1
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
2
|
He Z, Zhu Z, Tang T, Wang F, Guo P, Li J, Tung NTC, Liang Q, Liu S, Gao M, Liu X, Zhou Z. Enpp1 mutations promote upregulation of hedgehog signaling in heterotopic ossification with aging. J Bone Miner Metab 2024; 42:681-698. [PMID: 39212714 PMCID: PMC11632054 DOI: 10.1007/s00774-024-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Heterotopic ossification of the tendon and ligament (HOTL) is a chronic progressive disease that is usually accompanied by thickening and ossification of ligaments and high osteogenic activity of the surrounding ligament tissue. However, the molecular mechanism of maintaining the cellular phenotype of HOTL remains unclear. MATERIALS AND METHODS We first constructed a model of HOTL, Enpp1flox/flox/EIIa-Cre mice, a novel genetic mouse system. Imaging, histological, and cell-level analyses were performed to investigate the progressive ossification of the posterior longitudinal ligament, Achilles tendons, and degeneration joints caused by Enpp1 deficiency. RESULTS The results indicate that Enpp1 deficiency led to markedly progressive heterotopic ossification (HO), especially spine, and Achilles tendons, and was associated with progressive degeneration of the knees. The bone mass was decreased in the long bone. Furthermore, fibroblasts from Enpp1flox/flox/EIIa-Cre mice had greater osteogenic differentiation potential following induction by osteogenesis, accompanied by enhanced hedgehog (Hh) signaling. In addition, fibroblast cells show senescence, and aggravation of the senescence phenotype by further osteogenic induction. CONCLUSION Our study indicated that with increasing age, mutations in Enpp1 promote ectopic ossification of spinal ligaments and endochondral ossification in tendons and further aggravate knee degeneration by upregulating hedgehog signaling.
Collapse
Affiliation(s)
- Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Qian Liang
- Department of Spine Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518025, China
| | - Shaoyu Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510062, China
| | - ManMan Gao
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518025, China.
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510062, China.
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China.
| |
Collapse
|
3
|
Matsushita K, Sato C, Bruckert C, Gong D, Amissi S, Hmadeh S, Fakih W, Remila L, Lessinger JM, Auger C, Jesel L, Ohlmann P, Kauffenstein G, Schini-Kerth VB, Morel O. Potential of dapagliflozin to prevent vascular remodeling in the rat carotid artery following balloon injury. Atherosclerosis 2024; 397:117595. [PMID: 38879387 DOI: 10.1016/j.atherosclerosis.2024.117595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND AIMS Sodium-glucose co-transporter 2 (SGLT2) inhibitors have been shown to reduce the risk of cardiovascular events independently of glycemic control. However, the possibility that SGLT2 inhibitors improve vascular restenosis is unknown. The aim of this study was to examine whether dapagliflozin could prevent neointima thickening following balloon injury and, if so, to determine the underlying mechanisms. METHODS Saline, dapagliflozin (1.5 mg/kg/day), or losartan (30 mg/kg/day) was administered orally for five weeks to male Wistar rats. Balloon injury of the left carotid artery was performed a week after starting the treatment and rats were sacrificed 4 weeks later. The extent of neointima was assessed by histomorphometric and immunofluorescence staining analyses. Vascular reactivity was assessed on injured and non-injured carotid artery rings, changes of target factors by immunofluorescence, RT-qPCR, and histochemistry. RESULTS Dapagliflozin and losartan treatments reduced neointima thickening by 32 % and 27 %, respectively. Blunted contractile responses to phenylephrine and relaxations to acetylcholine and down-regulation of eNOS were observed in the injured arteries. RT-qPCR investigations indicated an increased in gene expression of inflammatory (IL-1beta, VCAM-1), oxidative (p47phox, p22phox) and fibrotic (TGF-beta1) markers in the injured carotid. While these changes were not affected by dapagliflozin, increased levels of AT1R and NTPDase1 (CD39) and decreased levels of ENPP1 were observed in the restenotic carotid artery of the dapagliflozin group. CONCLUSIONS Dapagliflozin effectively reduced neointimal thickening. The present data suggest that dapagliflozin prevents restenosis through interfering with angiotensin and/or extracellular nucleotides signaling. SGLT2 represents potential new target for limiting vascular restenosis.
Collapse
Affiliation(s)
- Kensuke Matsushita
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France; Université de Strasbourg, Pôle D'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France
| | - Chisato Sato
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France; Université de Strasbourg, Pôle D'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France
| | - Christophe Bruckert
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - DalSeong Gong
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Said Amissi
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Sandy Hmadeh
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Walaa Fakih
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Lamia Remila
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Jean-Marc Lessinger
- CHU de Strasbourg, Laboratoire de Biochimie Clinique et Biologie Moléculaire, 67091, Strasbourg, France
| | - Cyril Auger
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Laurence Jesel
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France; Université de Strasbourg, Pôle D'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France
| | - Patrick Ohlmann
- Université de Strasbourg, Pôle D'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France
| | - Gilles Kauffenstein
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France
| | - Olivier Morel
- UR 3074, Translational CardioVascular Medicine, Biomedicine Research Centre of Strasbourg, FMTS, Université de Strasbourg, Strasbourg, France; Université de Strasbourg, Pôle D'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, Strasbourg, France; Hanoï Medical University, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Ansh AJ, Stabach PR, Ciccone C, Cao W, De La Cruz EM, Sabbagh Y, Carpenter TO, Ferreira CR, Braddock DT. Quantitative correlation of ENPP1 pathogenic variants with disease phenotype. Bone 2024; 186:117136. [PMID: 38806089 PMCID: PMC11227391 DOI: 10.1016/j.bone.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.
