1
|
Acuña AM, Nagy EK, Legg JL, Rodarte SE, Olive MF. Characterization of serum and brain cytokine levels following prolonged binge-like methamphetamine self-administration and cued methamphetamine seeking. J Neuroimmunol 2025; 400:578530. [PMID: 39854936 PMCID: PMC11875959 DOI: 10.1016/j.jneuroim.2025.578530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Methamphetamine (METH) use is associated with peripheral and brain inflammation that can contribute to METH-associated toxicity and heightened cue reactivity. However, the persistence of these phenomena, especially with regards to changes in brain proinflammatory cytokine levels, is not yet clear. In this study, we determined the effects of repeated binge-like METH self-administration (96-h/week for 3 weeks) followed by cued drug seeking for up to 60 days into abstinence in male and female rats. Serum cytokine levels were assessed prior to cued drug seeking tests on days 21 and 60 of abstinence, and cytokine levels in the prefrontal cortex (PFC) and dorsal striatum (DStr) were assessed on the day following that last cued seeking test. We observed robust levels of METH intake in both sexes as well as a gradual increase in magnitude of METH seeking across abstinence that did not differ between sexes. Magnitude of METH seeking on days 10 and 60 were positively correlated with prior total drug intake. Sex- and region-dependent changes in various chemokines and interleukins were observed in the PFC and DStr, as were sex- and time-dependent changes in serum cytokine levels, with the largest number of cytokines altered on day 60 in male animals. Serum levels of IL-6 were positively correlated with brain levels of this cytokine, but serum levels of this and other cytokines did not correlate with the magnitude of METH seeking. These findings suggest that binge-like METH intake produces persistent yet divergent central and peripheral immune responses that extend well into abstinence.
Collapse
Affiliation(s)
- Amanda M Acuña
- Department of Psychology, Arizona State University, Tempe, AZ 85257, USA; Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85257, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, AZ 85257, USA
| | - Justin L Legg
- Department of Psychology, Arizona State University, Tempe, AZ 85257, USA
| | - Serena E Rodarte
- Department of Psychology, Arizona State University, Tempe, AZ 85257, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ 85257, USA; Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85257, USA.
| |
Collapse
|
2
|
Shi S, Sun Y, Zan G, Zhao M. The interaction between central and peripheral immune systems in methamphetamine use disorder: current status and future directions. J Neuroinflammation 2025; 22:40. [PMID: 39955589 PMCID: PMC11829452 DOI: 10.1186/s12974-025-03372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Methamphetamine (METH) use disorder (MUD) is characterized by compulsive drug-seeking behavior and substantial neurotoxicity, posing a considerable burden on individuals and society. Traditionally perceived as a localized central nervous system disorder, recent preclinical and clinical studies have elucidated that MUD is a multifaceted disorder influenced by various biological systems, particularly the immune system. Emerging evidence suggests that both central and peripheral immune responses play a crucial role in the initiation and persistence of MUD. Conceptualizing it as a systemic immune process prompts significant inquiries regarding the mechanisms of communication between peripheral and central compartments. Also, whether this intercommunication could serve as diagnostic biomarkers or therapeutic targets. This review begins by offering an overview of mechanistic studies pertaining to the neuroimmune and peripheral immune systems. Finally, future directions are suggested through the integration of innovative technologies and multidimensional data to promote the translation of basic mechanistic research into clinical diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| |
Collapse
|
3
|
Sakai Y, Hattori J, Morikawa Y, Matsumura T, Jimbo S, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinooctanophenone facilitates activation of human microglial cells via ROS/STAT3-dependent pathway. Forensic Toxicol 2025; 43:142-154. [PMID: 39652148 PMCID: PMC11782452 DOI: 10.1007/s11419-024-00708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE Pyrrolidinophenone derivatives (PPs) are amphetamine-like designer drugs containing a pyrrolidine ring, and their adverse effects resemble those of methamphetamine (METH). Microglial activation has been recently suggested as a key event in eliciting the adverse effects against dysfunction of the central nervous system. The aim of this study is to clarify the mechanisms of microglial activation induced by PPs. METHODS We employed the human microglial cell