1
|
Thapa MJ, Chan K. The mutagenic properties of formaldehyde and acetaldehyde: Reflections on half a century of progress. Mutat Res 2025; 830:111886. [PMID: 39549522 DOI: 10.1016/j.mrfmmm.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Formaldehyde and acetaldehyde are reactive, small compounds that humans are exposed to routinely, variously from endogenous and exogenous sources. Both small aldehydes are classified as human carcinogens. Investigation of the DNA damaging properties of these two compounds began some 50 years ago. In this review, we summarize progress in this field since its inception over half a century ago, distilling insights gained by the collective efforts of many research groups while highlighting areas for future directions. Over the decades, general consensus about aspects of the mutagenicity of formaldehyde and acetaldehyde has been reached. But other characteristics of formaldehyde and acetaldehyde remain incompletely understood and require additional investigation. These include crucial details about the mutational signature(s) induced and possible mechanistic role(s) during carcinogenesis.
Collapse
Affiliation(s)
- Mahanish Jung Thapa
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Su DG, Dhiman A, Bansal VV, Zha Y, Shergill A, Polite B, Alpert L, Turaga KK, Eng OS. Mutational Features and Tumor Microenvironment Alterations in High-Grade Appendiceal Cancers Treated With Iterative Hyperthermic Intraperitoneal Chemotherapy. JCO Precis Oncol 2024; 8:e2400149. [PMID: 39259912 PMCID: PMC11432692 DOI: 10.1200/po.24.00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE High-grade appendiceal adenocarcinomas (HGAA) with peritoneal metastases (PMs) are associated with poor survival. Hyperthermic intraperitoneal chemotherapy (HIPEC) is a novel treatment approach for unresectable HGAA-PM. However, its influence on immunogenomic profiles has not yet been fully explored. MATERIALS AND METHODS We obtained 79 samples of metastatic peritoneal tumor deposits from patients diagnosed with HGAA and performed whole-exome sequencing, RNA sequencing, and immunoprofiling before and after HIPEC. Tumor biopsies were subjected to immunogenomic profiling to detect mutational signatures and immune populations associated with oncologic outcomes. RESULTS Fifteen patients with HGAA-PMs were included in the study. The median progression-free survival (PFS) was 6.7 months (2.7-25.3) and the median overall survival was 11.4 months (4.7-42). Mucin-associated genes (MUC16, MUC3A, and MUC5AC) and titin (TTN) had the highest mutation frequencies. Mutational signatures such as single-base substitution 29 and doublet-base substitution 11 were present in >50% of single-base and double-base mutations. Higher PD-L1 coexpression on CD8+ T cells demonstrated a higher PFS both intratumorally (P = .019) and at the margin (P = .025). CONCLUSION HIPEC-associated mutational signatures were identified in HGAA-PMs. Elevated PD-L1+ cytotoxic T-cell populations after HIPEC had better PFS, offering valuable insights for prognostication in the context of HIPEC treatment.
Collapse
Affiliation(s)
- David G Su
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Ankit Dhiman
- Department of Surgery, Medical College of Georgia, Augusta, GA
| | - Varun V Bansal
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Yuanyuan Zha
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Ardaman Shergill
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Blasé Polite
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL
| | - Lindsay Alpert
- Department of Pathology, University of Chicago Medical Center, Chicago, IL
| | - Kiran K Turaga
- Division of Surgical Oncology, Yale School of Medicine, New Haven, CT
| | - Oliver S Eng
- Department of Surgery, University of California, Irvine, Orange, CA
| |
Collapse
|
3
|
Liebmann A, Admard J, Armeanu-Ebinger S, Wild H, Abele M, Gschwind A, Seibel-Kelemen O, Seitz C, Bonzheim I, Riess O, Demidov G, Sturm M, Schadeck M, Pogoda M, Bien E, Krawczyk M, Jüttner E, Mentzel T, Cesen M, Pfaff E, Kunc M, Forchhammer S, Forschner A, Leiter-Stöppke U, Eigentler TK, Schneider DT, Schroeder C, Ossowski S, Brecht IB. UV-radiation and MC1R germline mutations are risk factors for the development of conventional and spitzoid melanomas in children and adolescents. EBioMedicine 2023; 96:104797. [PMID: 37716236 PMCID: PMC10511785 DOI: 10.1016/j.ebiom.2023.104797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING Found in Acknowledgement.