Collapse
Affiliation(s)
- Anenya Jai Ansh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla Ciccone
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St., Suite 400, Boston, MA 02201, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Dangreau L, Nitschke Y, Rutsch F, Vanakker OM. Rapidly Progressive Peripheral Artery Disease: Importance of Oligogenic Inheritance and Functional Validation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004574. [PMID: 38916187 DOI: 10.1161/circgen.124.004574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Affiliation(s)
- Lisa Dangreau
- Center for Medical Genetics, Ghent University Hospital (L.D., O.M.V.), Ghent University, Belgium
- Department of Biomolecular Medicine (L.D., O.M.V.), Ghent University, Belgium
- Ghent Ectopic Mineralization Research Group (L.D., O.M.V.)
| | - Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Germany (Y.N., F.R.)
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Germany (Y.N., F.R.)
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital (L.D., O.M.V.), Ghent University, Belgium
- Department of Biomolecular Medicine (L.D., O.M.V.), Ghent University, Belgium
- Ghent Ectopic Mineralization Research Group (L.D., O.M.V.)
| |
Collapse
|
6
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
7
|
Mercurio SA, Chunn LM, Khursigara G, Nester C, Wray K, Botschen U, Kiel MJ, Rutsch F, Ferreira CR. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Hum Mutat 2022; 43:1673-1705. [PMID: 36150100 DOI: 10.1002/humu.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.
Collapse
Affiliation(s)
- Stephanie A Mercurio
- Department of Data Science, Curation Division, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Lauren M Chunn
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Gus Khursigara
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Catherine Nester
- Department of Physician and Patient Strategies, Inozyme Pharma, Boston, Massachusetts, USA
| | - Kathleen Wray
- Department of Medical Affairs, Inozyme Pharma, Boston, Massachusetts, USA
| | - Ulrike Botschen
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Mark J Kiel
- Department of Scientific Communication and Strategy, Genomenon Inc., Ann Arbor, Michigan, USA
| | - Frank Rutsch
- Department of General Paediatrics, Muenster University Children's Hospital, Münster, Germany
| | - Carlos R Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ralph D, Levine MA, Richard G, Morrow M, Flynn E, Uitto J, Li Q. Mutation update: Variants of the ENPP1 gene in pathologic calcification, hypophosphatemic rickets, and cutaneous hypopigmentation with punctate keratoderma. Hum Mutat 2022; 43:1183-1200. [PMID: 35475527 PMCID: PMC9357117 DOI: 10.1002/humu.24391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
ENPP1 encodes ENPP1, an ectonucleotidase catalyzing hydrolysis of ATP to AMP and inorganic pyrophosphate (PPi), and an endogenous plasma protein physiologically preventing ectopic calcification of connective tissues. Mutations in ENPP1 have been reported in association with a range of human genetic diseases. In this mutation update, we provide a comprehensive review of all the pathogenic variants, likely pathogenic variants, and variants of unknown significance in ENPP1 associated with three autosomal recessive disorders-generalized arterial calcification of infancy (GACI), autosomal recessive hypophosphatemic rickets type 2 (ARHR2), and pseudoxanthoma elasticum (PXE), as well as with a predominantly autosomal dominant disorder-Cole disease. The classification of all variants is determined using the latest ACMG guidelines. A total of 140 ENPP1 variants were curated consisting of 133 previously reported variants and seven novel variants, with missense variants being the most prevalent (70.0%, 98/140). While the pathogenic variants are widely distributed in the ENPP1 gene of patientsgen without apparent genotype-phenotype correlation, eight out of nine variants associated with Cole disease are confined to the somatomedin-B-like (SMB) domains critical for homo-dimerization of the ENPP1 protein.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
9
|
Kato H, Ansh AJ, Lester ER, Kinoshita Y, Hidaka N, Hoshino Y, Koga M, Taniguchi Y, Uchida T, Yamaguchi H, Niida Y, Nakazato M, Nangaku M, Makita N, Takamura T, Saito T, Braddock DT, Ito N. Identification of ENPP1 Haploinsufficiency in Patients With Diffuse Idiopathic Skeletal Hyperostosis and Early-Onset Osteoporosis. J Bone Miner Res 2022; 37:1125-1135. [PMID: 35340077 PMCID: PMC9177665 DOI: 10.1002/jbmr.4550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Anenya J. Ansh
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitomo Hoshino
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Minae Koga
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Taniguchi
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Taisuke Uchida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Yamaguchi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Noriko Makita
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Taku Saito
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Szeri F, Niaziorimi F, Donnelly S, Fariha N, Tertyshnaia M, Patel D, Lundkvist S, van de Wetering K. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. J Bone Miner Res 2022; 37:1024-1031. [PMID: 35147247 PMCID: PMC9098669 DOI: 10.1002/jbmr.4528] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022]
Abstract
The plasma membrane protein ankylosis homologue (ANKH, mouse ortholog: Ank) prevents pathological mineralization of joints by controlling extracellular levels of the mineralization inhibitor pyrophosphate (PPi). It was long thought that ANKH acts by transporting PPi into the joints. We recently showed that when overproduced in HEK293 cells, ANKH mediates release of large amounts of nucleoside triphosphates (NTPs), predominantly ATP, into the culture medium. ATP is converted extracellularly into PPi and AMP by the ectoenzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). We could not rule out, however, that cells also release PPi directly via ANKH. We now addressed the question of whether PPi leaves cells via ANKH using HEK293 cells that completely lack ENPP1. Introduction of ANKH in these ENPP1-deficient HEK293 cells resulted in robust cellular ATP release without the concomitant increase in extracellular PPi found in ENPP1-proficient cells. Ank activity was previously shown to be responsible for about 75% of the PPi found in mouse bones. However, bones of Enpp1-/- mice contained <2.5% of the PPi found in bones of wild-type mice, showing that Enpp1 activity is also a prerequisite for Ank-dependent PPi incorporation into the mineralized bone matrix in vivo. Hence, ATP release precedes ENPP1-mediated PPi formation. We find that ANKH also provides about 25% of plasma PPi, whereas we have previously shown that 60% to 70% of plasma PPi is derived from the NTPs extruded by the ABC transporter, ABCC6. Both transporters that keep plasma PPi at sufficient levels to prevent pathological calcification therefore do so by extruding NTPs rather than PPi itself. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nishat Fariha
