1
|
Del Gobbo GF, Boycott KM. The additional diagnostic yield of long-read sequencing in undiagnosed rare diseases. Genome Res 2025; 35:559-571. [PMID: 39900460 PMCID: PMC12047273 DOI: 10.1101/gr.279970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-read sequencing (LRS) is a promising technology positioned to study the significant proportion of rare diseases (RDs) that remain undiagnosed as it addresses many of the limitations of short-read sequencing, detecting and clarifying additional disease-associated variants that may be missed by the current standard diagnostic workflow for RDs. Some key areas where additional diagnostic yields may be realized include: (1) detection and resolution of structural variants (SVs); (2) detection and characterization of tandem repeat expansions; (3) coverage of regions of high sequence similarity; (4) variant phasing; (5) the use of de novo genome assemblies for reference-based or graph genome variant detection; and (6) epigenetic and transcriptomic evaluations. Examples from over 50 studies support that the main areas of added diagnostic yield currently lie in SV detection and characterization, repeat expansion assessment, and phasing (with or without DNA methylation information). Several emerging studies applying LRS in cohorts of undiagnosed RDs also demonstrate that LRS can boost diagnostic yields following negative standard-of-care clinical testing and provide an added yield of 7%-17% following negative short-read genome sequencing. With this evidence of improved diagnostic yield, we discuss the incorporation of LRS into the diagnostic care pathway for undiagnosed RDs, including current challenges and considerations, with the ultimate goal of ending the diagnostic odyssey for countless individuals with RDs.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2;
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
2
|
Xu R, Zhang M, Yang X, Tian W, Li C. Decoding complexity: The role of long-read sequencing in unraveling genetic disease etiologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108529. [PMID: 39788369 DOI: 10.1016/j.mrrev.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
In recent years, next-generation high-throughput sequencing technology has been widely used in clinical practice for the identification and diagnosis of Mendelian diseases as an auxiliary detection method. Nevertheless, due to the limitations in read length and poor coverage of complex genomic regions, the etiology of many genetic diseases is unclear. Long-read sequencing (LRS) addresses these limitations of next-generation sequencing. LRS is an effective tool for the clinical study of the etiology of complex genetic diseases. In this review, we summarized the current research on the application of LRS in diseases across various systems. We also reported the improvements in the diagnostic rate and common variant types of LRS in different studies, providing a foundation for the discovery of new disease mechanisms, which is anticipated to play a crucial role in future research on genetic diseases.
Collapse
Affiliation(s)
- Ran Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengmeng Zhang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Changyan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Basic Medical Sciences, An Hui Medical University, 230032, Hefei, China; School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei 071000, China.
| |
Collapse
|
3
|
Sund KL, Liu J, Lee J, Garbe J, Abdelhamed Z, Maag C, Hallinan B, Wu SW, Sperry E, Deshpande A, Stottmann R, Smolarek TA, Dyer LM, Hestand MS. Long-read sequencing and optical genome mapping identify causative gene disruptions in noncoding sequence in two patients with neurologic disease and known chromosome abnormalities. Am J Med Genet A 2024; 194:e63818. [PMID: 39041659 DOI: 10.1002/ajmg.a.63818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
Despite advances in next generation sequencing (NGS), genetic diagnoses remain elusive for many patients with neurologic syndromes. Long-read sequencing (LRS) and optical genome mapping (OGM) technologies improve upon existing capabilities in the detection and interpretation of structural variation in repetitive DNA, on a single haplotype, while also providing enhanced breakpoint resolution. We performed LRS and OGM on two patients with known chromosomal rearrangements and inconclusive Sanger or NGS. The first patient, who had epilepsy and developmental delay, had a complex translocation between two chromosomes that included insertion and inversion events. The second patient, who had a movement disorder, had an inversion on a single chromosome disrupted by multiple smaller inversions and insertions. Sequence level resolution of the rearrangements identified pathogenic breaks in noncoding sequence in or near known disease-causing genes with relevant neurologic phenotypes (MBD5, NKX2-1). These specific variants have not been reported previously, but expected molecular consequences are consistent with previously reported cases. As the use of LRS and OGM technologies for clinical testing increases and data analyses become more standardized, these methods along with multiomic data to validate noncoding variation effects will improve diagnostic yield and increase the proportion of probands with detectable pathogenic variants for known genes implicated in neurogenetic disease.
Collapse
Affiliation(s)
- Kristen L Sund
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, California, USA
| | - John Garbe
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chelsey Maag
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Barbara Hallinan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven W Wu
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ethan Sperry
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Archana Deshpande
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rolf Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lisa M Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew S Hestand
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Qiu X, Jin X, Li J, Zhang Y, Ma J, Zheng F. Long-Read Sequencing Identified a PKD1 Gene Conversion in ADPKD Rather Than the False-Positive Exon Deletion Indicated by WES and MLPA. Hum Mutat 2024; 2024:7225526. [PMID: 40225921 PMCID: PMC11919013 DOI: 10.1155/2024/7225526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing (WES) has become an increasingly common technique for identifying the genetic cause of Mendelian genetic diseases. However, it may fail to detect the complex regions of the genome. Here, we investigated the genetic etiology of a pedigree with autosomal dominant polycystic kidney disease (ADPKD) using a combination of WES, multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, and long-read sequencing (LRS). Initially, WES of the proband revealed a heterozygous variant c.7391G>C in PKD1 Exon 18, along with a heterozygous deletion of the 17th and 18th exons of PKD1 detected by exome-based copy number variation (CNV) analysis. MLPA confirmed the PKD1 heterozygous deletion of Exon 18. Except for c.7391G>C, Sanger sequencing identified four other heterozygous variants (c.7278T>C, c.7288C>T, c.7344C>G, and c.7365C>T) in Exon 18 of PKD1. Subsequently, LRS uncovered seven clustered substitution variants (c.7209+28C>T, c.7210-16C>T, c.7278T>C, c.7288C>T, c.7344C>G, c.7365C>T, and c.7391G>C), with six of them omitted by WES due to interference from PKD1 pseudogenes. Combining LRS results with cosegregation of the pedigree analysis, we found these variants were in cis and converted from PKD1 pseudogenes, covering a region of at least 282 bp. Notably, the paralogous sequence variants of c.7288C>T introduced a premature stop codon of PKD1, leading to a function loss, and were classified as pathogenic (PVS1+PS4+PM2) according to the ACMG/AMP guideline. Our study highlights the limitations of WES/MLPA and the importance of utilizing complementary tools like LRS for comprehensive variant detection in PKD1.