Collapse
Affiliation(s)
- Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Hannah Wild
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Michael Abele
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Olga Seibel-Kelemen
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Christian Seitz
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Malou Schadeck
- SYNLAB MVZ Human Genetics Freiburg GmbH, Freiburg, Germany
| | - Michaela Pogoda
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Ewa Bien
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Malgorzata Krawczyk
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thomas Mentzel
- Dermatohistopathology Friedrichshafen, Friedrichshafen, Germany
| | - Maja Cesen
- Department of Paediatric Haematology and Oncology, University Hospital Ljubljana, Ljubljana, Slovenia
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | - Stephan Forchhammer
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter-Stöppke
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Ines B Brecht
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Masson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, et alMasson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Hezode IR, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Texier C, Thomassin L, Tougeron D, Tsakiris L, Valats JC, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F. Classification of PRSS1 variants responsible for chronic pancreatitis: An expert perspective from the Franco-Chinese GREPAN study group. Pancreatology 2023; 23:491-506. [PMID: 37581535 DOI: 10.1016/j.pan.2023.04.004] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Donker HC, van Es B, Tamminga M, Lunter GA, van Kempen LCLT, Schuuring E, Hiltermann TJN, Groen HJM. Using genomic scars to select immunotherapy beneficiaries in advanced non-small cell lung cancer. Sci Rep 2023; 13:6581. [PMID: 37085581 PMCID: PMC10121673 DOI: 10.1038/s41598-023-32499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
In advanced non-small cell lung cancer (NSCLC), response to immunotherapy is difficult to predict from pre-treatment information. Given the toxicity of immunotherapy and its financial burden on the healthcare system, we set out to identify patients for whom treatment is effective. To this end, we used mutational signatures from DNA mutations in pre-treatment tissue. Single base substitutions, doublet base substitutions, indels, and copy number alteration signatures were analysed in [Formula: see text] patients (the discovery set). We found that tobacco smoking signature (SBS4) and thiopurine chemotherapy exposure-associated signature (SBS87) were linked to durable benefit. Combining both signatures in a machine learning model separated patients with a progression-free survival hazard ratio of 0.40[Formula: see text] on the cross-validated discovery set and 0.24[Formula: see text] on an independent external validation set ([Formula: see text]). This paper demonstrates that the fingerprints of mutagenesis, codified through mutational signatures, select advanced NSCLC patients who may benefit from immunotherapy, thus potentially reducing unnecessary patient burden.
Collapse
Affiliation(s)
- H C Donker
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - B van Es
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
- MedxAI, Theophile de Bockstraat 77-1, 1058 VA, Amsterdam, The Netherlands.
| | - M Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Internal Medicine, Twente Hospital, Enschede, The Netherlands
| | - G A Lunter
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ, Groningen, The Netherlands
| | - L C L T van Kempen
- Department Of Pathology, University of Antwerp, University Hospital Antwerp, 2650, Edegem, Belgium
| | - E Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - T J N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - H J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
6
|
Georgoulias G, Zaravinos A. Genomic landscape of the immunogenicity regulation in skin melanomas with diverse tumor mutation burden. Front Immunol 2022; 13:1006665. [PMID: 36389735 PMCID: PMC9650672 DOI: 10.3389/fimmu.2022.1006665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Skin melanoma cells are tightly interconnected with their tumor microenvironment (TME), which influences their initiation, progression, and sensitivity/resistance to therapeutic interventions. An immune-active TME favors patient response to immune checkpoint inhibition (ICI), but not all patients respond to therapy. Here, we assessed differential gene expression in primary and metastatic tumors from the TCGA-SKCM dataset, compared to normal skin samples from the GTEx project and validated key findings across 4 independent GEO datasets, as well as using immunohistochemistry in independent patient cohorts. We focused our attention on examining the expression of various immune receptors, immune-cell fractions, immune-related signatures and mutational signatures across cutaneous melanomas with diverse tumor mutation burdens (TMB). Globally, the expression of most immunoreceptors correlated with patient survival, but did not differ between TMBhigh and TMBlow tumors. Melanomas were enriched in "naive T-cell", "effector memory T-cell", "exhausted T-cell", "resting Treg T-cell" and "Th1-like" signatures, irrespective of their BRAF, NF1 or RAS mutational status. Somatic mutations in IDO1 and HLA-DRA were frequent and could be involved in hindering patient response to ICI therapies. We finally analyzed transcriptome profiles of ICI-treated patients and associated their response with high levels of IFNγ, Merck18, CD274, CD8, and low levels of myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs) and M2 macrophages, irrespective of their TMB status. Overall, our findings highlight the importance of pre-existing T-cell immunity in ICI therapeutic outcomes in skin melanoma and suggest that TMBlow patients could also benefit from such therapies.