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mariia Tertyshnaia
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Drithi Patel
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stefan Lundkvist
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Ralph D, Nitschke Y, Levine MA, Caffet M, Wurst T, Saeidian AH, Youssefian L, Vahidnezhad H, Terry SF, Rutsch F, Uitto J, Li Q. ENPP1 variants in patients with GACI and PXE expand the clinical and genetic heterogeneity of heritable disorders of ectopic calcification. PLoS Genet 2022; 18:e1010192. [PMID: 35482848 PMCID: PMC9089899 DOI: 10.1371/journal.pgen.1010192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are clinically distinct genetic entities of ectopic calcification associated with differentially reduced circulating levels of inorganic pyrophosphate (PPi), a potent endogenous inhibitor of calcification. Variants in ENPP1, the gene mutated in GACI, have not been associated with classic PXE. Here we report the clinical, laboratory, and molecular evaluations of ten GACI and two PXE patients from five and two unrelated families registered in GACI Global and PXE International databases, respectively. All patients were found to carry biallelic variants in ENPP1. Among ten ENPP1 variants, one homozygous variant demonstrated uniparental disomy inheritance. Functional assessment of five previously unreported ENPP1 variants suggested pathogenicity. The two PXE patients, currently 57 and 27 years of age, had diagnostic features of PXE and had not manifested the GACI phenotype. The similarly reduced PPi plasma concentrations in the PXE and GACI patients in our study correlate poorly with their disease severity. This study demonstrates that in addition to GACI, ENPP1 variants can cause classic PXE, expanding the clinical and genetic heterogeneity of heritable ectopic calcification disorders. Furthermore, the results challenge the current prevailing concept that plasma PPi is the only factor governing the severity of ectopic calcification. Biallelic inactivating mutations in the ENPP1 gene cause generalized arterial calcification of infancy (GACI), a frequently fatal disease characterized by infantile onset of widespread arterial calcification and/or narrowing of large and medium-sized vessels often resulting in the early demise of affected individuals. Significantly reduced, almost zero plasma levels of a potent and endogenous calcification inhibitor, inorganic pyrophosphate (PPi), is thought to be the underlying cause of vascular calcification in GACI. Mutations in ENPP1 have not been found in patients with pseudoxanthoma elasticum (PXE), another genetic multisystem ectopic calcification disorder caused by mutations in the ABCC6 gene. This study reports that ENPP1 mutations can also cause PXE with more favorable clinical outcomes. In addition, it was previously thought that plasma PPi levels correlate with vascular calcification severity. However, we here show that vascular calcification severity does not correlate with plasma PPi levels. The results suggest that in addition to PPi, the long-believed determinant of ectopic calcification, additional mechanisms may be at play in regulating ectopic calcification.
Collapse
Affiliation(s)
- Douglas Ralph
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | | | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Matthew Caffet
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Tamara Wurst
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sharon F. Terry
- PXE International, Inc., Damascus, Maryland, United States of America
| | - Frank Rutsch
- Münster University Children’s Hospital, Münster, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Novel and successful treatment of generalized arterial calcification of infancy in a patient with previously undescribed mutation in ENPP1. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Bulfamante GP, Carpenito L, Bragantini E, Graziani S, Bellizzi M, Bagowski CP, Shoukier M, Rivieri F, Soffiati M, Barbareschi M. Generalized Arterial Calcification of Infancy Type 1 (GACI1): Identification of a Novel Pathogenic Variant (c.1715T>C (p.Leu572Ser)). Diagnostics (Basel) 2021; 11:diagnostics11061034. [PMID: 34199854 PMCID: PMC8229691 DOI: 10.3390/diagnostics11061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Generalized Arterial Calcification of Infancy (GACI) is a rare disease inherited in a recessive manner, with severe and diffuse early onset of calcifications along the internal elastic lamina in large and medium size arteries. The diagnosis results are from clinical manifestations, imaging, histopathologic exams, and genetic tests. GACI is predominantly caused by biallelic pathogenic variant in the ENPP1 gene (GACI1, OMIM#208000) and, to a lesser extent, by pathogenic variants in the ABCC6 gene (GACI2, OMIM#614473). We present a novel variation in the ENPP1 gene identified in a patient clinically diagnosed with GACI and confirmed by genetic investigation and autopsy as GACI type 1. The sequence analysis of the patient's ENPP1 gene detected two heterozygous variants c.1412A>G (p.Tyr471Cys) and c.1715T>C (p.Leu572Ser). The variant c.1715T>C (p.Leu572Ser) has not been described yet in the literature and in mutation databases. A genetic analysis was also carried out for the parents of the newborn; the heterozygous pathogenic variant c.1412A>G (p.Tyr471Cys) was detected in the mother's ENPP1 gene, and a sequence analysis of the father's ENPP1 gene revealed the novel heterozygous variant c.1715T>C (p.Leu572Ser). Our results showed that the variant c.1715T>C (p.Leu572Ser) may have a pathogenic role in the development of GACI type1 (GACI1, OMIM#208000), at least when associated with the pathogenic c.1412A>G (p.Tyr471Cys) variant. The identification of novel mutations potentially enabled genotype/phenotype associations that will ultimately have an impact on clinical management and prognosis for the disease.