Collapse
Affiliation(s)
- Xueping Qiu
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin Jin
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Li
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Jianhong Ma
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Sadeghi-Alavijeh O, Chan MM, Doctor GT, Voinescu CD, Stuckey A, Kousathanas A, Ho AT, Stanescu HC, Bockenhauer D, Sandford RN, Levine AP, Gale DP. Quantifying variant contributions in cystic kidney disease using national-scale whole-genome sequencing. J Clin Invest 2024; 134:e181467. [PMID: 39190624 PMCID: PMC11444187 DOI: 10.1172/jci181467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUNDCystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODSUsing whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTSIn 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%-9% to the heritability of CyKD across European ancestries.CONCLUSIONBy providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.
Collapse
Affiliation(s)
- Omid Sadeghi-Alavijeh
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Melanie My Chan
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Gabriel T Doctor
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Catalin D Voinescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Alexander Stuckey
- Genomics England, Queen Mary University of London, London, United Kingdom
| | | | - Alexander T Ho
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Horia C Stanescu
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| | - Detlef Bockenhauer
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- University Hospital and Katholic University Leuven, Leuven, Belgium
| | - Richard N Sandford
- Academic Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom
| | - Adam P Levine
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
- Research Department of Pathology, University College London, London, United Kingdom
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, London, United Kingdom
| |
Collapse
|
6
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Xu D, Mao A, Chen L, Wu L, Ma Y, Mei C. Comprehensive Analysis of PKD1 and PKD2 by Long-Read Sequencing in Autosomal Dominant Polycystic Kidney Disease. Clin Chem 2024; 70:841-854. [PMID: 38527221 DOI: 10.1093/clinchem/hvae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content. METHODS A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification. RESULTS CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13. CONCLUSIONS CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.
Collapse
Affiliation(s)
- Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Aiping Mao
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Libao Chen
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Le Wu
- Department of Third-Generation Sequencing, Berry Genomics Corporation, Beijing, China
| | - Yiyi Ma
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
9
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
10
|
AlAbdi L, Shamseldin HE, Khouj E, Helaby R, Aljamal B, Alqahtani M, Almulhim A, Hamid H, Hashem MO, Abdulwahab F, Abouyousef O, Jaafar A, Alshidi T, Al-Owain M, Alhashem A, Al Tala S, Khan AO, Mardawi E, Alkuraya H, Faqeih E, Afqi M, Alkhalifi S, Rahbeeni Z, Hagos ST, Al-Ahmadi W, Nadeef S, Maddirevula S, Khabar KSA, Putra A, Angelov A, Park C, Reyes-Ramos AM, Umer H, Ullah I, Driguez P, Fukasawa Y, Cheung MS, Gallouzi IE, Alkuraya FS. Beyond the exome: utility of long-read whole genome sequencing in exome-negative autosomal recessive diseases. Genome Med 2023; 15:114. [PMID: 38098057 PMCID: PMC10720148 DOI: 10.1186/s13073-023-01270-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Pediatric Department, Division of Genetic and Metabolic Medicine, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Pediatric Department, Neonatal Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Elham Mardawi
- Maternal Fetal Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Vitreoretinal Surgery and Ocular Genetics, Global Eye Care/Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Manal Afqi
- Metabolic and Genetic Center, King Salman Bin Abdulaziz Medical City, Almadinah Almunwarah, Saudi Arabia
| | - Salwa Alkhalifi
- Newborn Screening, Ministry of Health, Eastern Province, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Samya T Hagos
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wijdan Al-Ahmadi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alexander Putra
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Angel Angelov
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Changsook Park
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ana M Reyes-Ramos
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Husen Umer
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ikram Ullah
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Patrick Driguez
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Yoshinori Fukasawa
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ming Sin Cheung
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Imed Eddine Gallouzi
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: The longer, the better? Eur J Med Genet 2023; 66:104871. [PMID: 38832911 DOI: 10.1016/j.ejmg.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 06/06/2024]
Abstract
Rare diseases encompass a diverse group of genetic disorders that affect a small proportion of the population. Identifying the underlying genetic causes of these conditions presents significant challenges due to their genetic heterogeneity and complexity. Conventional short-read sequencing (SRS) techniques have been widely used in diagnosing and investigating of rare diseases, with limitations due to the nature of short-read lengths. In recent years, long read sequencing (LRS) technologies have emerged as a valuable tool in overcoming these limitations. This minireview provides a concise overview of the applications of LRS in rare disease research and diagnosis, including the identification of disease-causing tandem repeat expansions, structural variations, and comprehensive analysis of pathogenic variants with LRS.
Collapse
Affiliation(s)
- Si-Yan Yu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lin Xi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Fu-Qiang Xu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China.
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Pachchek S, Landoulsi Z, Pavelka L, Schulte C, Buena-Atienza E, Gross C, Hauser AK, Reddy Bobbili D, Casadei N, May P, Krüger R. Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study. NPJ Parkinsons Dis 2023; 9:156. [PMID: 37996455 PMCID: PMC10667262 DOI: 10.1038/s41531-023-00595-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.
Collapse
Grants
- FNR/NCER13/BM/11264123 Fonds National de la Recherche Luxembourg (National Research Fund)
- funded by the Luxembourg National Research (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797 to RK), MotaSYN (12719684 to RK), MAMaSyn (to RK), MiRisk‐PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove, FNR11250962 to PM), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC to RK, SP)
- Luxembourg National Research Fund (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797), MotaSYN (12719684), MAMaSyn, MiRisk‐PD (C17/BM/11676395), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC)
Collapse
Affiliation(s)
- Sinthuja Pachchek
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Zied Landoulsi
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Claudia Schulte
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Ann-Kathrin Hauser
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Dheeraj Reddy Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
| |
Collapse
|
13
|
Steyaert W, Haer-Wigman L, Pfundt R, Hellebrekers D, Steehouwer M, Hampstead J, de Boer E, Stegmann A, Yntema H, Kamsteeg EJ, Brunner H, Hoischen A, Gilissen C. Systematic analysis of paralogous regions in 41,755 exomes uncovers clinically relevant variation. Nat Commun 2023; 14:6845. [PMID: 37891200 PMCID: PMC10611741 DOI: 10.1038/s41467-023-42531-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.
