1
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Kim M, Jeong JY, Seo AN. Biomarkers for Predicting Response to Personalized Immunotherapy in Gastric Cancer. Diagnostics (Basel) 2023; 13:2782. [PMID: 37685320 PMCID: PMC10487043 DOI: 10.3390/diagnostics13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite advances in diagnostic imaging, surgical techniques, and systemic therapy, gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Unfortunately, molecular heterogeneity and, consequently, acquired resistance in GC are the major causes of failure in the development of biomarker-guided targeted therapies. However, by showing promising survival benefits in some studies, the recent emergence of immunotherapy in GC has had a significant impact on treatment-selectable procedures. Immune checkpoint inhibitors (ICIs), widely indicated in the treatment of several malignancies, target inhibitory receptors on T lymphocytes, including the programmed cell death protein (PD-1)/programmed death-ligand 1 (PD-L1) axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and release effector T-cells from negative feedback signals. In this article, we review currently available predictive biomarkers (including PD-L1, microsatellite instability, Epstein-Barr virus, and tumor mutational burden) that affect the ICI treatment response, focusing on PD-L1 expression. We further briefly describe other potential biomarkers or mechanisms for predicting the response to ICIs in GC. This review may facilitate the expansion of the understanding of biomarkers for predicting the response to ICIs and help select the appropriate therapeutic approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, 136-gil 90, Chilgokjungang-daero, Buk-gu, Daegu 41405, Republic of Korea; (M.K.); (J.Y.J.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, 807 Hogukno, Buk-gu, Daegu 41404, Republic of Korea
| |
Collapse
|
3
|
Spagnol LW, Polettini J, Silveira DA, Wegner GRM, Paiva DFF. P16 gene promoter methylation is associated with oncogenesis and progression of gastric carcinomas: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 180:103843. [DOI: 10.1016/j.critrevonc.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
4
|
Abstract
Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea.
| |
Collapse
|
5
|
Zhang Y, Hu S, Li J, Shi D, Luo B. The promoter aberrant methylation status of TMEM130 is associated with gastric cancer. Dig Liver Dis 2022; 54:819-825. [PMID: 34162508 DOI: 10.1016/j.dld.2021.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Gastric cancer (GC) is a malignant tumor that seriously affects human health and Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a molecular subtype of GC. This study aims to determine the relationship between the methylation status of the TMEM130 gene and GC, and to explore the influence of EBV infection. METHODS qRT-PCR was conducted to investigate the transcriptional expression of TMEM130 in GC. BSP and MSP assays were used to detect the methylation level of the TMEM130 promoter. The cell migration ability was detected by Transwell and western blot after transfection of TMEM130 plasmids in GC cells. RESULTS The transcriptional expression of TMEM130 decreased in GC with hypermethylation of the promoter region. The DNA methyltransferase inhibitor could increase the mRNA expression of TMEM130. Moreover, hypermethylation of the TMEM130 promoter in GC tissues was associated with EBV infection. Overexpression of TMEM130 in GC cell lines suppresses cell migration ability. CONCLUSION This study was the first to research the expression and function of TMEM130 and found that TMEM130 gene hypermethylation might contribute to GC migration and EBV infection as a cause of hypermethylation of the TMEM130 gene. TMEM130 is a promising biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo 255000, China
| | - Shunxia Hu
- Department of Clinical Laboratory, Women and Children's Hospital, Qingdao University, Qingdao 266000, China
| | - Jun Li
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Duo Shi
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Bing Luo