Collapse
Affiliation(s)
- George Georgoulias
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| |
Collapse
|
7
|
Bergstrom EN, Kundu M, Tbeileh N, Alexandrov LB. Examining clustered somatic mutations with SigProfilerClusters. Bioinformatics 2022; 38:3470-3473. [PMID: 35595234 PMCID: PMC9237733 DOI: 10.1093/bioinformatics/btac335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Clustered mutations are found in the human germline as well as in the genomes of cancer and normal somatic cells. Clustered events can be imprinted by a multitude of mutational processes, and they have been implicated in both cancer evolution and development disorders. Existing tools for identifying clustered mutations have been optimized for a particular subtype of clustered event and, in most cases, relied on a predefined inter-mutational distance (IMD) cutoff combined with a piecewise linear regression analysis. RESULTS Here, we present SigProfilerClusters, an automated tool for detecting all types of clustered mutations by calculating a sample-dependent IMD threshold using a simulated background model that takes into account extended sequence context, transcriptional strand asymmetries and regional mutation densities. SigProfilerClusters disentangles all types of clustered events from non-clustered mutations and annotates each clustered event into an established subclass, including the widely used classes of doublet-base substitutions, multi-base substitutions, omikli and kataegis. SigProfilerClusters outputs non-clustered mutations and clustered events using standard data formats as well as provides multiple visualizations for exploring the distributions and patterns of clustered mutations across the genome. AVAILABILITY AND IMPLEMENTATION SigProfilerClusters is supported across most operating systems and made freely available at https://github.com/AlexandrovLab/SigProfilerClusters with an extensive documentation located at https://osf.io/qpmzw/wiki/home/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Mousumy Kundu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA,Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA,Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Noura Tbeileh
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA,Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA,Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | | |
Collapse
|
8
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Lanfranconi S, Piergallini L, Ronchi D, Valcamonica G, Conte G, Marazzi E, Manenti G, Bertani GA, Locatelli M, Triulzi F, Bresolin N, Scola E, Comi GP. Clinical, neuroradiological and genetic findings in a cohort of patients with multiple Cerebral Cavernous Malformations. Metab Brain Dis 2021; 36:1871-1878. [PMID: 34357553 DOI: 10.1007/s11011-021-00809-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Cerebral cavernous malformations (CCM) consist of clusters of irregular dilated capillaries and represent the second most common type of vascular malformation affecting the central nervous system. CCM might be asymptomatic or cause cerebral hemorrhage, seizures, recurrent headaches and focal neurologic deficits. Causative mutations underlining CCM have been reported in three genes: KRIT1/CCM1, MGC4607/CCM2 and PDCD10/CCM3. Therapeutic avenues are limited to surgery. Here we present clinical, neuroradiological and molecular findings in a cohort of familial and sporadic CCM patients. Thirty subjects underwent full clinical and radiological assessment. Molecular analysis was performed by direct sequencing and MLPA analysis. Twenty-eight of 30 subjects (93%) experienced one or more typical CCM disturbances with cerebral/spinal hemorrhage being the most common (43%) presenting symptom. A molecular diagnosis was achieved in 87% of cases, with three novel mutations identified. KRIT1/CCM1 patients displayed higher risk of de novo CCMs appearance and bleedings. Magnetic Resonance Imaging (MRI) showed that infratentorial region was more frequently affected in mutated subjects while brainstem was often spared in patients with negative genetic testing.
Collapse
Affiliation(s)
- Silvia Lanfranconi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Lorenzo Piergallini
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gloria Valcamonica
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Marazzi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulia Manenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Andrea Bertani
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elisa Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Sugiyama T, Keinard B, Best G, Sanyal MR. Biochemical and photochemical mechanisms that produce different UV-induced mutation spectra. Mutat Res 2021; 823:111762. [PMID: 34563793 DOI: 10.1016/j.mrfmmm.2021.111762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022]
Abstract
Although UV-induced mutagenesis has been studied extensively, the precise mechanisms that convert UV-induced DNA damage into mutations remain elusive. One well-studied mechanism involves DNA polymerase (Pol) η and ζ, which produces C > T transitions during translesion synthesis (TLS) across pyrimidine dimers. We previously proposed another biochemical mechanism that involves multiple UV-irradiations with incubation in the dark in between. The incubation facilitates spontaneous deamination of cytosine in a pyrimidine dimer, and the subsequent UV irradiation induces photolyase-independent (direct) photoreversal that converts cytosine into monomeric uracil residue. In this paper, we first demonstrate that natural sunlight can induce both mutational processes in vitro. The direct photoreversal was also reproduced by monochromatic UVB at 300 nm. We also demonstrate that post-irradiation incubation in the dark is required for both mutational processes, suggesting that cytosine deamination is required for both the Pol η/ζ-dependent and the photoreversal-dependent mechanisms. Another Y-family polymerase Pol ι also mediated a mutagenic TLS on UV-damaged templates when combined with Pol ζ. The Pol ι-dependent mutations were largely independent of post-irradiation incubation, indicating that cytosine deamination was not essential for this mutational process. Sunlight-exposure also induced C > A transversions which were likely caused by oxidation of guanine residues. Finally, we constructed in vitro mutation spectra in a comparable format to cancer mutation signatures. While both Pol η-dependent and photoreversal-dependent spectra showed high similarities to a cancer signature (SBS7a), Pol ι-dependent mutation spectrum has distinct T > A/C substitutions, which are found in another cancer signature (SBS7d). The Pol ι-dependent T > A/C substitutions were resistant to T4 pyrimidine dimer glycosylase-treatment, suggesting that this mutational process is independent of cis-syn pyrimidine dimers. An updated model about multiple mechanisms of UV-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA.