Collapse
Affiliation(s)
- Wouter Steyaert
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Debby Hellebrekers
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Juliet Hampstead
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Alexander Stegmann
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Helger Yntema
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
| | - Han Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Maastricht University Medical Center + , Department of Clinical Genetics, Maastricht, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud University Medical Center, Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525, GA, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.
| |
Collapse
|
14
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Jayaraman P, Crouse A, Nadkarni G, Might M. A Primer in Precision Nephrology: Optimizing Outcomes in Kidney Health and Disease through Data-Driven Medicine. KIDNEY360 2023; 4:e544-e554. [PMID: 36951457 PMCID: PMC10278804 DOI: 10.34067/kid.0000000000000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
This year marks the 63rd anniversary of the International Society of Nephrology, which signaled nephrology's emergence as a modern medical discipline. In this article, we briefly trace the course of nephrology's history to show a clear arc in its evolution-of increasing resolution in nephrological data-an arc that is converging with computational capabilities to enable precision nephrology. In general, precision medicine refers to tailoring treatment to the individual characteristics of patients. For an operational definition, this tailoring takes the form of an optimization, in which treatments are selected to maximize a patient's expected health with respect to all available data. Because modern health data are large and high resolution, this optimization process requires computational intervention, and it must be tuned to the contours of specific medical disciplines. An advantage of this operational definition for precision medicine is that it allows us to better understand what precision medicine means in the context of a specific medical discipline. The goal of this article was to demonstrate how to instantiate this definition of precision medicine for the field of nephrology. Correspondingly, the goal of precision nephrology was to answer two related questions: ( 1 ) How do we optimize kidney health with respect to all available data? and ( 2 ) How do we optimize general health with respect to kidney data?
Collapse
Affiliation(s)
- Pushkala Jayaraman
- The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Crouse
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine Icahn School of Medicine at Mount Sinai, New York, New York
- The Mount Sinai Clinical Intelligence Center (MSCIC), Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Data Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Barbara T Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew Might
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Viering DH, Hureaux M, Neveling K, Latta F, Kwint M, Blanchard A, Konrad M, Bindels RJ, Schlingmann KP, Vargas-Poussou R, de Baaij JH. Long-Read Sequencing Identifies Novel Pathogenic Intronic Variants in Gitelman Syndrome. J Am Soc Nephrol 2023; 34:333-345. [PMID: 36302598 PMCID: PMC10103101 DOI: 10.1681/asn.2022050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gitelman syndrome is a salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. It is caused by homozygous recessive or compound heterozygous pathogenic variants in SLC12A3 , which encodes the Na + -Cl - cotransporter (NCC). In up to 10% of patients with Gitelman syndrome, current genetic techniques detect only one specific pathogenic variant. This study aimed to identify a second pathogenic variant in introns, splice sites, or promoters to increase the diagnostic yield. METHODS Long-read sequencing of SLC12A3 was performed in 67 DNA samples from individuals with suspected Gitelman syndrome in whom a single likely pathogenic or pathogenic variant was previously detected. In addition, we sequenced DNA samples from 28 individuals with one variant of uncertain significance or no candidate variant. Midigene splice assays assessed the pathogenicity of novel intronic variants. RESULTS A second likely pathogenic/pathogenic variant was identified in 45 (67%) patients. Those with two likely pathogenic/pathogenic variants had a more severe electrolyte phenotype than other patients. Of the 45 patients, 16 had intronic variants outside of canonic splice sites (nine variants, mostly deep intronic, six novel), whereas 29 patients had an exonic variant or canonic splice site variant. Midigene splice assays of the previously known c.1670-191C>T variant and intronic candidate variants demonstrated aberrant splicing patterns. CONCLUSION Intronic pathogenic variants explain an important part of the missing heritability in Gitelman syndrome. Long-read sequencing should be considered in diagnostic workflows for Gitelman syndrome.
Collapse
Affiliation(s)
- Daan H.H.M. Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marguerite Hureaux
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Department of Genetics, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Paris CardioVascular Research Center, Institut National de la Santé et de Recherche Médicale (INSERM) U970, Paris City University, Paris, France
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne Blanchard
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Clinical Investigations Center, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, University of Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - René J.M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Rosa Vargas-Poussou
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Department of Genetics, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Clinical Investigations Center, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Graansma LJ, Zhai Q, Busscher L, Menafra R, van den Berg RR, Kloet SL, van der Lee M. From gene to dose: Long-read sequencing and *-allele tools to refine phenotype predictions of CYP2C19. Front Pharmacol 2023; 14:1076574. [PMID: 36937863 PMCID: PMC10014917 DOI: 10.3389/fphar.2023.1076574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Inter-individual differences in drug response based on genetic variations can lead to drug toxicity and treatment inefficacy. A large part of this variability is caused by genetic variants in pharmacogenes. Unfortunately, the Single Nucleotide Variant arrays currently used in clinical pharmacogenomic (PGx) testing are unable to detect all genetic variability in these genes. Long-read sequencing, on the other hand, has been shown to be able to resolve complex (pharmaco) genes. In this study we aimed to assess the value of long-read sequencing for research and clinical PGx focusing on the important and highly polymorphic CYP2C19 gene. Methods and Results: With a capture-based long-read sequencing panel we were able to characterize the entire region and assign variants to their allele of origin (phasing), resulting in the identification of 813 unique variants in 37 samples. To assess the clinical utility of this data we have compared the performance of three different *-allele tools (Aldy, PharmCat and PharmaKU) which are specifically designed to assign haplotypes to pharmacogenes based on all input variants. Conclusion: We conclude that long-read sequencing can improve our ability to characterize the CYP2C19 locus, help to identify novel haplotypes and that *-allele tools are a useful asset in phenotype prediction. Ultimately, this approach could help to better predict an individual's drug response and improve therapy outcomes. However, the added value in clinical PGx might currently be limited.