- Department of Pathogeny Biology, Basic Medicine College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Sanaei M, Kavoosi F, Ghasemzadeh V. Investigation of the Effect of 5-Aza-2'-Deoxycytidine in Comparison to and in Combination with Trichostatin A on p16INK4a, p14ARF, p15INK4b Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer Caco-2 Cell Line. Int J Prev Med 2021; 12:64. [PMID: 34447506 PMCID: PMC8357004 DOI: 10.4103/ijpvm.ijpvm_11_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background The cell cycle is divided into four phases, G1, G2, S, and M phase. The mammalian cell cycle is controlled and governed by the kinase complexes including cyclin and the cyclin-dependent kinase (CDK), cyclin-CDK complexes. The activity of the complexes is regulated by cyclin-dependent kinase inhibitors (CDKIs), the INK4, and the CDK interacting protein/kinase inhibitory protein (CIP/KIP) families. Promoter hypermethylation and histone deacetylation of CDKIs have been reported in several cancers. These changes can be reversed by DNA demethylating agents, such as decitabine, 5-Aza-2'-deoxycytidine (5-Aza-CdR), and histone deacetylase inhibitors (HDACIs), such as trichostatin A. Previously, we reported the effect of 5-Aza-CdR and trichostatin A (TSA) on hepatocellular carcinoma (HCC). The present study aimed to investigate the effect of 5-Aza-CdR in comparison to and in combination with trichostatin A on p16INK4a, p14ARF, p15INK4b genes expression, cell growth inhibition and apoptosis induction in colon cancer Caco-2 cell line. Methods The Caco-2 cells were cultured and treated with 5-Aza-CdR and TSA (alone and combined). The cell viability, apoptosis, and relative gene expression were determined by MTT assay, flow cytometry, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively. Results Both compounds inhibited cell growth, induced apoptosis, and up-regulated the p16INK4a, p14ARF, p15INK4b gene significantly. The TSA had a more significant effect in comparison to 5-Aza-CdR. Furthermore, maximal apoptosis and up-regulation were observed with combined treatment. Conclusions our finding indicated that 5-Aza-CdR and TSA can epigenetically re-activate the p16INK4a, p14ARF, p15INK4b gene resulting in cell growth inhibition and apoptosis induction in colon cancer.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Vahid Ghasemzadeh
- Department of Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
7
|
Wu T, Wu L. The Role and Clinical Implications of the Retinoblastoma (RB)-E2F Pathway in Gastric Cancer. Front Oncol 2021; 11:655630. [PMID: 34136392 PMCID: PMC8201093 DOI: 10.3389/fonc.2021.655630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the most common malignant tumor in the digestive tract, with very high morbidity and mortality in developing countries. The pathogenesis of gastric cancer is a complex biological process mediated by abnormal regulation of proto-oncogenes and tumor suppressor genes. Although there have been some in-depth studies on gastric cancer at the molecular level, the specific mechanism has not been fully elucidated. RB family proteins (including RB, p130, and p107) are involved in cell cycle regulation, a process that largely depends on members of the E2F gene family that encode transcriptional activators and repressors. In gastric cancer, inactivation of the RB-E2F pathway serves as a core transcriptional mechanism that drives cell cycle progression, and is regulated by cyclins, cyclin-dependent kinases, cyclin-dependent kinase inhibitors, p53, Helicobacter pylori and some other upstream molecules. The E2F proteins are encoded by eight genes (i.e. E2F1 to E2F8), each of which may play a specific role in gastric cancer. Interestingly, a single E2F such as E2F1 can activate or repress transcription, and enhance or inhibit cell proliferation, depending on the cell environment. Thus, the function of the E2F transcription factor family is very complex and needs further exploration. Importantly, the presence of H. pylori in stomach mucosa may affect the RB and p53 tumor suppressor systems, thereby promoting the occurrence of gastric cancer. This review aims to summarize recent research progress on important roles of the complex RB-E2F signaling network in the development and effective treatment of gastric cancer.