| | | | | | - Mahima R Sanyal
- Department of Biological Sciences; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
11
|
Hoes L, Dok R, Verstrepen KJ, Nuyts S. Ethanol-Induced Cell Damage Can Result in the Development of Oral Tumors. Cancers (Basel) 2021; 13:cancers13153846. [PMID: 34359747 PMCID: PMC8345464 DOI: 10.3390/cancers13153846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Alcohol consumption is linked to 26.4% of all lip and oral cavity cancer cases worldwide. Despite this clear causal relationship, the exact molecular mechanisms by which ethanol damages cells are still under investigation. It is well-established that the metabolism of ethanol plays an important role. Ethanol metabolism yields reactive metabolites that can directly damage the DNA. If the damage is repaired incorrectly, mutations can be fixed in the DNA sequence. Whenever mutations affect key regulatory genes, for instance cell cycle regulating genes, uncontrolled cell growth can be the consequence. Recently, global patterns of mutations have been identified. These so-called mutational signatures represent a fingerprint of the different mutational processes over time. Interestingly, there were ethanol-related signatures discovered that did not associate with ethanol metabolism. This finding highlights there might be other molecular effects of ethanol that are yet to be discovered. Abstract Alcohol consumption is an underestimated risk factor for the development of precancerous lesions in the oral cavity. Although alcohol is a well-accepted recreational drug, 26.4% of all lip and oral cavity cancers worldwide are related to heavy drinking. Molecular mechanisms underlying this carcinogenic effect of ethanol are still under investigation. An important damaging effect comes from the first metabolite of ethanol, being acetaldehyde. Concentrations of acetaldehyde detected in the oral cavity are relatively high due to the metabolization of ethanol by oral microbes. Acetaldehyde can directly damage the DNA by the formation of mutagenic DNA adducts and interstrand crosslinks. Additionally, ethanol is known to affect epigenetic methylation and acetylation patterns, which are important regulators of gene expression. Ethanol-induced hypomethylation can activate the expression of oncogenes which subsequently can result in malignant transformation. The recent identification of ethanol-related mutational signatures emphasizes the role of acetaldehyde in alcohol-associated carcinogenesis. However, not all signatures associated with alcohol intake also relate to acetaldehyde. This finding highlights that there might be other effects of ethanol yet to be discovered.
Collapse
Affiliation(s)
- Lore Hoes
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium; (L.H.); (K.J.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium;
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospital Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-1634-7600; Fax: +32-1634-7623
| |
Collapse
|
12
|
Díaz-Gay M, Alexandrov LB. Unraveling the genomic landscape of colorectal cancer through mutational signatures. Adv Cancer Res 2021; 151:385-424. [PMID: 34148618 DOI: 10.1016/bs.acr.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer, along with most other cancer types, is driven by somatic mutations. Characteristic patterns of somatic mutations, known as mutational signatures, arise as a result of the activities of different mutational processes. Mutational signatures have diverse origins, including exogenous and endogenous sources. In the case of colorectal cancer, the analysis of mutational signatures has elucidated specific signatures for classically associated DNA repair deficiencies, namely mismatch repair (leading to microsatellite instability), base excision repair (due to MUTYH or NTHL1 mutations), and polymerase proofreading (due to POLE and POLD1 exonuclease domain mutations). Additional signatures also play a role in colorectal cancer, including those related to normal aging and those associated with gut microbiota, as well as a number of signatures with unknown etiologies. This chapter provides an overview of the current knowledge of mutational signatures, with a focus on colorectal cancer and on the recently reported signatures in physiologically normal and inflammatory bowel disease-affected somatic colon tissues.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States.