line HMC3 to assess microglial activation induced by PPs and evaluated the capacities for proliferation and interleukin-6 (IL-6) production that are characteristic features of the activation events. RESULTS The WST-1 assay indicated that viability of HMC3 cells was increased by treatment with sublethal concentrations (5-20 µM) of α-pyrrolidinooctanophenone (α-POP), a highly lipophilic PP, whereas it was decreased by treatment with concentrations above 40 µM. Treatment with sublethal α-POP concentrations up-regulated the expression and secretion of IL-6. Additionally, α-POP-induced increase in cell viability was restored by pretreating with N-acetyl-L-cysteine, a reactive oxygen species (ROS) scavenger, and stattic, an inhibitor of signal transducer and activator of transcription 3 (STAT3), respectively, suggesting that activation of the ROS/STAT3 pathway is involved in the α-POP-induced activation of HMC3 cells. The increases in cell viability were also observed in HMC3 cells treated with other α-POP derivatives and METH. CONCLUSIONS These results suggest that enhanced productions of ROS and IL-6 are also involved in microglial activation by drug treatment and that HMC3 cell-based system is available to evaluate accurately the microglial activation induced by abused drugs.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshihiro Matsumura
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Shunsuke Jimbo
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
4
|
Ghanooni D, Flentje A, Hirshfield S, Horvath KJ, Moreno PI, Harkness A, Ross EJ, Dilworth SE, Pahwa S, Pallikkuth S, Carrico AW. Structural Determinants of Health and Markers of Immune Activation and Systemic Inflammation in Sexual Minority Men With and Without HIV. J Urban Health 2024; 101:867-877. [PMID: 38831153 PMCID: PMC11329474 DOI: 10.1007/s11524-024-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Among sexual minority men (SMM), HIV and use of stimulants such as methamphetamine are linked with immune activation and systemic inflammation. Throughout the COVID-19 pandemic, SMM encountered financial challenges and structural obstacles that might have uniquely contributed to immune dysregulation and systemic inflammation, beyond the impacts of HIV and stimulant use. Between August 2020 and February 2022, 72 SMM with and without HIV residing in South Florida enrolled in a COVID-19 prospective cohort study. Multiple linear regression analyses examined unemployment, homelessness, and history of arrest as structural correlates of soluble markers of immune activation (i.e., sCD14 and sCD163) and inflammation (i.e., sTNF-α receptors I and II) at baseline after adjusting for HIV status, stimulant use, and recent SARS-CoV-2 infection. Enrolled participants were predominantly Latino (59%), gay-identified (85%), and with a mean age of 38 (SD, 12) years with approximately one-third (38%) of participants living with HIV. After adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use, unemployment independently predicted higher levels of sCD163 (β = 0.24, p = 0.04) and sTNF-α receptor I (β = 0.26, p = 0.02). Homelessness (β = 0.25, p = 0.02) and history of arrest (β = 0.24, p = 0.04) independently predicted higher levels of sCD14 after adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use. Independent associations exist between structural barriers and immune activation and systemic inflammation in SMM with and without HIV. Future longitudinal research should further elucidate complex bio-behavioral mechanisms linking structural factors with immune activation and inflammation.
Collapse
Affiliation(s)
- Delaram Ghanooni
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA.
| | - Annesa Flentje
- Community Health Systems, San Francisco School of Nursing and Alliance Health Project, School of Medicine, University of California, San Francisco, CA, USA
| | - Sabina Hirshfield
- Department of Medicine, STAR Program Brooklyn, State University of New York - Downstate Health Sciences University, Brooklyn, NY, USA
| | - Keith J Horvath
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Patricia I Moreno
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Audrey Harkness
- School of Nursing and Health Sciences, University of Miami, Coral Gables, FL, USA
| | - Emily J Ross
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Samantha E Dilworth
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Suresh Pallikkuth
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Adam W Carrico
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA
| |
Collapse
|
5
|
Kordi N, Azizi M, Samadi M, Tahmasebi W. Can Methamphetamine-Induced Cardiotoxicity be Ameliorated by Aerobic Training and Nutrition Bio-shield Superfood Supplementation in Rats After Withdrawal? Cardiovasc Toxicol 2024; 24:687-699. [PMID: 38816669 DOI: 10.1007/s12012-024-09871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