Collapse
Affiliation(s)
- Lonneke J. Graansma
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Qinglian Zhai
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Loes Busscher
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Redmar R. van den Berg
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike van der Lee,
| |
Collapse
|
18
|
Miller AR, Wijeratne S, McGrath SD, Schieffer KM, Miller KE, Lee K, Mathew M, LaHaye S, Fitch JR, Kelly BJ, White P, Mardis ER, Wilson RK, Cottrell CE, Magrini V. Pacific Biosciences Fusion and Long Isoform Pipeline for Cancer Transcriptome-Based Resolution of Isoform Complexity. J Mol Diagn 2022; 24:1292-1306. [PMID: 36191838 DOI: 10.1016/j.jmoldx.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.
Collapse
Affiliation(s)
- Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mariam Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
19
|
Conlin LK, Aref-Eshghi E, McEldrew DA, Luo M, Rajagopalan R. Long-read sequencing for molecular diagnostics in constitutional genetic disorders. Hum Mutat 2022; 43:1531-1544. [PMID: 36086952 PMCID: PMC9561063 DOI: 10.1002/humu.24465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Long-read sequencing (LRS) has been around for more than a decade, but widespread adoption of the technology has been slow due to the perceived high error rates and high sequencing cost. This is changing due to the recent advancements to produce highly accurate sequences and the reducing costs. LRS promises significant improvement over short read sequencing in four major areas: (1) better detection of structural variation (2) better resolution of highly repetitive or nonunique regions (3) accurate long-range haplotype phasing and (4) the detection of base modifications natively from the sequencing data. Several successful applications of LRS have demonstrated its ability to resolve molecular diagnoses where short-read sequencing fails to identify a cause. However, the argument for increased diagnostic yield from LRS remains to be validated. Larger cohort studies may be required to establish the realistic boundaries of LRS's clinical utility and analytical validity, as well as the development of standards for clinical applications. We discuss the limitations of the current standard of care, and contrast with the applications and advantages of two major LRS platforms, PacBio and Oxford Nanopore, for molecular diagnostics of constitutional disorders, and present a critical argument about the potential of LRS in diagnostic settings.
Collapse
Affiliation(s)
- Laura K. Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Erfan Aref-Eshghi
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Deborah A. McEldrew
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Minjie Luo
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
20
|
Jiang F, Mao AP, Liu YY, Liu FZ, Li YL, Li J, Zhou JY, Tang XW, Ju AP, Li FT, Wan JH, Zuo LD, Li DZ. Detection of rare thalassemia mutations using long-read single-molecule real-time sequencing. Gene 2022; 825:146438. [PMID: 35306112 DOI: 10.1016/j.gene.2022.146438] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
Gap- polymerase chain reaction (PCR), reverse dot-blot assay (RDB), real-time PCR based multicolor melting curve analysis (MMCA assay), multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing are conventional methods to diagnose thalassemia but all of them have limitations. In this study, we applied single-molecule real-time (SMRT) sequencing following multiplex long-range PCR to uncover rare mutations in nine patients and their family members. The patients with different results between Gap-PCR and MMCA assay or with phenotype not matching genotype were included. Using SMRT sequencing, we first identified the carriers with αααanti3.7/HKαα, -α762bpα/αα (chr16:172,648-173,409), ααfusion/αQSα (in a trans configuration), two cases with novel gene rearrangements and another case with a novel 341 bp insertion in α-globin gene cluster, respectively. One carrier with --SEA/αααanti4.2, and two carriers with the coexistence of globin variant and an α-globin gene duplication were also found. Most importantly, we could determine two defects in α-globin gene cluster being a cis or trans configuration in a single test. Our results showed that SMRT has great advantages in detection of α-globin gene triplications, rare deletions and determination of a cis or trans configuration. SMRT is a comprehensive and one-step method for thalassemia screening and diagnosis, especially for detection of rare thalassemia mutations.
Collapse
Affiliation(s)
- Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ai-Ping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Yin-Yin Liu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Feng-Zhi Liu
- Medical Genetics Laboratory, Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| | - Yan-Lin Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jian Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jian-Ying Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Xue-Wei Tang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ai-Ping Ju
- Clinical Laboratory, Huadu District Maternal and Neonatal Healthcare Hospital of Guangzhou, Hu Zhong Hospital, Guangzhou, Guangdong, China
| | - Fa-Tao Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jun-Hui Wan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Lian-Dong Zuo
- Scientific Research Department, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Lieberman KV, Chang AR, Block GA, Robinson K, Bristow SL, Morales A, Mitchell A, McCalley S, McKay J, Pollak MR, Aradhya S, Warady BA. The KIDNEYCODE Program: Diagnostic Yield and Clinical Features of Individuals with CKD. KIDNEY360 2022; 3:900-909. [PMID: 36128480 PMCID: PMC9438426 DOI: 10.34067/kid.0004162021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Background Despite increasing recognition that CKD may have underlyi ng genetic causes, genetic testing remains limited. This study evaluated the diagnostic yield and phenotypic spectrum of CKD in individuals tested through the KIDNEYCODE sponsored genetic testing program. Methods Unrelated individuals who received panel testing (17 genes) through the KIDNEYCODE sponsored genetic testing program were included. Individuals had to meet at least one of the following eligibility criteria: eGFR ≤90 ml/min per 1.73m2 and hematuria or a family history of kidney disease; or suspected/biopsy-confirmed Alport syndrome or FSGS in tested individuals or relatives. Results Among 859 individuals, 234 (27%) had molecular diagnoses in genes associated with Alport syndrome (n=209), FSGS (n=12), polycystic kidney disease (n=6), and other disorders (n=8). Among those with positive findings in a COL4A gene, the majority were in COL4A5 (n=157, 72 hemizygous male and 85 heterozygous female individuals). A positive family history of CKD, regardless of whether clinical features were reported, was more predictive of a positive finding than was the presence of clinical features alone. For the 248 individuals who had kidney biopsies, a molecular diagnosis was returned for 49 individuals (20%). Most (n=41) individuals had a molecular diagnosis in a COL4A gene, 25 of whom had a previous Alport syndrome clinical diagnosis, and the remaining 16 had previous clinical diagnoses including FSGS (n=2), thin basement membrane disease (n=9), and hematuria (n=1). In total, 491 individuals had a previous clinical diagnosis, 148 (30%) of whom received a molecular diagnosis, the majority (89%, n=131) of which were concordant. Conclusions Although skewed to identify individuals with Alport syndrome, these findings support the need to improve access to genetic testing for patients with CKD-particularly in the context of family history of kidney disease, hematuria, and hearing loss.