Collapse
Affiliation(s)
- Gaetano Pietro Bulfamante
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy;
| | - Laura Carpenito
- School of Pathology, University of Milan, 20122 Milan, Italy
- Correspondence:
| | - Emma Bragantini
- Department of Pathology, Santa Chiara Hospital, 38122 Trento, Italy; (E.B.); (M.B.)
| | | | - Maria Bellizzi
- Department of Pediatrics, Santa Chiara Hospital, 38122 Trento, Italy; (M.B.); (M.S.)
| | - Christoph Peter Bagowski
- Prenatal Medicine Münich, Department of Molecular Genetics, University Hospital, Aiblingerstr. 8, 80639 Münich, Germany; (C.P.B.); (M.S.)
| | - Moneef Shoukier
- Prenatal Medicine Münich, Department of Molecular Genetics, University Hospital, Aiblingerstr. 8, 80639 Münich, Germany; (C.P.B.); (M.S.)
| | - Francesca Rivieri
- Medical Genetic Service, Santa Chiara Hospital, 38122 Trento, Italy;
| | - Massimo Soffiati
- Department of Pediatrics, Santa Chiara Hospital, 38122 Trento, Italy; (M.B.); (M.S.)
| | - Mattia Barbareschi
- Department of Pathology, Santa Chiara Hospital, 38122 Trento, Italy; (E.B.); (M.B.)
| |
Collapse
|
14
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
15
|
Schlesinger PH, Braddock DT, Larrouture QC, Ray EC, Riazanski V, Nelson DJ, Tourkova IL, Blair HC. Phylogeny and chemistry of biological mineral transport. Bone 2020; 141:115621. [PMID: 32858255 PMCID: PMC7771281 DOI: 10.1016/j.bone.2020.115621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.
Collapse
Affiliation(s)
- Paul H Schlesinger
- Dept of Cell Biology, Washington University, Saint Louis, MO, United States of America
| | - Demetrios T Braddock
- Dept. of Pathology, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT, United States of America
| | - Quitterie C Larrouture
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vladimir Riazanski
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Irina L Tourkova
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
16
|
Rutsch F, Buers I, Nitschke Y. Hereditary Disorders of Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2020; 41:35-47. [PMID: 33176451 DOI: 10.1161/atvbaha.120.315577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arterial calcification is a common phenomenon in the elderly, in patients with atherosclerosis or renal failure and in diabetes. However, when present in very young individuals, it is likely to be associated with an underlying hereditary disorder of arterial calcification. Here, we present an overview of the few monogenic disorders presenting with early-onset cardiovascular calcification. These disorders can be classified according to the function of the respective disease gene into (1) disorders caused by an altered purine and phosphate/pyrophosphate metabolism, (2) interferonopathies, and (3) Gaucher disease. The finding of arterial calcification in early life should alert the clinician and prompt further genetic work-up to define the underlying genetic defect, to establish the correct diagnosis, and to enable appropriate therapy.
Collapse
Affiliation(s)
- Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Germany
| |
Collapse
|
17
|
Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways. Int J Mol Sci 2020; 21:ijms21207636. [PMID: 33076470 PMCID: PMC7589647 DOI: 10.3390/ijms21207636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5′-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor—pyrophosphate and the calcification stimulator—inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.
Collapse
|
18
|
Gabaton N, Kannu P, Pope E, Shugar A, Lara-Corrales I. A novel ENPP1 mutation identified in a multigenerational family affected by Cole disease. Pediatr Dermatol 2020; 37:868-871. [PMID: 32598042 DOI: 10.1111/pde.14222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/23/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Cole disease is a rare autosomal dominant genodermatosis with only five cases published in literature since its first description in 1976. We report a case of a 3-year-old boy of Italian ancestry who presented with hypopigmented skin patches on the upper extremities and multiple yellowish, firm papules and small plaques on his palms and soles. There were similar findings in the family, extending back at least four generations. Whole exome sequence analysis revealed a novel variant of the ENPP1 gene mutation, which has not been previously reported to be associated with Cole disease. Although there is no extracutaneous involvement associated with this condition, accurate diagnosis and variant identification is nevertheless important so that appropriate medical and genetic counseling can be offered to affected individuals and their at-risk relatives.