The abuse of methamphetamine is a significant threat to cardiovascular health and has detrimental effects on the myocardium. The present study aims to explore potential interventions that can mitigate myocardial pyroptosis in rats following methamphetamine withdrawal. A total of 104 male Wistar rats were randomly assigned to eight groups. The rats underwent a methamphetamine administration protocol, receiving intraperitoneal injections of 10 mg/kg during the 1st week, followed by a weekly dose escalation of 1 mg/kg from the second to the 6th week and two times per day. Concurrently, the rats engaged in 6 weeks of moderate-intensity treadmill aerobic training, lasting 60 min per day, 5 days a week. Simultaneously, the Nutrition bio-shield Superfood (NBS) supplement was administered at a dosage of 25 g/kg daily for 6 weeks. The study assessed the expression levels of Caspase-1, Interleukin-1beta (IL-1β), and Interleukin-18 (IL-18) genes in myocardial tissue. Data analysis utilized a one-way analysis of variance (p ≤ 0.05). The findings revealed that methamphetamine usage significantly elevated the expression of Caspase-1, IL-1β, and IL-18 genes (p ≤ 0.05). Conversely, methamphetamine withdrawal led to a notable reduction in the expression of these genes (p ≤ 0.05). Noteworthy reductions in Caspase-1, IL-1β, and IL-18 expression were observed following aerobic training, supplementation, and the combined approach (p ≤ 0.05). The chronic use of methamphetamine was associated with cardiac tissue damage. This study highlights the potential of aerobic training and NBS Superfood supplementation in mitigating the harmful effects of methamphetamine-induced myocardial pyroptosis. The observed reductions in gene expression levels indicate promising interventions to address the cardiovascular consequences of methamphetamine abuse. The findings of this study suggest that a combination of aerobic exercise and NBS Superfood supplementation can provide a promising approach to mitigate the deleterious effects of methamphetamine on the heart. These findings can be useful for healthcare professionals and policymakers to design effective interventions to prevent and manage the adverse effects of methamphetamine abuse.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Sport Sciences, Razi University, Kermanshah, Iran
| | - Mohammad Azizi
- Department of Sport Sciences, Razi University, Kermanshah, Iran.
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Mohammad Samadi
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Worya Tahmasebi
- Department of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
6
|
Nagy EK, Overby PF, Leyrer-Jackson JM, Carfagno VF, Acuña AM, Olive MF. Methamphetamine and the Synthetic Cathinone 3,4-Methylenedioxypyrovalerone (MDPV) Produce Persistent Effects on Prefrontal and Striatal Microglial Morphology and Neuroimmune Signaling Following Repeated Binge-like Intake in Male and Female Rats. Brain Sci 2024; 14:435. [PMID: 38790414 PMCID: PMC11118022 DOI: 10.3390/brainsci14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Psychostimulants alter cellular morphology and activate neuroimmune signaling in a number of brain regions, yet few prior studies have investigated their persistence beyond acute abstinence or following high levels of voluntary drug intake. In this study, we examined the effects of the repeated binge-like self-administration (96 h/week for 3 weeks) of methamphetamine (METH) and 21 days of abstinence in female and male rats on changes in cell density, morphology, and cytokine levels in two addiction-related brain regions-the prefrontal cortex (PFC) and dorsal striatum (DStr). We also examined the effects of similar patterns of intake of the cocaine-like synthetic cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) or saline as a control. Robust levels of METH and MDPV intake (~500-1000 infusions per 96 h period) were observed in both sexes. We observed no changes in astrocyte or neuron density in either region, but decreases in dendritic spine densities were observed in PFC pyramidal and DStr medium spiny neurons. The microglial cell density was decreased in the PFC of METH self-administering animals, accompanied by evidence of microglial apoptosis. Changes in microglial morphology (e.g., decreased territorial volume and ramification and increased cell soma volume) were also observed, indicative of an inflammatory-like state. Multiplex analyses of PFC and DStr cytokine content revealed elevated levels of various interleukins and chemokines only in METH self-administering animals, with region- and sex-dependent effects. Our findings suggest that voluntary binge-like METH or MDPV intake induces similar cellular perturbations in the brain, but they are divergent neuroimmune responses that persist beyond the initial abstinence phase.
