1
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Nag A, Kurushima Y, Bowyer RCE, Wells PM, Weiss S, Pietzner M, Kocher T, Raffler J, Völker U, Mangino M, Spector TD, Milburn MV, Kastenmüller G, Mohney RP, Suhre K, Menni C, Steves CJ. Genome-wide scan identifies novel genetic loci regulating salivary metabolite levels. Hum Mol Genet 2020; 29:864-875. [PMID: 31960908 PMCID: PMC7104674 DOI: 10.1093/hmg/ddz308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Saliva, as a biofluid, is inexpensive and non-invasive to obtain, and provides a vital tool to investigate oral health and its interaction with systemic health conditions. There is growing interest in salivary biomarkers for systemic diseases, notably cardiovascular disease. Whereas hundreds of genetic loci have been shown to be involved in the regulation of blood metabolites, leading to significant insights into the pathogenesis of complex human diseases, little is known about the impact of host genetics on salivary metabolites. Here we report the first genome-wide association study exploring 476 salivary metabolites in 1419 subjects from the TwinsUK cohort (discovery phase), followed by replication in the Study of Health in Pomerania (SHIP-2) cohort. A total of 14 distinct locus-metabolite associations were identified in the discovery phase, most of which were replicated in SHIP-2. While only a limited number of the loci that are known to regulate blood metabolites were also associated with salivary metabolites in our study, we identified several novel saliva-specific locus-metabolite associations, including associations for the AGMAT (with the metabolites 4-guanidinobutanoate and beta-guanidinopropanoate), ATP13A5 (with the metabolite creatinine) and DPYS (with the metabolites 3-ureidopropionate and 3-ureidoisobutyrate) loci. Our study suggests that there may be regulatory pathways of particular relevance to the salivary metabolome. In addition, some of our findings may have clinical significance, such as the utility of the pyrimidine (uracil) degradation metabolites in predicting 5-fluorouracil toxicity and the role of the agmatine pathway metabolites as biomarkers of oral health.
Collapse
Affiliation(s)
- Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yuko Kurushima
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Philippa M Wells
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Stefan Weiss
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald & University of Greifswald, 17489 Greifswald, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald & University of Greifswald, 17489 Greifswald, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Michael V Milburn
- Discovery and Translational Sciences, Metabolon, Inc., Morrisville, NC 27560, USA
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Robert P Mohney
- Discovery and Translational Sciences, Metabolon, Inc., Morrisville, NC 27560, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| |
Collapse
|
3
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
4
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
5
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
6
|
Davidson BA, Hassan S, Garcia EJ, Tayebi N, Sidransky E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat 2018; 39:1739-1751. [PMID: 30098107 PMCID: PMC6240360 DOI: 10.1002/humu.23611] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022]
Abstract
Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from mutations in the gene GBA1 that lead to a deficiency in the enzyme glucocerebrosidase. Accumulation of the enzyme's substrates, glucosylceramide and glucosylsphingosine, results in symptoms ranging from skeletal and visceral involvement to neurological manifestations. Nonetheless, there is significant variability in clinical presentations amongst patients, with limited correlation between genotype and phenotype. Contributing to this clinical variation are genetic modifiers that influence the phenotypic outcome of the disorder. In this review, we explore the role of genetic modifiers in Mendelian disorders and describe methods to facilitate their discovery. In addition, we provide examples of candidate modifiers of Gaucher disease, explore their relevance in the development of potential therapeutics, and discuss the impact of GBA1 and modifying mutations on other more common diseases like Parkinson disease. Identifying these important modulators of Gaucher phenotype may ultimately unravel the complex relationship between genotype and phenotype and lead to improved counseling and treatments.