Collapse
Affiliation(s)
- Niña Gabaton
- Section of Dermatology, Division of Paediatric Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Peter Kannu
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Elena Pope
- Section of Dermatology, Division of Paediatric Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrea Shugar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Irene Lara-Corrales
- Section of Dermatology, Division of Paediatric Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Nicot R, Chung K, Vieira AR, Raoul G, Ferri J, Sciote JJ. Condyle modeling stability, craniofacial asymmetry and ACTN3 genotypes: Contribution to TMD prevalence in a cohort of dentofacial deformities. PLoS One 2020; 15:e0236425. [PMID: 32726330 PMCID: PMC7390436 DOI: 10.1371/journal.pone.0236425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Craniofacial asymmetry, mandibular condylar modeling and temporomandibular joint disorders are common comorbidities of skeletally disproportionate malocclusions, but etiology of occurrence together is poorly understood. We compared asymmetry, condyle modeling stability and temporomandibular health in a cohort of 128 patients having orthodontics and orthognathic surgery to correct dentofacial deformity malocclusions. We also compared ACTN3 and ENPP1 genotypes for association to clinical conditions. Pre-surgical posterior-anterior cephalometric and panometric radiographic analyses; jaw pain and function questionnaire and clinical examination of TMD; and SNP-genotype analysis from saliva samples were compared to assess interrelationships. Almost half had asymmetries in need of surgical correction, which could be subdivided into four distinct morphological patterns. Asymmetric condyle modeling between sides was significantly greater in craniofacial asymmetry, but most commonly had an unanticipated pattern. Often, longer or larger condyles occurred on the shorter mandibular ramus side. Subjects with longer ramus but dimensionally smaller condyles were more likely to have self-reported TMD symptoms (p = 0.023) and significantly greater clinical diagnosis of TMD (p = 0 .000001), with masticatory myalgia most prominent. Genotyping found two significant genotype associations for ACTN3 rs1671064 (Q523R missense) p = 0.02; rs678397 (intronic SNP) p = 0.04 and one significant allele association rs1815739 (R577X nonsense) p = 0.00. Skeletal asymmetry, unusual condyle modeling and TMD are common and interrelated components of many dentofacial deformities. Imbalanced musculoskeletal functional adaptations and genetic or epigenetic influences contribute to the etiology, and require further investigation.
Collapse
Affiliation(s)
- Romain Nicot
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
- * E-mail:
| | - Kay Chung
- Department of Orthodontics, Temple University, Philadelphia, PA, United States of America
| | - Alexandre R. Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States of America
| | - Gwénaël Raoul
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Joël Ferri
- Department of Oral and Maxillofacial Surgery, Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - James J. Sciote
- Department of Orthodontics, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
20
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
21
|
Kotwal A, Ferrer A, Kumar R, Singh RJ, Murthy V, Schultz-Rogers L, Zimmermann M, Lanpher B, Zimmerman K, Stabach PR, Klee E, Braddock DT, Wermers RA. Clinical and Biochemical Phenotypes in a Family With ENPP1 Mutations. J Bone Miner Res 2020; 35:662-670. [PMID: 31826312 PMCID: PMC7771569 DOI: 10.1002/jbmr.3938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
Inactivating mutations of the ENPP1 gene are associated with generalized arterial calcification of infancy (GACI) and less often autosomal-recessive hypophosphatemic rickets type 2 (ARHR2). We aimed to investigate the spectrum of phenotypes in a family with monoallelic and biallelic mutations of ENPP1 after identification through whole exome sequencing of a 54-year-old female with biallelic mutation of ENPP1, c.323G > T; p.Cys108Phe and c.1441C > T; p.Arg481Trp. Including the proband, 2 subjects had biallelic mutations, 5 had monoallelic mutations, and 2 had no mutation of ENPP1. The maternal mutation, a known pathogenic variant associated with GACI, was found in 3 subjects with monoallelic mutations, while the paternal mutation, which was not previously reported, was present in 2 subjects with monoallelic mutations. Both subjects with biallelic mutations had bowing of bilateral femurs, periarticular mineral deposition, normocalcemic primary hyperparathyroidism with multigland parathyroidectomy, increased carotid intima-media thickness, and enthesopathy was also noted in one subject. Intact FGF23 was elevated in both subjects with biallelic mutations, while C-terminal FGF23 was only elevated in one and PPi was reduced in one. Subjects with monoallelic mutations did not have periarticular calcifications or bone deformities. To conclude, patients with biallelic GACI causing mutations can survive well into adulthood, and despite the same biallelic ENPP1 pathogenic variants, clinical and biochemical manifestations can significantly differ, and include enthesopathy and primary hyperparathyroidism, which have not been previously described. Although carriers of monoallelic ENPP1 variants appear unaffected by classic disease manifestations, there may be subtle biochemical and clinical findings that warrant further investigation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anupam Kotwal
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Kumar
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA.,Department of Medicine and Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vishakantha Murthy
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Laura Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Michael Zimmermann
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brendan Lanpher
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Paul R Stabach
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Wermers