| |
Collapse
|
13
|
Masson E, Rebours V, Buscail L, Frete F, Pagenault M, Lachaux A, Chevaux JB, Génin E, Cooper DN, Férec C, Chen JM. The reversion variant (p.Arg90Leu) at the evolutionarily adaptive p.Arg90 site in CELA3B predisposes to chronic pancreatitis. Hum Mutat 2021; 42:385-391. [PMID: 33565216 DOI: 10.1002/humu.24178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 01/15/2023]
Abstract
A gain-of-function missense variant in the CELA3B gene, p.Arg90Cys (c.268C>T), has recently been reported to cause pancreatitis in an extended pedigree. Herein, we sequenced the CELA3B gene in 644 genetically unexplained French chronic pancreatitis (CP) patients (all unrelated) and 566 controls. No obvious loss-of-function variants were identified. None of the six low-frequency or common missense variants detected showed significant association with CP. Nor did the aggregate rare/very rare missense variants (n = 14) show any significant association with CP. However, p.Arg90Leu (c.269G>T), which was found in four patients but no controls, and affects the same amino acid as p.Arg90Cys, serves to revert p.Arg90 to the human elastase ancestral allele. As p.Arg90Leu has previously been shown to exert a similar functional effect to that of p.Arg90Cys, our findings not only confirm the involvement of CELA3B in the etiology of CP but also pinpoint a new evolutionarily adaptive site in the human genome.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Vinciane Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Université de Paris, Paris, France
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Rangueil and University of Toulouse, Toulouse, France
| | - Frédérique Frete
- Service de Diabétologie-Endocrinologie, CH Libourne, Libourne, France
| | - Mael Pagenault
- Service des Maladies de l'Appareil Digestif, CHU Rennes, Rennes, France
| | - Alain Lachaux
- Service d'Hépatologie, Gastroentérologie et Nutrition pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| |
Collapse
|
14
|
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, Getz G, Rozen SG, Stratton MR. The repertoire of mutational signatures in human cancer. Nature 2020; 578:94-101. [PMID: 32025018 PMCID: PMC7054213 DOI: 10.1038/s41586-020-1943-3] [Citation(s) in RCA: 2166] [Impact Index Per Article: 433.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mi Ni Huang
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yang Wu
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Arnoud Boot
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle R Covington
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine, Department of Bioengineering, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| | - John R McPherson
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Radhakrishnan Sabarinathan
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ville Mustonen
- Department of Computer Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven G Rozen
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth, Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore.
| | | |
Collapse
|
15
|
Tang XY, Lin JH, Zou WB, Masson E, Boulling A, Deng SJ, Cooper DN, Liao Z, Férec C, Li ZS, Chen JM. Toward a clinical diagnostic pipeline for SPINK1 intronic variants. Hum Genomics 2019; 13:8. [PMID: 30755276 PMCID: PMC6373104 DOI: 10.1186/s40246-019-0193-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The clinical significance of SPINK1 intronic variants in chronic pancreatitis has been previously assessed by various approaches including a cell culture-based full-length gene assay. A close correlation between the results of this assay and in silico splicing prediction was apparent. However, until now, a clinical diagnostic pipeline specifically designed to classify SPINK1 intronic variants accurately and efficiently has been lacking. Herein, we present just such a pipeline and explore its efficacy and potential utility in potentiating the classification of newly described SPINK1 intronic variants. Results We confirm a close correlation between in silico splicing prediction and results from the cell culture-based full-length gene assay in the context of three recently reported pathogenic SPINK1 intronic variants. We then integrated in silico splicing prediction and the full-length gene assay into a stepwise approach and tested its utility in the classification of two novel datasets of SPINK1 intronic variants. The first dataset comprised 16 deep intronic variants identified in 52 genetically unexplained Chinese chronic pancreatitis patients by sequencing the entire intronic sequence of the SPINK1 gene. The second dataset comprised five novel rare proximal intronic variants identified through the routine analysis of the SPINK1 gene in French pancreatitis patients. Employing a minor allele frequency of > 5% as a population frequency filter, 6 of the 16 deep intronic variants were immediately classified as benign. In silico prediction of the remaining ten deep intronic variants and the five rare proximal intronic variants with respect to their likely impact on splice site selection suggested that only one proximal intronic variant, c.194 + 5G > A, was likely to be of functional significance. Employing the cell culture-based full-length gene assay, we functionally analyzed c.194 + 5G > A, together with seven predicted non-functional variants, thereby validating their predicted effects on splicing in all cases. Conclusions We demonstrated the accuracy and efficiency of in silico prediction in combination with the cell culture-based full-length gene assay for the classification of SPINK1 intronic variants. Based upon these findings, we propose an operational pipeline for classifying SPINK1 intronic variants in the clinical diagnostic setting. Electronic supplementary material The online version of this article (10.1186/s40246-019-0193-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France
| | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, 29200, Brest, France.
| |
Collapse
|
16
|
Supek F, Lehner B. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes. Cell 2017; 170:534-547.e23. [PMID: 28753428 DOI: 10.1016/j.cell.2017.07.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/17/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.
Collapse
Affiliation(s)
- Fran Supek
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Division of Electronics, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Ben Lehner
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
17
|
Koire A, Kim YW, Wang J, Katsonis P, Jin H, Lichtarge O. Codon-level co-occurrences of germline variants and somatic mutations in cancer are rare but often lead to incorrect variant annotation and underestimated impact prediction. PLoS One 2017; 12:e0174766. [PMID: 28350864 PMCID: PMC5370158 DOI: 10.1371/journal.pone.0174766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cancer cells explore a broad mutational landscape, bringing the possibility that tumor-specific somatic mutations could fall in the same codons as germline SNVs and leverage their presence to produce substitutions with a larger impact on protein function. While multiple, temporally consecutive mutations to the same codon have in the past been detected in the germline, this phenomenon has not yet been explored in the context of germline-somatic variant co-occurrences during cancer development. We examined germline context at somatic mutation sites for 1395 patients across four cancer cohorts (breast, skin, colon, and head and neck) and found 392 codon-level co-occurrences between germline and somatic variants, including over a dozen in well-known cancer genes. We found that for the majority of these co-occurrence events, traditional somatic calling led to an inaccurate representation of the protein site and a significantly lower predicted impact on protein fitness. We conclude that these events often lead to imprecise annotation of somatic variants but do not appear to be a frequent source of driver events during cancer development.