Collapse
Affiliation(s)
- Kenneth V Lieberman
- Division of Pediatric Nephrology, Joseph M. Sanzari Children's Hospital of the Hackensack Meridian Health Network, Hackensack, New Jersey
| | - Alexander R Chang
- Division of Nephrology, Geisinger Medical Center, Danville, Pennsylvania
| | - Geoffrey A Block
- Division of Clinical Research, Reata Pharmaceuticals, Inc., Plano, Texas
| | | | - Sara L Bristow
- Department of Clinical Genomics, Invitae, San Francisco, California
- Department of Medical Affairs, Invitae, San Francisco, California
| | - Ana Morales
- Department of Clinical Genomics, Invitae, San Francisco, California
- Department of Medical Affairs, Invitae, San Francisco, California
| | - Asia Mitchell
- Department of Clinical Genomics, Invitae, San Francisco, California
- Department of Medical Affairs, Invitae, San Francisco, California
| | - Stephen McCalley
- Division of Medical Affairs, Reata Pharmaceuticals, Inc., Plano, Texas
| | - Jim McKay
- Division of Medical Affairs, Reata Pharmaceuticals, Inc., Plano, Texas
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Swaroop Aradhya
- Department of Clinical Genomics, Invitae, San Francisco, California
- Department of Medical Affairs, Invitae, San Francisco, California
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
22
|
Third-Generation Cytogenetic Analysis: Diagnostic Application of Long-Read Sequencing. J Mol Diagn 2022; 24:711-718. [PMID: 35526834 DOI: 10.1016/j.jmoldx.2022.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days. Nanopore sequencing has the ability to reduce time to results for the detection of CNVs with the same resolution of current state-of-the-art diagnostic tests. Nanopore sequencing was compared to molecular karyotyping for the detection of pathogenic CNVs of seven patients with previously diagnosed causative CNVs of different sizes and cellular fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs, two genomic imbalances of 1.3 Mb, a small deletion of 170 kb, and two mosaic deletions (1.2 Mb and 408 kb) were tested. DNA was sequenced and data generated during runs were analyzed in online mode. All pathogenic CNVs were identified with detection time inversely proportional to size and cellular fraction. Aneuploidies were called after only 30 minutes of sequencing, whereas 30 hours were needed to call small CNVs. These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30-minute to 30-hour time frame and its easy implementation as a routinary diagnostic tool.
Collapse
|
23
|
Modarage K, Malik SA, Goggolidou P. Molecular Diagnostics of Ciliopathies and Insights Into Novel Developments in Diagnosing Rare Diseases. Br J Biomed Sci 2022; 79:10221. [PMID: 35996505 PMCID: PMC8915726 DOI: 10.3389/bjbs.2021.10221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
The definition of a rare disease in the European Union describes genetic disorders that affect less than 1 in 2,000 people per individual disease; collectively these numbers amount to millions of individuals globally, who usually manifest a rare disease early on in life. At present, there are at least 8,000 known rare conditions, of which only some are clearly molecularly defined. Over the recent years, the use of genetic diagnosis is gaining ground into informing clinical practice, particularly in the field of rare diseases, where diagnosis is difficult. To demonstrate the complexity of genetic diagnosis for rare diseases, we focus on Ciliopathies as an example of a group of rare diseases where an accurate diagnosis has proven a challenge and novel practices driven by scientists are needed to help bridge the gap between clinical and molecular diagnosis. Current diagnostic difficulties lie with the vast multitude of genes associated with Ciliopathies and trouble in distinguishing between Ciliopathies presenting with similar phenotypes. Moreover, Ciliopathies such as Autosomal Recessive Polycystic Kidney Disease (ARPKD) and Meckel-Gruber syndrome (MKS) present with early phenotypes and may require the analysis of samples from foetuses with a suspected Ciliopathy. Advancements in Next Generation Sequencing (NGS) have now enabled assessing a larger number of target genes, to ensure an accurate diagnosis. The aim of this review is to provide an overview of current diagnostic techniques relevant to Ciliopathies and discuss the applications and limitations associated with these techniques.
Collapse
|
24
|
Application of long-read sequencing to elucidate complex pharmacogenomic regions: a proof of principle. THE PHARMACOGENOMICS JOURNAL 2022; 22:75-81. [PMID: 34741133 PMCID: PMC8794781 DOI: 10.1038/s41397-021-00259-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of pharmacogenomics in clinical practice is becoming standard of care. However, due to the complex genetic makeup of pharmacogenes, not all genetic variation is currently accounted for. Here, we show the utility of long-read sequencing to resolve complex pharmacogenes by analyzing a well-characterised sample. This data consists of long reads that were processed to resolve phased haploblocks. 73% of pharmacogenes were fully covered in one phased haploblock, including 9/15 genes that are 100% complex. Variant calling accuracy in the pharmacogenes was high, with 99.8% recall and 100% precision for SNVs and 98.7% precision and 98.0% recall for Indels. For the majority of gene-drug interactions in the DPWG and CPIC guidelines, the associated genes could be fully resolved (62% and 63% respectively). Together, these findings suggest that long-read sequencing data offers promising opportunities in elucidating complex pharmacogenes and haplotype phasing while maintaining accurate variant calling.
Collapse
|
25
|
Claes KBM, Rosseel T, De Leeneer K. Dealing with Pseudogenes in Molecular Diagnostics in the Next Generation Sequencing Era. Methods Mol Biol 2021; 2324:363-381. [PMID: 34165726 DOI: 10.1007/978-1-0716-1503-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presence of pseudogenes is a dreadful issue in next generation sequencing (NGS), because their contamination can interfere with the detection of variants in the genuine gene and generate false positive and false negative variants.In this chapter we focus on issues related to the application of NGS strategies for analysis of genes with pseudogenes in a clinical setting. The degree to which a pseudogene impacts the ability to accurately detect and map variants in its parent gene depends on the degree of similarity (homology) with the parent gene itself. Hereby, target enrichment and mapping strategies are crucial factors to avoid "contaminating" pseudogene sequences. For target enrichment, we describe advantages and disadvantages of PCR- and capture-based strategies. For mapping strategies, we discuss crucial parameters that need to be considered to accurately distinguish sequences of functional genes from pseudogenic sequences. Finally, we discuss some examples of genes associated with Mendelian disorders, for which interesting NGS approaches are described to avoid interference with pseudogene sequences.