Collapse
Affiliation(s)
- Erin K. Nagy
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Paula F. Overby
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Jonna M. Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ 85012, USA
| | - Vincent F. Carfagno
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
8
|
Bravo J, Magalhães C, Andrade EB, Magalhães A, Summavielle T. The impact of psychostimulants on central and peripheral neuro-immune regulation: a scoping review of cytokine profiles and their implications for addiction. Front Cell Neurosci 2023; 17:1109611. [PMID: 37305435 PMCID: PMC10251407 DOI: 10.3389/fncel.2023.1109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
It is now well-accepted that psychostimulants act on glial cells causing neuroinflammation and adding to the neurotoxic effects of such substances. Neuroinflammation can be described as an inflammatory response, within the CNS, mediated through several cytokines, reactive oxygen species, chemokines and other inflammatory markers. These inflammatory players, in particular cytokines, play important roles. Several studies have demonstrated that psychostimulants impact on cytokine production and release, both centrally and at the peripheral level. Nevertheless, the available data is often contradictory. Because understanding how cytokines are modulated by psychoactive substances seems crucial to perspective successful therapeutic interventions, here, we conducted a scoping review of the available literature. We have focused on how different psychostimulants impact on the cytokine profile. Publications were grouped according to the substance addressed (methamphetamine, cocaine, methylphenidate, MDMA or other amphetamines), the type of exposure and period of evaluation (acute, short- or long-term exposure, withdrawal, and reinstatement). Studies were further divided in those addressing central cytokines, circulating (peripheral) levels, or both. Our analysis showed that the classical pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were those more investigated. The majority of studies have reported increased levels of these cytokines in the central nervous system after acute or repeated drug. However, studies investigating cytokine levels during withdrawal or reinstatement have shown higher variability in their findings. Although we have identified fewer studies addressing circulating cytokines in humans, the available data suggest that the results may be more robust in animal models than in patients with problematic drug use. As a major conclusion, an extensive use of arrays for relevant cytokines should be considered to better determine which cytokines, upon the classical ones, may be involved in the progression from episodic use to the development of addiction. A concerted effort is still necessary to address the link between peripheral and central immune players, including from a longitudinal perspective. Until there, the identification of new biomarkers and therapeutic targets to envision personalized immune-based therapeutics will continue to be unlikely.
Collapse
Affiliation(s)
- Joana Bravo
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| | - Catarina Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elva B. Andrade
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
- Immunobiology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - Teresa Summavielle
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
9
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
10
|
Lafuente JV, Sharma A, Feng L, Muresanu DF, Nozari A, Tian ZR, Buzoianu AD, Sjöquist PO, Wiklund L, Sharma HS. Nanowired Delivery of Mesenchymal Stem Cells with Antioxidant Compound H-290/51 Reduces Exacerbation of Methamphetamine Neurotoxicity in Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:317-352. [PMID: 37480465 DOI: 10.1007/978-3-031-32997-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to hot environments either for combat operations or peacekeeping missions. Hot environment is a severe stressful situation leading to profound hyperthermia, fatigue and neurological impairments. To avoid stressful environment, some people frequently use methamphetamine (METH) or other psychostimulants to feel comfortable under adverse situations. Our studies show that heat stress alone induces breakdown of the blood-brain barrier (BBB) and edema formation associated with reduced cerebral blood flow (CBF). On the other hand, METH alone induces hyperthermia and neurotoxicity. These effects of METH are exacerbated at high ambient temperatures as seen with greater breakdown of the BBB and brain pathology. Thus, a combination of METH use at hot environment may further enhance the brain damage-associated behavioral dysfunctions. METH is well known to induce severe oxidative stress leading to brain pathology. In this investigation, METH intoxication at hot environment was examined on brain pathology and to explore suitable strategies to induce neuroprotection. Accordingly, TiO2-nanowired delivery of H-290/51 (150 mg/kg, i.p.), a potent chain-breaking antioxidant in combination with mesenchymal stem cells (MSCs), is investigated in attenuating METH-induced brain damage at hot environment in model experiments. Our results show that nanodelivery of H-290/51 with MSCs significantly enhanced CBF and reduced BBB breakdown, edema formation and brain pathology following METH exposure at hot environment. These observations are the first to point out that METH exacerbated brain pathology at hot environment probably due to enhanced oxidative stress, and MSCs attenuate these adverse effects, not reported earlier.
Collapse
Affiliation(s)
- José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Re GF, Li H, Yang JQ, Li Y, Zhang Z, Wu X, Zhou R, Kong D, Luo H, Kuang YQ, Wang KH. Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice. Front Mol Neurosci 2022; 15:955799. [PMID: 36106141 PMCID: PMC9465459 DOI: 10.3389/fnmol.2022.955799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Anxiety-like symptoms are common symptoms of methamphetamine (METH) users, especially in the acute withdrawal period, which is an important factor for the high relapse rate during METH acute withdrawal. Exercise has been demonstrated to relieve anxiety-like symptoms during METH withdrawal, but the underlying mechanisms of this anti-anxiety effect are still unclear. Activated microglia and abnormal neuroinflammation play an important role in the pathogenesis of anxiety-like symptoms after METH withdrawal. Moreover, peripheral immune factors were also significantly associated with anxiety symptoms. However, the effects of treadmill exercise on microglial function and neuroinflammation in the striatum and hippocampus during acute METH withdrawal have not been reported. In the current study, we found severe peripheral immune dysfunction in METH users during acute withdrawal, which may in part contribute to anxiety symptoms during METH acute withdrawal. We also showed that 2 weeks of METH exposure induced anxiety-like symptoms in the acute withdrawal period. Additionally, METH exposure resulted in increased microglial activation and proinflammatory cytokines released in the mouse striatum and hippocampus during acute withdrawal. We next evaluated the effects of treadmill exercise in countering anxiety-like symptoms induced by METH acute withdrawal. The results showed that anxiety-like symptoms induced by acute METH withdrawal were attenuated by coadministration of treadmill exercise. In addition, treadmill exercise counteracted METH-induced microglial activation in the mouse striatum and various subregions of the hippocampus. Furthermore, treadmill exercise also reversed the increase in proinflammatory cytokines induced by acute METH withdrawal in the mouse striatum, hippocampus and serum. Our findings suggest that the anti-anxiety effect of treadmill exercise may be mediated by reducing microglial activation and regulating central and peripheral inflammatory responses.
