indicating that 3-M is predominantly a growth-related condition. From an endocrine perspective, serum GH levels are usually normal and IGF-I normal or low, while growth response to rhGH therapy is variable but typically poor. All these features suggest a degree of resistance in the GH-IGF axis. To date, mutations in three genes CUL7, OBSL1 and CCDC8 have been shown to cause 3-M. CUL7 acts an ubiquitin ligase and is known to interact with p53, cyclin D-1 and the growth factor signalling molecule IRS-1, the link with the latter may contribute to the GH-IGF resistance. OBSL1 is a putative cytoskeletal adaptor that interacts with and stabilizes CUL7. CCDC8 is the newest member of the pathway and interacts with OBSL1 and, like CUL7, associates with p53, acting as a co-factor in p53-medicated apoptosis. 3-M patients without a mutation have also been identified, indicating the involvement of additional genes in the pathway. Potentially damaging sequence variants in CUL7 and OBSL1 have been identified in idiopathic short stature (ISS), including those born small with failure of catch-up growth, signifying that the 3-M pathway could play a wider role in disordered growth.
Collapse
Affiliation(s)
- Peter E Clayton
- Developmental Biomedicine, Manchester Academic Health Sciences Centre (MAHSC), School of Biomedicine, University of Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Al-Dosari MS, Al-Shammari M, Shaheen R, Faqeih E, Alghofely MA, Boukai A, Alkuraya FS. 3M syndrome: an easily recognizable yet underdiagnosed cause of proportionate short stature. J Pediatr 2012; 161:139-45.e1. [PMID: 22325252 DOI: 10.1016/j.jpeds.2011.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/08/2011] [Accepted: 12/30/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To characterize, via clinical and molecul criteria, a cohort of patients with 3M syndrome and thereby increase awareness of this syndrome as a recognizable cause of proportionate short stature. STUDY DESIGN We conducted a case series of patients referred to clinical genetics for proportionate short stature. CUL7, OBSL1, and CCDC8 genes were clinically phenotyped and sequenced. RESULTS In 6 Saudi families with 3M syndrome, we identified three CUL7, one OBSL1, and one CCDC8 novel mutations, which we show result in a remarkably similar clinical phenotype. Despite their typical and easily discernible clinical phenotype, all these patients have been extensively investigated for alternative causes of their short stature and received erroneous diagnoses. CONCLUSION Increased awareness about this syndrome among pediatricians and endocrinologists is needed to avoid a costly and unnecessary diagnostic odyssey.
Collapse
Affiliation(s)
- Mohammed S Al-Dosari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
25
|
Fahlbusch FB, Dawood Y, Hartner A, Menendez-Castro C, Nögel SC, Tzschoppe A, Schneider H, Strissel P, Beckmann MW, Schleussner E, Ruebner M, Dörr HG, Schild RL, Rascher W, Dötsch J. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated via oxygen tension: implications for intrauterine growth restriction? J Matern Fetal Neonatal Med 2012; 25:2209-15. [DOI: 10.3109/14767058.2012.684166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Lange S, Perera S, Teh P, Chen J. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol Biol Cell 2012; 23:2490-504. [PMID: 22573887 PMCID: PMC3386213 DOI: 10.1091/mbc.e12-01-0052] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small ankyrin-1 isoform 5 (sAnk1.5) turnover is regulated by posttranslational modification (ubiquitylation, neddylation, and acetylation), the presence of obscurin, and KCTD6 (a novel tissue-specific interaction partner). KCTD6 links sAnk1.5 to cullin-3. The absence of obscurin results in translocation of sAnk1.5/KCTD6 to the Z-disk and loss of sAnk1.5 on the protein level. Protein turnover through cullin-3 is tightly regulated by posttranslational modifications, the COP9 signalosome, and BTB/POZ-domain proteins that link cullin-3 to specific substrates for ubiquitylation. In this paper, we report how potassium channel tetramerization domain containing 6 (KCTD6) represents a novel substrate adaptor for cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). Binding of sAnk1.5 to KCTD6, and its subsequent turnover is regulated through posttranslational modification by nedd8, ubiquitin, and acetylation of C-terminal lysine residues. The presence of the sAnk1.5 binding partner obscurin, and mutation of lysine residues increased sAnk1.5 protein levels, as did knockdown of KCTD6 in cardiomyocytes. Obscurin knockout muscle displayed reduced sAnk1.5 levels and mislocalization of the sAnk1.5/KCTD6 complex. Scaffolding functions of obscurin may therefore prevent activation of the cullin-mediated protein degradation machinery and ubiquitylation of sAnk1.5 through sequestration of sAnk1.5/KCTD6 at the sarcomeric M-band, away from the Z-disk–associated cullin-3. The interaction of KCTD6 with ankyrin-1 may have implications beyond muscle for hereditary spherocytosis, as KCTD6 is also present in erythrocytes, and erythrocyte ankyrin isoforms contain its mapped minimal binding site.