Collapse
Affiliation(s)
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
26
|
Benson KA, Murray SL, Senum SR, Elhassan E, Conlon ET, Kennedy C, Conlon S, Gilbert E, Connaughton D, O'Hara P, Khamis S, Cormican S, Brody LC, Molloy AM, Lynch SA, Casserly L, Griffin MD, Carton R, Yachnin K, Harris PC, Cavalleri GL, Conlon P. The genetic landscape of polycystic kidney disease in Ireland. Eur J Hum Genet 2021; 29:827-838. [PMID: 33454723 PMCID: PMC8110806 DOI: 10.1038/s41431-020-00806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Polycystic kidney diseases (PKDs) comprise the most common Mendelian forms of renal disease. It is characterised by the development of fluid-filled renal cysts, causing progressive loss of kidney function, culminating in the need for renal replacement therapy or kidney transplant. Ireland represents a valuable region for the genetic study of PKD, as family sizes are traditionally large and the population relatively homogenous. Studying a cohort of 169 patients, we describe the genetic landscape of PKD in Ireland for the first time, compare the clinical features of patients with and without a molecular diagnosis and correlate disease severity with autosomal dominant pathogenic variant type. Using a combination of molecular genetic tools, including targeted next-generation sequencing, we report diagnostic rates of 71-83% in Irish PKD patients, depending on which variant classification guidelines are used (ACMG or Mayo clinic respectively). We have catalogued a spectrum of Irish autosomal dominant PKD pathogenic variants including 36 novel variants. We illustrate how apparently unrelated individuals carrying the same autosomal dominant pathogenic variant are highly likely to have inherited that variant from a common ancestor. We highlight issues surrounding the implementation of the ACMG guidelines for variant pathogenicity interpretation in PKD, which have important implications for clinical genetics.
Collapse
Affiliation(s)
- Katherine A Benson
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan L Murray
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Eoin T Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Claire Kennedy
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Shane Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Paul O'Hara
- Department of Renal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Sarah Khamis
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Cormican
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| | - Lawrence C Brody
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Liam Casserly
- Department of Renal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| | - Robert Carton
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Peter Conlon
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
27
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
28
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
29
|
Rentas S, Abou Tayoun A. Utility of droplet digital PCR and NGS-based CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn 2021; 21:213-221. [PMID: 33554673 DOI: 10.1080/14737159.2021.1887731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Genetic variants in over 100 genes can cause non-syndromic hearing loss (NSHL). Comprehensive diagnostic testing of these genes requires detecting pathogenic sequence and copy number alterations with economical, scalable and sensitive assays. Here we discuss best practices and effective testing algorithms for hearing-loss-related genes with special emphasis on detection of copy number variants.Areas covered: We review studies that used next-generation sequencing (NGS), chromosomal microarrays, droplet digital PCR (ddPCR), and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of NSHL. We specifically focus on unique and recurrent copy number changes that affect the GJB2 and STRC genes, two of the most common causes of NSHL.Expert opinion: NGS panels and exome sequencing can detect most pathogenic sequence and copy number variants that cause NSHL; however, GJB2 and STRC currently require additional assays to capture all pathogenic copy number variants. Adoption of genome sequencing may simplify diagnostic workflows, but further investigational studies will be required to evaluate its clinical efficacy.
Collapse
Affiliation(s)
- Stefan Rentas
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, UAE.,Department of Genetics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
30
|
Phased Haplotype Resolution of the SLC6A4 Promoter Using Long-Read Single Molecule Real-Time (SMRT) Sequencing. Genes (Basel) 2020; 11:genes11111333. [PMID: 33198140 PMCID: PMC7696006 DOI: 10.3390/genes11111333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
The SLC6A4 gene has been implicated in psychiatric disorder susceptibility and antidepressant response variability. The SLC6A4 promoter is defined by a variable number of homologous 20–24 bp repeats (5-HTTLPR), and long (L) and short (S) alleles are associated with higher and lower expression, respectively. However, this insertion/deletion variant is most informative when considered as a haplotype with the rs25531 and rs25532 variants. Therefore, we developed a long-read single molecule real-time (SMRT) sequencing method to interrogate the SLC6A4 promoter region. A total of 120 samples were subjected to SLC6A4 long-read SMRT sequencing, primarily selected based on available short-read sequencing data. Short-read genome sequencing from the 1000 Genomes (1KG) Project (~5X) and the Genetic Testing Reference Material Coordination Program (~45X), as well as high-depth short-read capture-based sequencing (~330X), could not identify the 5-HTTLPR short (S) allele, nor could short-read sequencing phase any identified variants. In contrast, long-read SMRT sequencing unambiguously identified the 5-HTTLPR short (S) allele (frequency of 0.467) and phased SLC6A4 promoter haplotypes. Additionally, discordant rs25531 genotypes were reviewed and determined to be short-read errors. Taken together, long-read SMRT sequencing is an innovative and robust method for phased resolution of the SLC6A4 promoter, which could enable more accurate pharmacogenetic testing for both research and clinical applications.
Collapse
|
31
|
Next-generation sequencing of newborn screening genes: the accuracy of short-read mapping. NPJ Genom Med 2020; 5:36. [PMID: 32944285 PMCID: PMC7474066 DOI: 10.1038/s41525-020-00142-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
Newborn screening programs are an integral part of public health systems aiming to save lives and improve the quality of life for infants with treatable disorders. Technological advancements have driven the expansion of newborn screening programs in the last two decades and the development of fast, accurate next-generation sequencing technology has opened the door to a range of possibilities in the field. However, technological challenges with short-read next-generation sequencing technologies remain significant in highly homologous genomic regions such as pseudogenes or paralogous genes and need to be considered when implemented in screening programs. Here, we simulate 50 genomes from populations around the world to test the extent to which high homology regions affect short-read mapping of genes related to newborn screening disorders and the impact of differential read lengths and ethnic backgrounds. We examine a 158 gene screening panel directly relevant to newborn screening and identify gene regions where read mapping is affected by homologous genomic regions at different read lengths. We also determine that the patient’s ethnic background does not have a widespread impact on mapping accuracy or coverage. Additionally, we identify newborn screening genes where alternative forms of sequencing or variant calling pipelines should be considered and demonstrate that alterations to standard variant calling can retrieve some formerly uncalled variants.