Collapse
Affiliation(s)
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Sanaei M, Kavoosi F. Effect of vorinostat on INK4 family and HDACs 1, 2, and 3 in pancreatic cancer and hepatocellular carcinoma. Res Pharm Sci 2021; 16:260-268. [PMID: 34221059 PMCID: PMC8216159 DOI: 10.4103/1735-5362.314824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 03/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: In mammalian cells, several distinct surveillance systems, named cell cycle checkpoints, can interrupt normal cell-cycle progression. The cyclin-dependent kinases are negatively regulated by proteins of cyclin-dependent kinases inhibitors comprising INK4 and Cip/Kip families. Histone deacetylation induced by histone deacetylases (HDACs) inactivates the INK4 and Cip/Kip families lead to cancer induction. HDAC inhibitors (HDACIs) have been indicated to be potent inducers of differentiation, growth arrest, and apoptotic induction. Vorinostat (suberoylanilide hydroxamic acid, SAHA), as an HDACI, is reported to be useful in various cancers. Previously, we reported the effect of trichostatin A on hepatocellular carcinoma and also vorinostat on colon cancer cell lines. The current study was aimed to investigate the effect of vorinostat on p16INK4a, p14ARF, p15INK4b, and class I HDACs 1, 2, and 3 gene expression, cell growth inhibition, and apoptosis induction in pancreatic cancer AsPC-1 and hepatocellular carcinoma LCL-PI 11 cell lines. Experimental approach: The AsPC-1 and LCL-PI 11 cell lines were cultured and treated with vorinostat. To determine, viability, apoptosis, and the relative expression level of p16INK4a, p14ARF, p15INK4b, class I HDACs 1, 2, and 3 genes, MTT assay, cell apoptosis assay, and RT-qPCR were performed, respectively. Findings/Results: Vorinostat significantly inhibited cell growth, induced apoptosis, increased p16INK4a, p14ARF, p15INK4b, and decreased class I HDACs 1, 2, and 3 gene expression. Conclusion and implications: Vorinostat can reactivate the INK4 family through inhibition of class I HDACs 1, 2, and 3 genes activity.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| |
Collapse
|
9
|
Leong MML, Lung ML. The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies. Front Oncol 2021; 11:629780. [PMID: 33718209 PMCID: PMC7947917 DOI: 10.3389/fonc.2021.629780] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of malignancies including Burkitt's lymphoma (BL), Hodgkin's disease, T cell lymphoma, nasopharyngeal carcinoma (NPC), and ∼10% of cases of gastric cancer (EBVaGC). Disruption of epigenetic regulation in the expression of tumor suppressor genes or oncogenes has been considered as one of the important mechanisms for carcinogenesis. Global hypermethylation is a distinct feature in NPC and EBVaGC, whereas global reduction of H3K27me3 is more prevalent in EBVaGC and EBV-transformed lymphoblastoid cells. In BL, EBV may even usurp the host factors to epigenetically regulate its own viral gene expression to restrict latency and lytic switch, resulting in evasion of immunosurveillance. Furthermore, in BL and EBVaGC, the interaction between the EBV episome and the host genome is evident with respectively unique epigenetic features. While the interaction is associated with suppression of gene expression in BL, the corresponding activity in EBVaGC is linked to activation of gene expression. As EBV establishes a unique latency program in these cancer types, it is possible that EBV utilizes different latency proteins to hijack the epigenetic modulators in the host cells for pathogenesis. Since epigenetic regulation of gene expression is reversible, understanding the precise mechanisms about how EBV dysregulates the epigenetic mechanisms enables us to identify the potential targets for epigenetic therapies. This review summarizes the currently available epigenetic profiles of several well-studied EBV-associated cancers and the relevant distinct mechanisms leading to aberrant epigenetic signatures due to EBV.
Collapse
Affiliation(s)
- Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
10
|
Gao Y, Fu Y, Wang J, Zheng X, Zhou J, Ma J. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer. Biochem Biophys Res Commun 2021; 547:1-8. [PMID: 33588233 DOI: 10.1016/j.bbrc.2021.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is the first identified human tumor-related DNA virus, and has a high infection among people worldwide. Recent studies have showed that nearly 10% of gastric cancers have shown EBV infection and this kind of gastric cancer has been identified as a new subtype: EBV associated Gastric cancer (EBVaGC). Furthermore, it has been reported that tumor related genes in the EBVaGC showed frequent methylation modifications compared to those in the EBV negative gastric cancer (EBVnGC). To fully understand the role of EBV in EBVaGC, we analyzed and found that 16.67% of gastric carcinoma samples showed positive EBER1 signals. Mechanically, EBV-encoded Latent membrane protein 1 (LMP1) inhibited the expression of RASSF10, and promoted tumorigenesis by recruiting DNMT1 and inducing the DNA methylation of RASSF10. Altogether, it allows us a better understanding of the possible mechanism of EBV-induced gene hypermethylation in gastric cancer genome. Targeting EBV-induced DNA methylation is a potential therapeutic modality of EBVaGC.