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Oheim R, Zimmerman K, Maulding ND, Stürznickel J, von Kroge S, Kavanagh D, Stabach PR, Kornak U, Tommasini SM, Horowitz MC, Amling M, Thompson D, Schinke T, Busse B, Carpenter TO, Braddock DT. Human Heterozygous ENPP1 Deficiency Is Associated With Early Onset Osteoporosis, a Phenotype Recapitulated in a Mouse Model of Enpp1 Deficiency. J Bone Miner Res 2020; 35:528-539. [PMID: 31805212 PMCID: PMC7184798 DOI: 10.1002/jbmr.3911] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Biallelic ENPP1 deficiency in humans induces generalized arterial calcification of infancy (GACI) and/or autosomal recessive hypophosphatemic rickets type 2 (ARHR2). The latter is characterized by markedly increased circulating FGF23 levels and renal phosphate wasting, but aberrant skeletal manifestations associated with heterozygous ENPP1 deficiency are unknown. Here, we report three adult men with early onset osteoporosis who presented with fractures in the thoracic spine and/or left radius, mildly elevated circulating FGF23, and hypophosphatemia. Total hip bone mineral density scans demonstrated osteoporosis (Z-score < -2.5) and HRpQCT demonstrated microarchitectural defects in trabecular and cortical bone. Next-generation sequencing revealed heterozygous loss-of-function mutations in ENPP1 previously observed as biallelic mutations in infants with GACI. In addition, we present bone mass and structure data as well as plasma pyrophosphate (PPi) data of two siblings suffering from ARHR2 in comparison to their heterozygous and wild-type family members indicative of an ENPP1 gene dose effect. The skeletal phenotype in murine Enpp1 deficiency yielded nearly identical findings. Ten-week-old male Enpp1 asj/asj mice exhibited mild elevations in plasma FGF23 and hypophosphatemia, and micro-CT analysis revealed microarchitectural defects in trabecular and cortical bone of similar magnitude to HRpQCT defects observed in humans. Histomorphometry revealed mild osteomalacia and osteopenia at both 10 and 23 weeks. The biomechanical relevance of these findings was demonstrated by increased bone fragility and ductility in Enpp1 asj/asj mice. In summary, ENPP1 exerts a gene dose effect such that humans with heterozygous ENPP1 deficiency exhibit intermediate levels of plasma analytes associated with bone mineralization disturbance resulting in early onset osteoporosis. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D Maulding
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dillon Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Steven M Tommasini
- Department of Orthoaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Mark C Horowitz
- Department of Orthoaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas O Carpenter
- Department of Orthoaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
23
|
Boraldi F, Lofaro FD, Costa S, Moscarelli P, Quaglino D. Rare Co-occurrence of Beta-Thalassemia and Pseudoxanthoma elasticum: Novel Biomolecular Findings. Front Med (Lausanne) 2020; 6:322. [PMID: 32039214 PMCID: PMC6989569 DOI: 10.3389/fmed.2019.00322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
A number of beta-thalassemia patients, independently from the type of beta-thalassemia (β0 or β+) and blood transfusion requirements, may develop, after puberty, dermal, cardiovascular, and ocular complications associated with an ectopic mineralization phenotype similar to that observed in another rare genetic disorder, namely, Pseudoxanthoma elasticum (PXE). To date, the causes of these alterations in beta-thalassemia patients are not known, but it has been suggested that they could be the consequence of oxidative stress-driven epigenetic regulatory mechanisms producing an ABCC6 down-regulation. Since, in the last years, several genes have been associated to the ectopic mineralization phenotype, this study, for the first time, applied, on beta-thalassemia patients with ectopic mineralization phenotype, a multigene testing strategy. Selection of genes to be analyzed was done on the basis of (i) their genetic involvement in calcification diseases or (ii) their role in calcium-phosphate equilibrium. Although, due to the rarity of these conditions, a limited number of patients was analyzed, the detection of pathogenic variants represents the proof of concept that PXE and beta-thalassemia traits co-occur on a genetic basis and that, in addition to causative mutations, functional polymorphisms may further influence connective tissue manifestations. The use of a multigene-based next-generation sequencing represents a useful time- and cost-effective approach, allowing to identify sequence variants that might improve prognostic assessment and better management of these patients, especially in the current era of precision medicine aiming to identify individual optimal care based on a unique personal profile.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pasquale Moscarelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
24
|
Omarjee L, Nitschke Y, Verschuere S, Bourrat E, Vignon MD, Navasiolava N, Leftheriotis G, Kauffenstein G, Rutsch F, Vanakker OM, Martin L. Severe early-onset manifestations of pseudoxanthoma elasticum resulting from the cumulative effects of several deleterious mutations in ENPP1, ABCC6 and HBB: transient improvement in ectopic calcification with sodium thiosulfate. Br J Dermatol 2019; 183:367-372. [PMID: 31646622 DOI: 10.1111/bjd.18632] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disorder characterized by fragmentation and progressive calcification of elastic fibres in connective tissues. Overlap has been reported between the inherited PXE phenotype associated with ENPP1, ABCC6 or NT5E mutations and acquired PXE clinical manifestations associated with haemoglobinopathies induced by HBB mutations. No treatment is currently available for PXE. A young boy presented with severe early-onset systemic calcifications occurring in the skin as elastosis perforans serpiginosa (EPS) and in the arteries, causing mesenteric and limb ischaemia. Analyses revealed deleterious ABCC6, ENPP1 and HBB mutations. The diagnosis of severe PXE was retained and we have coined the term 'PXE+ syndrome' to describe the cumulative effects of the various mutations in this uncommon phenotype. Given the severity, rapid progression and a potentially fatal prognosis, intravenous sodium thiosulfate (STS) was initiated at 25 g three times weekly for 6 months. Numerous side-effects prompted dosage adjustment to 10 g intravenously daily. Treatment efficacy was evaluated at 6 months. Asthaenia, anorexia and pre-/postprandial pain had subsided, entailing weight gain. Abdominal EPS had diminished. Calcific stenosis of the coeliac and mesenteric arteries was no longer detectable on arterial ultrasonography. Follow-up revealed only transient efficacy of STS. Discontinuation of treatment to evaluate the persistence of effects resulted in relapse of the initial symptomatology after 4 months. STS efficacy is conceivably due to strong antioxidant properties and chelation of calcium to form soluble calcium thiosulfate complexes. This case is suggestive of PXE+ syndrome for which STS may represent potential treatment in severe cases. What's already known about this topic? Generalized arterial calcification of infancy may occur in association with ABCC6 mutations and pseudoxanthoma elasticum (PXE) can be linked to ENPP1 mutations. A PXE-like phenotype has also been reported in a subset of patients with inherited haemoglobinopathies, namely sickle cell disease or β-thalassaemia, related to HBB mutations. To date, there is still no cure for PXE. What does this study add? We report a severe case of PXE resulting from the cumulative effects of several deleterious mutations in ENPP1, ABCC6 and HBB. We suggest the term 'PXE+ syndrome' to describe such patients. Sodium thiosulfate therapy could represent a potential option in severe cases of PXE+ syndrome.