Collapse
|
32
|
Mantovani V, Bin S, Graziano C, Capelli I, Minardi R, Aiello V, Ambrosini E, Cristalli CP, Mattiaccio A, Pariali M, De Fanti S, Faletra F, Grosso E, Cantone R, Mancini E, Mencarelli F, Pasini A, Wischmeijer A, Sciascia N, Seri M, La Manna G. Gene Panel Analysis in a Large Cohort of Patients With Autosomal Dominant Polycystic Kidney Disease Allows the Identification of 80 Potentially Causative Novel Variants and the Characterization of a Complex Genetic Architecture in a Subset of Families. Front Genet 2020; 11:464. [PMID: 32457805 PMCID: PMC7224062 DOI: 10.3389/fgene.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited disorders in humans and the majority of patients carry a variant in either PKD1 or PKD2. Genetic testing is increasingly required for diagnosis, prognosis, and treatment decision, but it is challenging due to segmental duplications of PKD1, genetic and allelic heterogeneity, and the presence of many variants hypomorphic or of uncertain significance. We propose an NGS-based testing strategy for molecular analysis of ADPKD and its phenocopies, validated in a diagnostic setting. Materials and Methods: Our protocol is based on high-throughput simultaneous sequencing of PKD1 and PKD2 after long range PCR of coding regions, followed by a masked reference genome alignment, and MLPA analysis. A further screening of additional 14 cystogenes was performed in negative cases. We applied this strategy to analyze 212 patients with a clinical suspicion of ADPKD. Results and Discussion: We detected causative variants (interpreted as pathogenic/likely pathogenic) in 61.3% of our index patients, and variants of uncertain clinical significance in 12.5%. The majority (88%) of genetic variants was identified in PKD1, 12% in PKD2. Among 158 distinct variants, 80 (50.6%) were previously unreported, confirming broad allelic heterogeneity. Eleven patients showed more than one variant. Segregation analysis indicated biallelic disease in five patients, digenic in one, de novo variant with unknown phase in two. Furthermore, our NGS protocol allowed the identification of two patients with somatic mosaicism, which was undetectable with Sanger sequencing. Among patients without PKD1/PKD2 variants, we identified three with possible alternative diagnosis: a patient with biallelic mutations in PKHD1, confirming the overlap between recessive and dominant PKD, and two patients with variants in ALG8 and PRKCSH, respectively. Genotype-phenotype correlations showed that patients with PKD1 variants predicted to truncate (T) the protein experienced end-stage renal disease 9 years earlier than patients with PKD1 non-truncating (NT) mutations and >13 years earlier than patients with PKD2 mutations. ADPKD-PKD1 T cases showed a disease onset significantly earlier than ADPKD-PKD1 NT and ADPK-PKD2, as well as a significant earlier diagnosis. These data emphasize the need to combine clinical information with genetic data to achieve useful prognostic predictions.
Collapse
Affiliation(s)
- Vilma Mantovani
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sofia Bin
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Claudio Graziano
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Irene Capelli
- Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Raffaella Minardi
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valeria Aiello
- Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Carlotta Pia Cristalli
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Alessandro Mattiaccio
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Milena Pariali
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Flavio Faletra
- Medical Genetics Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Enrico Grosso
- Medical Genetics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Rachele Cantone
- Medical Genetics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Elena Mancini
- Nephrology, Dialysis and Hypertension Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Andrea Pasini
- Pediatrics Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anita Wischmeijer
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Nicola Sciascia
- Radiology Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Marco Seri
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Transplantation Unit, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
33
|
Xiao T, Zhou W. The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr 2020; 9:163-173. [PMID: 32477917 PMCID: PMC7237973 DOI: 10.21037/tp.2020.03.06] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/05/2020] [Indexed: 01/05/2023] Open
Abstract
Genomic sequencing technologies have revolutionized mutation detection of the genetic diseases in the past few years. In recent years, the third generation sequencing (TGS) has been gaining insight into more genetic diseases owing to the single molecular and real time sequencing technology. This paper reviews the genomic sequencing revolutionary history first and then focuses on the genetic diseases discovered through the TGS and the clinical effects of the TGS, which is followed by the discussion of the improvement in the bioinformatic analysis for the TGS and its limitations. In summary, the TGS has been enhancing the diagnostic accuracy of genetic diseases in molecular level as well as paving a new way for basic researches and therapies.
Collapse
Affiliation(s)
- Tiantian Xiao
- Clinic of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Neonatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhou
- Clinic of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
34
|
Edge P, Bansal V. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing. Nat Commun 2019; 10:4660. [PMID: 31604920 PMCID: PMC6788989 DOI: 10.1038/s41467-019-12493-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Whole-genome sequencing using sequencing technologies such as Illumina enables the accurate detection of small-scale variants but provides limited information about haplotypes and variants in repetitive regions of the human genome. Single-molecule sequencing (SMS) technologies such as Pacific Biosciences and Oxford Nanopore generate long reads that can potentially address the limitations of short-read sequencing. However, the high error rate of SMS reads makes it challenging to detect small-scale variants in diploid genomes. We introduce a variant calling method, Longshot, which leverages the haplotype information present in SMS reads to accurately detect and phase single-nucleotide variants (SNVs) in diploid genomes. We demonstrate that Longshot achieves very high accuracy for SNV detection using whole-genome Pacific Biosciences data, outperforms existing variant calling methods, and enables variant detection in duplicated regions of the genome that cannot be mapped using short reads. Single-molecule sequencing (SMS) such as Pacific Biosciences and Oxford Nanopore generate long reads with high error rate. Here, the authors develop Longshot, a computational method that detects and phases single nucleotide variants (SNV) in diploid genomes using SMS data.
Collapse
Affiliation(s)
- Peter Edge
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, 92093, USA
| | - Vikas Bansal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, 92093, USA.
| |
Collapse
|
35
|
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2019; 46:2159-2168. [PMID: 29401301 PMCID: PMC5861413 DOI: 10.1093/nar/gky066] [Citation(s) in RCA: 438] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio's single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.