Collapse
Affiliation(s)
- Yingxue Gao
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Yuxin Fu
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Jia Wang
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Xiang Zheng
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jianhua Zhou
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China.
| | - Jian Ma
- Xiangya Hospital, Department of Pathology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
11
|
Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett 2020; 495:191-199. [PMID: 32979463 DOI: 10.1016/j.canlet.2020.09.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a common malignant tumor associated with EBV infection. The molecular classification of gastric carcinoma indicates that EBVaGC is a distinct subtype in terms of oncogenesis and molecular features. Viral proteins, Bam-HI-A rightward transcripts (BART) miRNAs, and Bam-HI A rightward frame 1 (BARF1) promote oncogenesis after EBV infection via the induction of methylation, regulation of host gene expression, and malignant transformation. Together with abnormal mutations and amplification of the host genome as driving factors, interactions between the EBV genome and host genome accelerate carcinogenesis. The molecular profile of EBVaGC is that of EBV driving DNA hypermethylation, frequent phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations, and the overexpression of Janus kinase 2 (JAK2), programmed death ligand-1 (PD-L1), and PD-L2. Clinically, the frequency of lymph node metastasis is lower, and the prognosis is better for EBVaGC than EBV-negative gastric cancer (EBVnGC). Pathologically, EBVaGC is a gastric adenocarcinoma with lymphoid stroma. This review interprets how the EBV genome is involved in the oncogenesis of gastric cancer and describes the molecular and clinicopathological features of EBVaGC.
Collapse
|
12
|
Rokutan-Kurata M, Minamiguchi S, Kataoka TR, Abiko K, Mandai M, Haga H. Uterine cervical squamous cell carcinoma without p16 (CDKN2A) expression: Heterogeneous causes of an unusual immunophenotype. Pathol Int 2020; 70:413-421. [PMID: 32304153 DOI: 10.1111/pin.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Abstract
Immunohistochemically p16 (CDKN2A)-negative uterine cervical squamous cell carcinoma (SCC) is uncommon, and there are few reports about its pathological features. This study explored the causes of p16 negativity in such cases. We analyzed diagnostic tissue samples of five cases of p16-negative cervical SCC among 107 patients who underwent hysterectomy at Kyoto University Hospital between January 2010 and December 2015. The samples were subjected to immunohistochemical staining, in situ hybridization and a genetic analysis. Two of five cases were positive for human papilloma virus (HPV) by genotyping. One was positive for HPV56 with promoter hypermethylation of CDKN2A and co-existing Epstein-Barr virus infection. Another was positive for HPV6 categorized as low-risk HPV with condylomatous morphology. Among the remaining three cases, one had amplification of the L1 gene of HPV with promoter hypermethylation of CDKN2A and TP53 mutation, and one of the other two HPV-negative cases had a homozygous CDKN2A deletion, while the other was positive for p53 and CK7. p16-negativity of cervical SCC is often associated with an unusual virus infection status and CDKN2A gene abnormality.
Collapse
Affiliation(s)
| | | | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Hospital, Kyoto, Japan.,Department of Gynecology and Obstetrics, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
13
|
LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology 2019; 534:87-95. [PMID: 31220652 DOI: 10.1016/j.virol.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a unique type of gastric carcinomas that promoter hypermethylation of tumor-related genes is extremely frequent to be found. Aquaporin 3 (AQP3) is a small membrane transport protein that plays a crucial role in cancer progression and metastasis. However, there is no experimental study on the expression of AQP3 in EBVaGC and the regulation mechanism of EBV on AQP3. In this study, the loss of AQP3 was contributed by the hypermethylation status of AQP3 promoter in EBVaGC which was caused by elevated expression of DNMT3a. In addition, stable and transient transfection system in SGC7901 showed that viral latent membrane protein 2A (LMP2A) activated phosphorylated ERK and up-regulated DNMT3a. Taken together, LMP2A induced the phosphorylation of ERK, which activated DNMT3a transcription and caused AQP3 expression loss through CpG island methylation of AQP3 promoter in EBVaGC.