Collapse
Affiliation(s)
- Brad A. Davidson
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Shahzeb Hassan
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Eric Joshua Garcia
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Ortiz-Cabrera N, Gallego-Merlo J, Vélez-Monsalve C, de Nicolas R, Mas SF, Ayuso C, Trujillo-Tiebas M. Nine-year experience in Gaucher disease diagnosis at the Spanish reference center Fundación Jiménez Díaz. Mol Genet Metab Rep 2016; 9:79-85. [PMID: 27872820 PMCID: PMC5109262 DOI: 10.1016/j.ymgmr.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fundación Jiménez Díaz (FJD) is a reference center for genetic diagnosis of Gaucher disease (GD) in Spain. Genetic analyses of acid β-glucosidase (GBA) gene using different techniques were performed to search for new mutations, in addition to those previously and most frequently found in the Spanish population. Additionally, the study of the chitotriosidase (CHIT1) gene was used to assess the inflammatory status of patients in the follow-up of enzyme replacement therapy (ERT). We present the genetic data gathered during the last nine years at FJD. METHODS Blood samples from patients with suspected GD were collected for enzymatic and genetic analyses. The genetic analysis was performed on DNA from 124 unrelated suspected cases and 57 relatives from 2007 to 2015, starting with a mutational screening kit, followed by Sanger sequencing of the entire gene and other techniques to look for deletions. CHIT1 was also studied to assess the reliability of this biomarker. RESULTS In 46 out of 93 GD patients (49.5%) the two mutant alleles were found. We detected 21 different mutations. The most common mutation was N370S (c.126A > G; p.Asp409Ser current nomenclature) (in 50.5% of patients), followed by L444P (c.1448T > C; p.Leu483Pro current nomenclature) (in 24.7%). The most common heterozygous compound genotype observed (18.3%) was c.1226A > G/c.1448T > C (N370S/L444P). Two novel mutations were found (del. Ex.4-11 and c.1296G > T; pW432C), as well as p.S146L, only once previously reported. Two patients showed the homozygous state for the duplication of CHIT1. CONCLUSION N370S and L444P are the most common mutations and other mutations associated to Parkinson's disease have been observed. This should be taken into account in the genetic counseling of GD patients.
Collapse
Affiliation(s)
- N.V. Ortiz-Cabrera
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- Department of Clinical Analysis, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - J. Gallego-Merlo
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Vélez-Monsalve
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - R. de Nicolas
- Diabetes, Nephrology and Vascular Pathology Research Laboratory, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - S. Fontao Mas
- Diabetes, Nephrology and Vascular Pathology Research Laboratory, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
| | - C. Ayuso
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| | - M.J. Trujillo-Tiebas
- Department of Genetics, Health Research Institute–Jimenez Diaz Foundation University Hospital (IIS-FJD), Universidad Autónoma de Madrid, Spain
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Vitoria Miñana I, Dalmau Serra J. Gaucher disease: Enzyme replacement treatment initiated at pediatric age; 20-year experience. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Vitoria Miñana I, Dalmau Serra J. Enfermedad de Gaucher: tratamiento enzimático sustitutivo iniciado en la edad pediátrica. Experiencia de 20 años. An Pediatr (Barc) 2016; 84:343-6. [DOI: 10.1016/j.anpedi.2015.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022] Open
|
10
|
Abstract
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.
Collapse
Affiliation(s)
- Carmen A Argmann
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
11
|
Mistry PK, Belmatoug N, vom Dahl S, Giugliani R. Understanding the natural history of Gaucher disease. Am J Hematol 2015; 90 Suppl 1:S6-11. [PMID: 26096746 DOI: 10.1002/ajh.24055] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gaucher disease is a rare and extraordinarily heterogeneous inborn error of metabolism that exhibits diverse manifestations, a broad range of age of onset of symptoms, and a wide clinical spectrum of disease severity, from lethal disease during infancy to first age of onset of symptoms in octogenarians. Before the advent of the International Collaborative Gaucher Group (ICGG) Gaucher Registry, the understanding of the natural history and phenotypic range of Gaucher disease was based on isolated case reports and small case series. Limited data hindered understanding of the full spectrum of the disease leading to some early misconceptions about Gaucher disease, notably, that nonneuronopathic (type 1) disease was a disease of adults only. The global scope of the ICGG Gaucher Registry, with its vast body of longitudinal data, has enabled a real appreciation of both the phenotypic spectrum of Gaucher disease and its natural history. This body of evidence represents the foundation for accurate assessment of the response to specific therapies for Gaucher disease and to the development of standard-of-care to monitor disease activity. Here, we outline the key developments in delineating the natural history of this highly complex disease and role of the ICGG Gaucher Registry in this effort.
Collapse
Affiliation(s)
- Pramod K. Mistry
- Department of Internal Medicine Yale University School of Medicine; New Haven Connecticut, USA
| | - Nadia Belmatoug
- Department of Internal Medicine; Reference Center for Lysosomal Diseases; Beaujon Hospital, Clichy, Assistance Publique-Hôpitaux De Paris France
| | - Stephan vom Dahl
- Department of Gastroenterology, Hepatology and Infectious Diseases; University Hospital, University of Düesseldorf; Düsseldorf Germany
| | - Roberto Giugliani
- Department of Genetics/UFRGS and INAGEMP; Medical Genetics Service/HCPA; Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
12
|
Ferraz MJ, Kallemeijn WW, Mirzaian M, Herrera Moro D, Marques A, Wisse P, Boot RG, Willems LI, Overkleeft H, Aerts J. Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:811-25. [DOI: 10.1016/j.bbalip.2013.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|