Collapse
Affiliation(s)
- Simon Ardui
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala 75108, Sweden.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | | - Matthew S Hestand
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.,Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|
36
|
|
37
|
Abstract
The practice of genomic medicine stands to revolutionize our approach to medical care, and to realize this goal will require discovery of the relationship between rare variation at each of the ~ 20,000 protein-coding genes and their consequent impact on individual health and expression of Mendelian disease. The step-wise evolution of broad-based, genome-wide cytogenetic and molecular genomic testing approaches (karyotyping, chromosomal microarray [CMA], exome sequencing [ES]) has driven much of the rare disease discovery to this point, with genome sequencing representing the newest member of this team. Each step has brought increased sensitivity to interrogate individual genomic variation in an unbiased method that does not require clinical prediction of the locus or loci involved. Notably, each step has also brought unique limitations in variant detection, for example, the low sensitivity of ES for detection of triploidy, and of CMA for detection of copy neutral structural variants. The utility of genome sequencing (GS) as a clinical molecular diagnostic test, and the increased sensitivity afforded by addition of long-read sequencing or other -omics technologies such as RNAseq or metabolomics, are not yet fully explored, though recent work supports improved sensitivity of variant detection, at least in a subset of cases. The utility of GS will also rely upon further elucidation of the complexities of genetic and allelic heterogeneity, multilocus rare variation, and the impact of rare and common variation at a locus, as well as advances in functional annotation of identified variants. Much discovery remains to be done before the potential utility of GS is fully appreciated.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, T603, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet 2019; 10:426. [PMID: 31134132 PMCID: PMC6514244 DOI: 10.3389/fgene.2019.00426] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.
Collapse
Affiliation(s)
- Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
39
|
Maroilley T, Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel) 2019; 10:E275. [PMID: 30987386 PMCID: PMC6523881 DOI: 10.3390/genes10040275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
40
|
Meng J, Xu Y, Shen X, Liang C. A novel frameshift PKD1 mutation in a Chinese patient with autosomal dominant polycystic kidney disease and azoospermia: A case report. Exp Ther Med 2019; 17:507-511. [PMID: 30651829 DOI: 10.3892/etm.2018.6946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/03/2018] [Indexed: 11/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is primarily caused by mutations in polycystin 1, transient receptor potential channel interacting (PKD1) and PKD2, and characterized by numerous cysts in various organs, primarily the kidneys and liver. The present case report is on a 33-year-old Chinese male patient who suffered from abdominal pain and hypertension, and presented with long-term infertility. Laboratory tests indicated that the patient had a normal renal function, while abdominal computed tomography demonstrated that the patient had enlarged kidneys with a volume of 1,127.21 cm3. In a semen analysis, no sperm was detected, while a subsequent testicular biopsy analysis demonstrated numerous mature sperms with progressive motility which suggests that the cysts of the epididymis and the dilated seminal vesicles may have obstructed the ejaculation of semen. Genetic testing identified that a novel missense mutation (c.9053delT) that was responsible for the disease. ADPKD has various disease severities, which depend on whether there is a PKD1 or PKD2 mutation and whether the mutation impairs the function of the polycystin protein. Therefore, genetic testing is important for the clinical diagnosis and prognosis of ADPKD patients, as well as prenatal diagnosis.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuchen Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xufeng Shen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
41
|
Single-Molecule Sequencing: Towards Clinical Applications. Trends Biotechnol 2019; 37:72-85. [DOI: 10.1016/j.tibtech.2018.07.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
|
42
|
Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. Long reads: their purpose and place. Hum Mol Genet 2018; 27:R234-R241. [PMID: 29767702 PMCID: PMC6061690 DOI: 10.1093/hmg/ddy177] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years long-read technologies have moved from being a niche and specialist field to a point of relative maturity likely to feature frequently in the genomic landscape. Analogous to next generation sequencing, the cost of sequencing using long-read technologies has materially dropped whilst the instrument throughput continues to increase. Together these changes present the prospect of sequencing large numbers of individuals with the aim of fully characterizing genomes at high resolution. In this article, we will endeavour to present an introduction to long-read technologies showing: what long reads are; how they are distinct from short reads; why long reads are useful and how they are being used. We will highlight the recent developments in this field, and the applications and potential of these technologies in medical research, and clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Martin O Pollard
- Human Genetics - Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge - Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, UK
| | - Deepti Gurdasani
- Human Genetics - Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge - Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, UK
| | - Alexander J Mentzer
- Human Genetics - Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, UK
| | - Tarryn Porter
- Human Genetics - Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge - Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, UK
| | - Manjinder S Sandhu
- Human Genetics - Wellcome Sanger Institute, Hinxton, Cambridge, UK
- University of Cambridge - Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, UK
| |
Collapse
|
43
|
Frans G, Meert W, Van der Werff Ten Bosch J, Meyts I, Bossuyt X, Vermeesch JR, Hestand MS. Conventional and Single-Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn 2018; 20:195-202. [DOI: 10.1016/j.jmoldx.2017.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
|
44
|
Borràs DM, Vossen RHAM, Liem M, Buermans HPJ, Dauwerse H, van Heusden D, Gansevoort RT, den Dunnen JT, Janssen B, Peters DJM, Losekoot M, Anvar SY. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat 2017; 38:870-879. [PMID: 28378423 PMCID: PMC5488171 DOI: 10.1002/humu.23223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/23/2023]
Abstract
A genetic diagnosis of autosomal-dominant polycystic kidney disease (ADPKD) is challenging due to allelic heterogeneity, high GC content, and homology of the PKD1 gene with six pseudogenes. Short-read next-generation sequencing approaches, such as whole-genome sequencing and whole-exome sequencing, often fail at reliably characterizing complex regions such as PKD1. However, long-read single-molecule sequencing has been shown to be an alternative strategy that could overcome PKD1 complexities and discriminate between homologous regions of PKD1 and its pseudogenes. In this study, we present the increased power of resolution for complex regions using long-read sequencing to characterize a cohort of 19 patients with ADPKD. Our approach provided high sensitivity in identifying PKD1 pathogenic variants, diagnosing 94.7% of the patients. We show that reliable screening of ADPKD patients in a single test without interference of PKD1 homologous sequences, commonly introduced by residual amplification of PKD1 pseudogenes, by direct long-read sequencing is now possible. This strategy can be implemented in diagnostics and is highly suitable to sequence and resolve complex genomic regions that are of clinical relevance.
Collapse
Affiliation(s)
- Daniel M Borràs
- GenomeScan B.V, Leiden, The Netherlands.,Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Rolf H A M Vossen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Michael Liem
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Henk P J Buermans
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hans Dauwerse
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Dave van Heusden
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Hospital Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Seyed Yahya Anvar
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|