Collapse
|
14
|
Li L, Ma BBY, Chan ATC, Chan FKL, Murray P, Tao Q. Epstein-Barr Virus-Induced Epigenetic Pathogenesis of Viral-Associated Lymphoepithelioma-Like Carcinomas and Natural Killer/T-Cell Lymphomas. Pathogens 2018; 7:pathogens7030063. [PMID: 30022006 PMCID: PMC6161003 DOI: 10.3390/pathogens7030063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer genome studies of Epstein-Barr virus (EBV)-associated tumors, including lymphoepithelioma-like carcinomas (LELC) of nasopharyngeal (NPC), gastric (EBVaGC) and lung tissues, and natural killer (NK)/T-cell lymphoma (NKTCL), reveal a unique feature of genomic alterations with fewer gene mutations detected than other common cancers. It is known now that epigenetic alterations play a critical role in the pathogenesis of EBV-associated tumors. As an oncogenic virus, EBV establishes its latent and lytic infections in B-lymphoid and epithelial cells, utilizing hijacked cellular epigenetic machinery. EBV-encoded oncoproteins modulate cellular epigenetic machinery to reprogram viral and host epigenomes, especially in the early stage of infection, using host epigenetic regulators. The genome-wide epigenetic alterations further inactivate a series of tumor suppressor genes (TSG) and disrupt key cellular signaling pathways, contributing to EBV-associated cancer initiation and progression. Profiling of genome-wide CpG methylation changes (CpG methylome) have revealed a unique epigenotype of global high-grade methylation of TSGs in EBV-associated tumors. Here, we have summarized recent advances of epigenetic alterations in EBV-associated tumors (LELCs and NKTCL), highlighting the importance of epigenetic etiology in EBV-associated tumorigenesis. Epigenetic study of these EBV-associated tumors will discover valuable biomarkers for their early detection and prognosis prediction, and also develop effective epigenetic therapeutics for these cancers.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Brigette B Y Ma
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Francis K L Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Paul Murray
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Zhang J, Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W. The oncogenic role of Epstein-Barr virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Cell Mol Med 2017; 22:38-45. [PMID: 28990284 PMCID: PMC5742672 DOI: 10.1111/jcmm.13354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Epstein–Barr virus (EBV) infection is detected in various epithelial malignancies, such as nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV comprises some unique molecular features and encodes viral genes and microRNAs (miRNAs) by its own DNA sequence. EBV genes are required to maintain latency and contribute to oncogenic property. miRNAs encoded by EBV have been shown to contribute to initiation and progression of EBV‐related malignancies. By a number of genomic profiling studies, some EBV miRNAs were confirmed to be highly expressed in EBV‐associated gastric cancer (EBVaGC) samples and cell lines. The majority host targets of the EBV miRNAs are important for promoting cell growth and inhibiting apoptosis, facilitating cell survival and immune evasion. However, the integrated molecular mechanisms related to EBV miRNAs remain to be investigated. In this review, we summarized the crucial role of EBV miRNAs in epithelial malignancies, especially in EBVaGC. Collectively, EBV miRNAs play a significant role in the viral and host gene regulation network. Understanding the comprehensive potential targets and relevant functions of EBV miRNAs in gastric carcinogenesis might provide better clinical translation.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma. Arch Pharm Res 2017; 40:894-905. [PMID: 28779374 DOI: 10.1007/s12272-017-0939-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a recently recognized disease entity defined by the presence of EBV in gastric carcinoma cells. EBV infection causes major epigenetic alterations in the EBV genome and its cellular host genome, suggesting that EBV acts as a direct epigenetic driver for EBVaGC. One of the major epigenetic events in the viral and cellular genomes to control transcription is DNA hypo- or hyper-methylation. Particularly, local and global hypermethylation have been reported in EBVaGC. It is therefore important to understand the molecular mechanisms of DNA hypermethylation during EBVaGC carcinogenesis. To understand the functional roles of DNA methylation and suggest therapeutic target candidates for EBVaGC, we reviewed recent literature reporting DNA hypermethylation in EBVaGC. We summarized the identified candidate genes that are markedly hypermethylated in EBVaGC, which can potentially be targets for chemotherapies with demethylating agents.