Collapse
Affiliation(s)
- L Omarjee
- MitoVasc Institute, UMR CNRS 6015/INSERM 1083, 49100, Angers, France.,PXE Reference Centre (MAGEC Nord), University Hospital of Angers, Angers, France.,University of Rennes, CHU Rennes, INSERM CIC1414, Vascular Medicine Unit, Rennes, France.,PXE Vascular Consultation Centre, CHU Rennes, 35000, Rennes, France.,Vascular Medicine Unit, Redon Hospital, 35600, Redon, France
| | - Y Nitschke
- Münster University Children's Hospital, Münster, Germany
| | - S Verschuere
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Bourrat
- Department of Paediatrics, APHP, Robert Debré Hospital, Paris, France
| | - M-D Vignon
- Department of Pathology, Saint-Louis Hospital, Paris, France
| | - N Navasiolava
- MitoVasc Institute, UMR CNRS 6015/INSERM 1083, 49100, Angers, France.,PXE Reference Centre (MAGEC Nord), University Hospital of Angers, Angers, France
| | - G Leftheriotis
- Department of Physiology and Vascular Investigation, Nice University Hospital, Nice, France
| | - G Kauffenstein
- MitoVasc Institute, UMR CNRS 6015/INSERM 1083, 49100, Angers, France
| | - F Rutsch
- Münster University Children's Hospital, Münster, Germany
| | - O M Vanakker
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - L Martin
- MitoVasc Institute, UMR CNRS 6015/INSERM 1083, 49100, Angers, France.,PXE Reference Centre (MAGEC Nord), University Hospital of Angers, Angers, France
| |
Collapse
|
25
|
Murro V, Mucciolo DP, Giorgio D, Sodi A, Boraldi F, Quaglino D, Virgili G, Rizzo S. Coquille d'oeuf in young patients affected with Pseudoxantoma elasticum. Ophthalmic Genet 2019; 40:242-246. [PMID: 31269855 DOI: 10.1080/13816810.2019.1627466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To evaluate the fundus phenotype of young patients affected with Pseudoxantoma Elasticum (PXE). Materials and Methods: Retrospective case series of five young PXE patients. Clinical data, ultra-widefield imaging (color, red-free (RF), choroidal (Ch) and fundus autofluorescence (FAF)) and OCT examination were collected. Diagnosis was confirmed by the characteristic histopathological abnormalities in skin biopsies and genetic testing results. Results: Five patients, 2 males and 3 females (mean age 16 years, range 12-20 years) were included in our study. The visual acuity was 20/20 in all subjects. Fundus evaluation revealed peau d'orange in all patients: multiple, yellowish/white round lesions, scattered from the posterior pole to the mid-peripheral retina of each eye. Ultra-wide field imaging allows us to capture and describe the entire area of coquille d'oeuf/peau d'orange in a single picture, facilitating their identification and discrimination. Angiod streaks were visible in both eyes of four patients. In one patient optic disc drusen were detected in both eyes. All patients presented comet lesions. Conclusions: PXE-related retinopathy findings: peau d'orange/coquille d'oeuf, angioid streaks, comet lesions and drusen of the optic disc were present early in PXE patients. The early detection of coquille d'oeuf/peau d'orange revealed a preferable area into midperiphery where Bruch's membrane will be more likely to be affected.
Collapse
Affiliation(s)
- Vittoria Murro
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| | - Dario Pasquale Mucciolo
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| | - Dario Giorgio
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| | - Andrea Sodi
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| | - Federica Boraldi
- b Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Daniela Quaglino
- b Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Gianni Virgili
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| | - Stanislao Rizzo
- a Department of Neuroscience, Psychology , Drug Research and Child Health, University of Florence , Florence , Italy
| |
Collapse
|
26
|
ENPP1 in the Regulation of Mineralization and Beyond. Trends Biochem Sci 2019; 44:616-628. [PMID: 30799235 DOI: 10.1016/j.tibs.2019.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
ENPP1 is well known for its role in regulating skeletal and soft tissue mineralization. It primarily exerts its function through the generation of pyrophosphate, a key inhibitor of hydroxyapatite formation. Several previous studies have suggested that ENPP1 also contributes to a range of human diseases including diabetes, cancer, cardiovascular disease, and osteoarthritis. In this review, we summarize the pathological roles of ENPP1 in mineralization and these soft tissue disorders. We also discuss the underlying mechanisms through which ENPP1 exerts its pathological effects. A fuller understanding of the pathways through which ENPP1 acts may help to develop novel therapeutic strategies for these commonly diagnosed morbidities.