Collapse
Affiliation(s)
- Guo-Fen Re
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Li
- Yunnan Narcotics Control Bureau, Kunming, China
| | - Ji-Qun Yang
- The Third People’s Hospital of Kunming, Kunming, China
| | - Yue Li
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Kunming, China
| | - Xiaocong Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiyi Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi-Qun Kuang,
| | - Kun-Hua Wang
- School of Medicine, Yunnan University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yi-Qun Kuang,
| |
Collapse
|
12
|
Li Y, Kong D, Bi K, Luo H. Related Effects of Methamphetamine on the Intestinal Barrier via Cytokines, and Potential Mechanisms by Which Methamphetamine May Occur on the Brain-Gut Axis. Front Med (Lausanne) 2022; 9:783121. [PMID: 35620725 PMCID: PMC9128015 DOI: 10.3389/fmed.2022.783121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Methamphetamine (METH) is an illegal drug widely abused in many countries. Methamphetamine abuse is a major health and social problem all over the world. However, the effects of METH on the digestive system have rarely been reported. Previous studies and clinical cases have shown that METH use can lead to the impaired intestinal barrier function and severe digestive diseases. METH can cause multiple organ dysfunction, especially in the central nervous system (CNS). The gut microbiota are involved in the development of various CNS-related diseases via the gut-brain axis (GBA). Here, we describe the related effects of METH on the intestinal barrier via cytokines and the underlying mechanisms by which METH may occur in the brain-gut axis.
Collapse
Affiliation(s)
- Yuansen Li
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Deshenyue Kong
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Ke Bi
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Huayou Luo
- Department of Intestine and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Deng D, Su H, Song Y, Chen T, Sun Q, Jiang H, Zhao M. Altered Fecal Microbiota Correlated With Systemic Inflammation in Male Subjects With Methamphetamine Use Disorder. Front Cell Infect Microbiol 2021; 11:783917. [PMID: 34869080 PMCID: PMC8637621 DOI: 10.3389/fcimb.2021.783917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Methamphetamine use disorder (MUD) is a major public health problem worldwide with limited effective treatment options. Previous studies have reported methamphetamine-associated alterations in gut microbiota. A potential role of gut microbiota in regulating methamphetamine-induced brain dysfunction through interactions with the host immune system has been proposed, but evidence for this hypothesis is limited. The present study aimed to investigate the alterations in the fecal microbiota and explore its relationship with systemic inflammation in MUD. Fecal samples were obtained from 26 male subjects with MUD and 17 sex- and age- matched healthy controls. Fecal microbial profiles were analyzed by 16S rRNA sequencing. Plasma inflammatory markers were measured using enzyme-linked immunosorbent assay. Associations between fecal microbiota, systemic inflammatory markers and clinical characteristics were examined by Spearman partial correlation analysis while controlling for possible confounders. Compared with healthy controls, individuals with MUD showed no difference in fecal microbial diversity, but exhibited differences in the relative abundance of several microbial taxa. At the genus level, a higher abundance of Collinsella, Odoribacter and Megasphaera and lower levels of Faecalibacterium, Blautia, Dorea and Streptococcus were detected in subjects with MUD. More importantly, altered fecal microbiota was found to be correlated with plasma levels of CRP, IL-2, IL-6 and IL-10. The order Lactobacillales, exhibiting lower abundance in participants with MUD, was positively related to the duration of methamphetamine abstinence and the plasma level of anti-inflammatory cytokine IL-10. This study is the first to provide evidence for a link between altered fecal microbiota and systemic inflammation in MUD. Further elucidation of interactions between gut microbiota and the host immune system may be beneficial for the development of novel therapeutic approaches for MUD.
Collapse
Affiliation(s)
- Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuehong Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|