Collapse
|
17
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology 2015; 82:212-223. [PMID: 26337667 DOI: 10.1159/000434683] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/27/2015] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a distinct subtype of gastric carcinoma, consisting of clonal growth of EBV-infected epithelial cells. Its unique characteristics have been demonstrated by epidemiological, clinical and pathological studies using in situ hybridization for EBV-encoded small RNAs. An oncogenic process for EBVaGC has also been revealed. EBV uses various host-cell machineries, including cell division machinery to propagate clonal virus genomes, DNA-methylation machinery to epigenetically control infected cells, and microRNA and exosome machineries to modify the behavior and microenvironment of infected cells. Recent comprehensive molecular analyses from The Cancer Genome Atlas project demonstrate that EBVaGC is a representative molecular subtype that is distinct from microsatellite unstable, genomically stable and chromosome unstable subtypes. In addition to having the highest level of DNA methylation in CpG islands of promoter regions, EBVaGC harbors particular gene alterations, including a high frequency of mutations in PIK3CA and ARID1A, mutation in BCOR, and amplification of PD-L1 and PD-L2. Although currently undetermined, the virus might use the altered cellular functions that are induced by these somatic mutations. Further investigation of virus-driven oncogenesis will enable hitherto unknown functions of stomach epithelial cell machineries to be elucidated, which may reveal potential therapeutic targets for EBVaGC.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Lin Z, Deng L, Ji J, Cheng C, Wan X, Jiang R, Tang J, Zhuo H, Sun B, Chen Y. S100A4 hypomethylation affects epithelial-mesenchymal transition partially induced by LMP2A in nasopharyngeal carcinoma. Mol Carcinog 2015; 55:1467-76. [PMID: 26292668 DOI: 10.1002/mc.22389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
To identify cellular target genes involved in NPC cell invasion and metastasis, gene expression profiles of CNE-1 cells with or without ectopic LMP2A expression were compared by using the metastatic gene array. S100 calcium binding protein A4 (S100A4) was the highest increased one among these genes both in mRNA and protein levels of NPC cells. Moreover, S100A4 was upregulated in LMP2A-positive NPC tissues. We found that CNE-1-S100A4 showed significantly increased invasion ability as compared to the controls both in vitro and in vivo, which indicated that S100A4 induced EMT occurrence and promoted metastasis. Notably, the DNA hypomethylation of S100A4 was found in LMP2A-positive NPC tissues. Besides, inhibition of DNA methyltransferases via 5-Aza-dC stimulated the expression of S100A4 in the cells without ectopic LMP2A expression. The methylation changes were confirmed by methylation specific PCR (MSP), suggesting that LMP2A ectopic expression led to the demethylation of S100A4 promoter. These results demonstrated that LMP2A-induced hypomethylation participated in regulating S100A4 expression in NPC. Our findings provide an evidence for the emerging notion that hypomethylation and activation of correlated genes are crucial for metastasis progression in cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Deng
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Ji
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Wan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Han Zhuo
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
He D, Zhang YW, Zhang NN, Zhou L, Chen JN, Jiang Y, Shao CK. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein–Barr virus-associated gastric carcinomas. Med Oncol 2015; 32:92. [DOI: 10.1007/s12032-015-0525-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
|
22
|
Yau TO, Tang CM, Yu J. Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol 2014; 20:6448-6456. [PMID: 24914366 PMCID: PMC4047330 DOI: 10.3748/wjg.v20.i21.6448] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) comprises nearly 10% of gastric carcinoma cases worldwide. Recently, it was recognised to have unique clinicopathologic characteristics, including male predominance, lower rates of lymph node involvement, and better prognosis. EBVaGC is further characterised by abnormal hypermethylation of tumour suppressor gene promoter regions, causing down-regulation of their expression. In the present review, we critically discuss the role of EBV in gastric carcinogenesis, summarising the role of viral proteins and microRNAs with respect to aberrant methylation in EBVaGC. Given the role of epigenetic dysregulation in tumourigenesis, epigenetic modifiers may represent a novel therapeutic strategy.
Collapse
|
23
|
Epstein-Barr virus down-regulates tumor suppressor DOK1 expression. PLoS Pathog 2014; 10:e1004125. [PMID: 24809689 PMCID: PMC4014463 DOI: 10.1371/journal.ppat.1004125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