Collapse
Affiliation(s)
- Amanda Koire
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Young Won Kim
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jarey Wang
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Haijing Jin
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olivier Lichtarge
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
18
|
Bozkaya OG, Ataman E, Randa C, Cura DO, Gürsoy S, Aksel O, Ulgenalp A. Three novel mutations of CHD7 gene in two turkish patients with charge syndrome; A double point mutation and an insertion. Balkan J Med Genet 2016; 18:65-70. [PMID: 26929907 PMCID: PMC4768827 DOI: 10.1515/bjmg-2015-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The CHARGE (coloboma, heart defects, atresia, retardation, genital, ear) syndrome is a genetic disease characterized by ocular coloboma, choanal atresia or stenosis and semicircular canal abnormalities. Most of the patients clinically diagnosed with CHARGE syndrome have mutations in chromodomain helicase DNA-binding protein 7 (CHD7) gene. The CHD7 gene is located on chromosome 8q12.1, and up to now, there are more than 500 pathogenic mutations identified in the literature. We report two patients diagnosed with CHARGE syndrome with two novel mutations in the CHD7 gene: the first patient has double consecutive novel mutations in three adjacent codons, and the other has a novel insertion.
Collapse
Affiliation(s)
- O Giray Bozkaya
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - E Ataman
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - C Randa
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - D Onur Cura
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - S Gürsoy
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - O Aksel
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| | - A Ulgenalp
- Department of Pediatrics, Division of Genetics, Faculty of Medicine, Dokuz Eylul University, Inciralti, Izmir 35340, Turkey
| |
Collapse
|
19
|
Zhu W, Cooper DN, Zhao Q, Wang Y, Liu R, Li Q, Férec C, Wang Y, Chen JM. Concurrent nucleotide substitution mutations in the human genome are characterized by a significantly decreased transition/transversion ratio. Hum Mutat 2015; 36:333-41. [PMID: 25546635 DOI: 10.1002/humu.22749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/17/2014] [Indexed: 01/16/2023]
Abstract
There is accumulating evidence that the number of multiple-nucleotide substitutions (MNS) occurring in closely spaced sites in eukaryotic genomes is significantly higher than would be predicted from the random accumulation of independently generated single-nucleotide substitutions (SNS). Although this excess can in principle be accounted for by the concept of transient hypermutability, a general mutational signature of concurrent MNS mutations has not so far been evident. Employing a dataset (N = 449) of "concurrent" double MNS mutations causing human inherited disease, we have identified just such a mutational signature: concurrently generated double MNS mutations exhibit a >twofold lower transition/transversion ratio (termed RTs/Tv ) than independently generated de novo SNS mutations (<0.80 vs. 2.10; P = 2.69 × 10(-14) ). We replicated this novel finding through a similar analysis employing two double MNS variant datasets with differing abundances of concurrent events (150,521 variants with both substitutions on the same haplotypic lineage vs. 94,875 variants whose component substitutions were on different haplotypic lineages) plus 5,430,874 SNS variants, all being derived from the whole-genome sequencing of seven Chinese individuals. Evaluation of the newly observed mutational signature in diverse contexts provides solid support for the postulated role of translesion synthesis DNA polymerases in transient hypermutability.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Seplyarskiy VB, Bazykin GA, Soldatov RA. Polymerase ζ Activity Is Linked to Replication Timing in Humans: Evidence from Mutational Signatures. Mol Biol Evol 2015; 32:3158-72. [PMID: 26376651 DOI: 10.1093/molbev/msv184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replication timing is an important determinant of germline mutation patterns, with a higher rate of point mutations in late replicating regions. Mechanisms underlying this association remain elusive. One of the suggested explanations is the activity of error-prone DNA polymerases in late-replicating regions. Polymerase zeta (pol ζ), an essential error-prone polymerase biased toward transversions, also has a tendency to produce dinucleotide mutations (DNMs), complex mutational events that simultaneously affect two adjacent nucleotides. Experimental studies have shown that pol ζ is strongly biased toward GC→AA/TT DNMs. Using primate divergence data, we show that the GC→AA/TT pol ζ mutational signature is the most frequent among DNMs, and its rate exceeds the mean rate of other DNM types by a factor of approximately 10. Unlike the overall rate of DNMs, the pol ζ signature drastically increases with the replication time in the human genome. Finally, the pol ζ signature is enriched in transcribed regions, and there is a strong prevalence of GC→TT over GC→AA DNMs on the nontemplate strand, indicating association with transcription. A recurrently occurring GC→TT DNM in HRAS and SOD1 genes causes the Costello syndrome and amyotrophic lateral sclerosis correspondently; we observe an approximately 1 kb long mutation hotspot enriched by transversions near these DNMs in both cases, suggesting a link between these diseases and pol ζ activity. This study uncovers the genomic preferences of pol ζ, shedding light on a novel cause of mutational heterogeneity along the genome.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgii A Bazykin