Collapse
Affiliation(s)
- Stephan Lange
- School of Medicine, University of California, San Diego, La Jolla, CA 92093-0613, USA.
| | | | | | | |
Collapse
|
27
|
Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth. Am J Hum Genet 2011; 89:148-53. [PMID: 21737058 DOI: 10.1016/j.ajhg.2011.05.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/11/2011] [Accepted: 05/26/2011] [Indexed: 01/30/2023] Open
Abstract
3-M syndrome, a primordial growth disorder, is associated with mutations in CUL7 and OBSL1. Exome sequencing now identifies mutations in CCDC8 as a cause of 3-M syndrome. CCDC8 is a widely expressed gene that is transcriptionally associated to CUL7 and OBSL1, and coimmunoprecipitation indicates a physical interaction between CCDC8 and OBSL1 but not CUL7. We propose that CUL7, OBSL1, and CCDC8 are members of a pathway controlling mammalian growth.
Collapse
|
28
|
|
29
|
Abstract
3M syndrome (MIM 273750) is an autosomal recessive disorder characterized by pre- and post-natal growth retardation (<-4 SD), facial dysmorphism, large head circumference, normal intelligence and endocrine function. Skeletal changes include long slender tubular bones and tall vertebral bodies. There is no specific treatment. Up till now, mutations in either CUL7 or OBSL1 genes have been identified in this rare disorder. There are no clinical or radiological differences between patients with CUL7 or OBSL1 mutations. CUL7 appears to be the major gene responsible for 3M syndrome accounting for 77.5% of cases while OBSL1 mutations accounts for 16.3%. A few patients have no mutations in these genes suggesting the involvement of a third gene.
Collapse
Affiliation(s)
- Céline Huber
- Department of Genetics, Paris Descartes University, INSERM U781, Hôpital Necker Enfants Malades, 149 rue de Sèvres, Paris, France.
| | | | | |
Collapse
|
30
|
Sasaki K, Okamoto N, Kosaki K, Yorifuji T, Shimokawa O, Mishima H, Yoshiura KI, Harada N. Maternal uniparental isodisomy and heterodisomy on chromosome 6 encompassing a CUL7 gene mutation causing 3M syndrome. Clin Genet 2010; 80:478-83. [DOI: 10.1111/j.1399-0004.2010.01599.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Structural insight into M-band assembly and mechanics from the titin-obscurin-like-1 complex. Proc Natl Acad Sci U S A 2010; 107:2908-13. [PMID: 20133654 DOI: 10.1073/pnas.0913736107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sarcomeric M-band, the giant ruler proteins titin and obscurin, its small homologue obscurin-like-1 (obsl1), and the myosin cross-linking protein myomesin form a ternary complex that is crucial for the function of the M-band as a mechanical link. Mutations in the last titin immunoglobulin (Ig) domain M10, which interacts with the N-terminal Ig-domains of obscurin and obsl1, lead to hereditary muscle diseases. The M10 domain is unusual not only in that it is a frequent target of disease-linked mutations, but also in that it is the only currently known muscle Ig-domain that interacts with two ligands--obscurin and obsl1--in different sarcomeric subregions. Using x-ray crystallography, we show the structural basis for titin M10 interaction with obsl1 in a novel antiparallel Ig-Ig architecture and unravel the molecular basis of titin-M10 linked myopathies. The severity of these pathologies correlates with the disruption of the titin-obsl1/obscurin complex. Conserved signature residues at the interface account for differences in affinity that direct the cellular sorting in cardiomyocytes. By engineering the interface signature residues of obsl1 to obscurin, and vice versa, their affinity for titin can be modulated similar to the native proteins. In single-molecule force-spectroscopy experiments, both complexes yield at forces of around 30 pN, much lower than those observed for the mechanically stable Z-disk complex of titin and telethonin, suggesting why even moderate weakening of the obsl1/obscurin-titin links has severe consequences for normal muscle functions.
Collapse
|