Collapse
|
27
|
Mulcahy CH, Mone F, McAuliffe FM, Mooney E, McParland P, Mc Mahon CJ. Antenatal diagnosis of idiopathic infantile arterial calcification (IIAC): a single centre experience and review of the literature. JOURNAL OF CONGENITAL CARDIOLOGY 2019. [DOI: 10.1186/s40949-018-0022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
29
|
Akhtar Ali S, Ng C, Votava-Smith JK, Randolph LM, Pitukcheewanont P. Bisphosphonate therapy in an infant with generalized arterial calcification with an ABCC6 mutation. Osteoporos Int 2018; 29:2575-2579. [PMID: 30206659 DOI: 10.1007/s00198-018-4639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
Generalized arterial calcification of infancy (GACI) is a rare genetic disorder with high infantile mortality, described to be due to ENPP1, and less commonly ABCC6 mutations. Bisphosphonate treatment has been described to improve survival in ENPP1-positive GACI patients, but few studies have described bisphosphonate treatment in ABCC6-positive patients. Without therapy, patients will die before 6 months of age. Our patient is now 3 years old, former recipient twin of twin-to-twin transfusion syndrome (TTTS). Initial fetal echocardiogram at 19 weeks showed calcifications of the ascending aorta and pulmonary artery (PA). She underwent utero laser therapy, and despite resolution of the TTTS, her follow-up scans showed progressive calcification of the aorta and PA. Postnatal echocardiogram showed calcification and supravalvar stenosis of the aorta and PA. CT on day of life 6 showed calcifications in the PAs, aortic arch, and descending aorta. Quantification of valvular calcification can be difficult; in our patient, increasing outflow tract gradient on echocardiogram was used to monitor disease progression. Molecular testing revealed an ABCC6 gene mutation. She was started on weekly IV pamidronate (0.1-0.3 mg/kg/week) on day 8 of life then transitioned to oral etidronate (15-20 mg/kg/day). Given progressive supravalvar aortic and pulmonary stenosis, she underwent surgical repair with patch augmentation of the PA and ascending aorta at 4 months old. She has done well post-operatively, continuing on enteral bisphosphonate therapy with no side effects to date. Her identical twin was confirmed to have the same mutation and remains asymptomatic with no calcifications. Aggressive bisphosphonate therapy should be started as soon as possible in patients with infantile arterial calcinosis due to ABCC6 or ENPP1 mutations. Echocardiographic evaluation can be used to monitor disease progression by arterial gradients. Molecular testing is also essential to evaluate for possible co-morbidities in these patients and pregnancy management for the future.
Collapse
Affiliation(s)
- S Akhtar Ali
- Center For Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - C Ng
- Division of Pediatric Endocrinology, Huntington Health Physicians, Huntington, CA, USA
| | - J K Votava-Smith
- Division of Pediatric Cardiology, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - L M Randolph
- Division of Medical Genetics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - P Pitukcheewanont
- Center For Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Colaco SM, Chidambarathanu S, Raja V, Murlidhar L, Jagadeesh S, Suresh I, Seshadri S. Idiopathic Arterial Calcification: Experience from a Single Center in South India. JOURNAL OF FETAL MEDICINE 2018. [DOI: 10.1007/s40556-018-0176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Ferrero E, Faini AC, Malavasi F. A phylogenetic view of the leukocyte ectonucleotidases. Immunol Lett 2018; 205:51-58. [PMID: 29958894 DOI: 10.1016/j.imlet.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
The leukocyte ectonucleotidases are a recently defined family included in the last Human Leukocyte Differentiation Antigens Workshop, giving prominence to these membrane proteins whose catalytic activity is expressed outside the cell. Among the most important substrates of the leukocyte ectonucleotidases are extracellular ATP and NAD+ whose transient increases are not immunologically silent but rather perceived as danger signals by the host. Among the host responses to the release of ATP, NAD+ and related small molecules is their breakdown on behalf of a panel of leukocyte ectonucleotidases - CD38, CD39, CD73, CD157, CD203a and CD203c -, whose activities are concatenated to form two nucleotide-catabolizing channels defined as the canonical and non-canonical adenosinergic pathways. Here, after briefly reviewing the structure and function of the proteins involved in these pathwys, we focus on the genes encoding the ectoenzymes of these adenosinergic pathways. The chromosomal localizations of the enzyme-encoding genes yield a first level of information concerning their origins by duplication and modes of regulation. Further information was obtained from phylogenetic analyses that show ectoenzyme orthologs are conserved in major tetrapod species whereas examination of synteny conservation revealed that the chromosomal regions harboring the ADP-ribosyl cyclases on human chromosome 4 and the ENTPDase CD39 on chromosome 10 show striking similarities in gene content consistent with their being paralogous chromosomal regions derived from a vertebrate whole genome duplication. Thus the connections between some of the leukocyte ectoenzymes run deeper than previously imagined.
Collapse
Affiliation(s)
- Enza Ferrero
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy.
| | - Angelo C Faini
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabio Malavasi
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
32
|
Barbeau X, Mathieu P, Paquin JF, Lagüe P. Characterization of the structure, dynamics and allosteric pathways of human NPP1 in its free form and substrate-bound complex from molecular modeling. MOLECULAR BIOSYSTEMS 2017; 13:1058-1069. [DOI: 10.1039/c7mb00095b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report 3D structure modeling and extensive molecular dynamics simulations of NPP1 complemented with a dynamical network analysis.
Collapse
Affiliation(s)
- Xavier Barbeau
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | | | - Jean-François Paquin
- Department of Chemistry
- Faculty of Science and Engineering
- Université Laval
- Québec (Québec)
- Canada
| | - Patrick Lagüe
- PROTEO
- The Quebec Network for Research on Protein Function
- Engineering
- and Applications
- Canada
| |
Collapse
|
33
|
Namasivayam V, Lee SY, Müller CE. The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis. Biochim Biophys Acta Gen Subj 2016; 1861:603-614. [PMID: 28011303 DOI: 10.1016/j.bbagen.2016.12.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I, University of Bonn, Germany.
| |
Collapse
|