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ruslan A Soldatov
- Institute of Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Chen JM, Férec C, Cooper DN. Complex Multiple-Nucleotide Substitution Mutations Causing Human Inherited Disease Reveal Novel Insights into the Action of Translesion Synthesis DNA Polymerases. Hum Mutat 2015; 36:1034-8. [PMID: 26172832 DOI: 10.1002/humu.22831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases allow the bypass of unrepaired lesions during DNA replication. Based upon mutational signatures of a subtype of multiple-nucleotide substitution (MNS) mutations causing human inherited disease, we have recently postulated two properties of TLS DNA polymerases in DNA repair, namely, the generation of neo-microhomologies potentiating strand-misalignment, and additional microlesions within the templated inserts when recruited to stalled replication forks. To provide further support for this postulate, we analyzed the mutational signatures of a new and complex subtype of pathogenic MNS mutation. Several mutations containing long templated inserts (8-19 bp) that are highly informative with regard to their underlying mutational mechanisms, harbor imprints of TLS DNA polymerase action. Dissecting the mechanism underlying the generation of the 19-bp insert implicated repeated participation of TLS DNA polymerases in the conversion of a damaged base into a complex MNS lesion through a process of successive template switching and bypass repair.
Collapse
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Su P, Wang Y, Cooper DN, Zhu W, Huang D, Férec C, Wang Y, Chen JM. Disclosing the Hidden Structure and Underlying Mutational Mechanism of a Novel Type of Duplication CNV Responsible for Hereditary Multiple Osteochondromas. Hum Mutat 2015; 36:758-63. [PMID: 25990786 DOI: 10.1002/humu.22815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 02/05/2023]
Abstract
The additional mutational complexity associated with copy number variation (CNV) can provide important clues as to the underlying mechanisms of CNV formation. Correct annotation of the additional mutational complexity is, however, a prerequisite for establishing the mutational mechanism. We illustrate this point through the characterization of a novel ∼230 kb EXT1 duplication CNV causing autosomal dominant hereditary multiple osteochondromas. Whole-genome sequencing initially identified the CNV as having a 22-bp insertion at the breakpoint junction and, unprecedentedly, multiple breakpoint-flanking micromutations on both sides of the duplication. Further investigation revealed that this genomic rearrangement had a duplication-inverted triplication-duplication structure, the inverted triplication being a 41-bp sequence synthesized from a nearby template. This permitted the identification of the sequence determinants of both the initiation (an inverted Alu repeat) and termination (a triplex-forming sequence) of break-induced replication and suggested a possible model for the repair of replication-associated double-strand breaks.
Collapse
Affiliation(s)
- Peiqiang Su
- Department of Orthopedics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Wang
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wenjuan Zhu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Yiming Wang
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, China.,Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| |
Collapse
|
23
|
Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions. Hum Genet 2015; 134:589-603. [DOI: 10.1007/s00439-015-1539-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
24
|
Phenotypic expansion of visceral myopathy associated with ACTG2 tandem base substitution. Eur J Hum Genet 2015; 23:1679-83. [PMID: 25782675 DOI: 10.1038/ejhg.2015.49] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/22/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
Familial visceral myopathy (FVM) is a rare heritable and heterogeneous condition due to impaired smooth muscle function. We identified a family segregating 11 individuals with a spectrum of visceral symptoms involving the small intestine, colon, biliary tract, urinary tract and uterus. Whole-exome sequencing revealed a novel heterozygous tandem base substitution c.806_807delinsAA (p.(Gly269Glu)) in ACTG2, encoding smooth muscle actin γ-2, in affected family members. Variants in ACTG2 were recently identified in FVM with intestinal pseudo-obstruction as well as with the congenital megacystics-microcolon-intestinal hypoperistalsis syndrome. In our family, eight affected members presented with severe complications from the biliary and/or the urinary tracts in addition to gastrointestinal pseudo-obstructions. Furthermore, all affected mothers had a history of assisted deliveries owing to poor progress during labor and weak uterine contractions. The variable involvement of multiple smooth muscle-dependent organs in our family, including the biliary tract and the uterus, add to the phenotypic spectrum associated with ACTG2 missense variants.
Collapse
|
25
|
Renoux C, Feray C, Joly P, Zanella-Cleon I, Garcia C, Lacan P, Couprie N, Francina A. A new hemoglobin variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T] with a double base mutation at the same codon. Hemoglobin 2014; 39:46-8. [PMID: 25476778 DOI: 10.3109/03630269.2014.982760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report a new β-globin chain variant: Hb Meylan [β73(E17)Asp → Phe; HBB: c.220G>T; c.221A>T]. The new variant results from a double nucleotide mutation at the same codon. The possible molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Céline Renoux
- Unité de Pathologie Moléculaire du Globule Rouge, Hôpital Edouard Herriot , Lyon , France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lumaka A, Mubungu G, Mukaba P, Mutantu P, Luyeye G, Corveleyn A, Tady BP, Lukusa Tshilobo P, Devriendt K. A novel heterozygous mutation of three consecutive nucleotides causing Apert syndrome in a Congolese family. Eur J Med Genet 2014; 57:169-73. [PMID: 24486773 DOI: 10.1016/j.ejmg.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/15/2014] [Indexed: 11/27/2022]
Abstract
Apert syndrome (OMIM 101200) is a rare genetic condition characterized by craniosynostosis and syndactyly of hands and feet with clinical variability. Two single nucleotides mutations in the linker region between the immunoglobulin-like domains II and IIIa of the ectodomainin the Fibroblast Growth Factor Receptor 2 gene (FGFR2, OMIM 176943) are responsible of the vast majority of cases: c.755C > G; p.Ser252Trp (65%) and c.758C > G; p.Pro253Arg (34%. Three exceptional cases carry multiple substitutions of adjacent nucleotides in the linker region. Here we present a Congolese male patient and his mother, both affected with Apert syndrome of variable severity, carrying a previously undescribed heterozygous mutation of three consecutive nucleotides (c.756_758delGCCinsCTT) in the IgII-IgIIIa linker region. This is the fourth live-born patient to carry a multiple nucleotide substitution in the linker region and is the second alternative amino acid substitutions of the Pro253. Remarkably, this novel mutation was detected in the first Central African patient ever to be tested molecularly for the Apert syndrome. To discriminate between a hitherto unreported mutation and an ethnic specific polymorphism, we tested 105 Congolese controls, and no variation was detected.
Collapse
Affiliation(s)
- Aimé Lumaka
- Centre for Human Genetics, University Hospitals, University of Leuven, P.O. Box 602, 3000 Leuven, Belgium; Center for Human Genetics, Faculty of Medicine, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; Department of Pediatrics, University Hospitals, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; INRB, Institut National de Recherche Biomedicale, P.O. Box, Kin I, Kinshasa, The Democratic Republic of the Congo
| | - Gerrye Mubungu
- Center for Human Genetics, Faculty of Medicine, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; Department of Pediatrics, University Hospitals, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; INRB, Institut National de Recherche Biomedicale, P.O. Box, Kin I, Kinshasa, The Democratic Republic of the Congo
| | - Papino Mukaba
- Department of Surgery, University Hospitals, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo
| | - Pierre Mutantu
- Center for Human Genetics, Faculty of Medicine, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; INRB, Institut National de Recherche Biomedicale, P.O. Box, Kin I, Kinshasa, The Democratic Republic of the Congo
| | - Gertrude Luyeye
- Department of Medical Imaging, Provincial General Hospital of Kinshasa, P.O. Box, Kin I, Kinshasa, The Democratic Republic of the Congo
| | - Anniek Corveleyn
- Centre for Human Genetics, University Hospitals, University of Leuven, P.O. Box 602, 3000 Leuven, Belgium
| | - Bruno-Paul Tady
- Center for Human Genetics, Faculty of Medicine, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; Department of Pediatrics, University Hospitals, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo
| | - Prosper Lukusa Tshilobo
- Centre for Human Genetics, University Hospitals, University of Leuven, P.O. Box 602, 3000 Leuven, Belgium; Center for Human Genetics, Faculty of Medicine, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; Department of Pediatrics, University Hospitals, University of Kinshasa, P.O. Box 123, Kin XI, Kinshasa, The Democratic Republic of the Congo; INRB, Institut National de Recherche Biomedicale, P.O. Box, Kin I, Kinshasa, The Democratic Republic of the Congo
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospitals, University of Leuven, P.O. Box 602, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Chen JM, Cooper DN, Férec C. A new and more accurate estimate of the rate of concurrent tandem-base substitution mutations in the human germline: ∼0.4% of the single-nucleotide substitution mutation rate. Hum Mutat 2014; 35:392-4. [PMID: 24375656 DOI: 10.1002/humu.22501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France; Etablissement Français du Sang (EFS) - Bretagne, Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France; Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | | | | |
Collapse
|
28
|
Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. Proc Natl Acad Sci U S A 2013; 110:20152-7. [PMID: 24259709 DOI: 10.1073/pnas.1311381110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.
Collapse
|