The DOK1 tumor suppressor gene encodes an adapter protein that acts as a negative regulator of several signaling pathways. We have previously reported that DOK1 expression is up-regulated upon cellular stress, via the transcription factor E2F1, and down-regulated in a variety of human malignancies due to aberrant hypermethylation of its promoter. Here we show that Epstein Barr virus (EBV) infection of primary human B-cells leads to the down-regulation of DOK1 gene expression via the viral oncoprotein LMP1. LMP1 alone induces recruitment to the DOK1 promoter of at least two independent inhibitory complexes, one containing E2F1/pRB/DNMT1 and another containing at least EZH2. These events result in tri-methylation of histone H3 at lysine 27 (H3K27me3) of the DOK1 promoter and gene expression silencing. We also present evidence that the presence of additional EBV proteins leads to further repression of DOK1 expression with an additional mechanism. Indeed, EBV infection of B-cells induces DNA methylation at the DOK1 promoter region including the E2F1 responsive elements that, in turn, lose the ability to interact with E2F complexes. Treatment of EBV-infected B-cell-lines with the methyl-transferase inhibitor 5-aza-2′-deoxycytidine rescues DOK1 expression. In summary, our data show the deregulation of DOK1 gene expression by EBV and provide novel insights into the regulation of the DOK1 tumor suppressor in viral-related carcinogenesis. Many oncogenic viruses exhibit cellular transforming properties, often involving oncogenes activation and tumor suppressor genes inactivation. The DOK1 gene is a newly identified tumor suppressor gene with altered expression via hypermethylation of its promoter in a variety of human cancers, including head and neck, lung, gastric and others. In addition, a correlation has been reported between DOK1 aberrant hypermethylation and the presence of oncogenic viruses such as hepatitis B virus (HBV) in hepatocellular carcinoma (HCC) and Epstein-Barr virus (EBV) in Burkitt's lymphoma-derived cell lines. Here we demonstrate for the first time that EBV is directly involved in the inhibition of DOK1 expression in B-cells. We show that EBV leads to epigenetic repression of DOK1 through increased DNA methylation of its promoter and H3K27 tri-methylation. The LMP1 oncoprotein plays a key role in the repression of DOK1 expression. It promotes the formation and the recruitment to the DOK1 promoter of transcriptionally inhibitory complexes composed of E2F1/pRB/DNMT1 and of EZH2 which is part of the polycomb repressive complex 2. Interestingly, one or more additional EBV protein(s) cooperate(s) with LMP1 in inducing massive DNA methylation at the DOK1 promoter, leading to the loss of E2F1 complexes recruitment and even stronger repression of DOK1 expression.
Collapse
|
24
|
Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis. mBio 2014; 5:e01015-14. [PMID: 24781742 PMCID: PMC4010825 DOI: 10.1128/mbio.01015-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi’s sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.
Collapse
|
25
|
Lu F, Tempera I, Lee HT, Dewispelaere K, Lieberman PM. EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells. Virol J 2014; 11:12. [PMID: 24460791 PMCID: PMC3904692 DOI: 10.1186/1743-422x-11-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/17/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epstein-Barr Virus (EBV) latently infects ~10% of gastric carcinomas (GC). Epstein-Barr Nuclear Antigen 1 (EBNA1) is expressed in EBV-associated GC, and can bind host DNA, where it may impact cellular gene regulation. Here, we show that EBNA1 binds directly to DNA upstream of the divergently transcribed GC-specific tumor suppressor genes gastrokine 1 (GKN1) and gastrokine 2 (GKN2). METHODS We use ChIP-Seq, ChIP-qPCR, and EMSA to demonstrate that EBNA1 binds directly to the GKN1 and GKN2 promoter locus. We generate AGS-EBV, and AGS-EBNA1 cell lines to study the effects of EBNA1 on GKN1 and GKN2 mRNA expression with or without 5' azacytidine treatment. RESULTS We show that gastrokine genes are transcriptionally silenced by DNA methylation. We also show that latent EBV infection further reduces GKN1 and GKN2 expression in AGS gastric carcinoma cells, and that siRNA depletion of EBNA1 partially alleviates this repression. However, ectopic expression of EBNA1 slightly increased GKN1 and GKN2 basal mRNA levels, but reduced their responsiveness to demethylating agent. CONCLUSIONS These findings demonstrate that EBNA1 binds to the divergent promoter of the GKN1 and GKN2 genes in GC cells, and suggest that EBNA1 contributes to the complex transcriptional and epigenetic deregulation of the GKN1 and GKN2 tumor suppressor genes in EBV positive GC.
Collapse
Affiliation(s)
| | | | | | | | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Saito M, Nishikawa J, Okada T, Morishige A, Sakai K, Nakamura M, Kiyotoki S, Hamabe K, Okamoto T, Oga A, Sasaki K, Suehiro Y, Hinoda Y, Sakaida I. Role of DNA methylation in the development of Epstein-Barr virus-associated gastric carcinoma. J Med Virol 2012; 85:121-7. [PMID: 23073987 DOI: 10.1002/jmv.23405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 12/13/2022]
Abstract
The frequencies of DNA methylation of certain tumor-related genes are higher in Epstein-Barr virus (EBV)-associated gastric carcinomas than in EBV-negative gastric carcinomas. EBV-associated gastric carcinomas have distinct clinicopathological features; however, there are no case-control studies comparing methylation frequency between EBV-associated gastric carcinomas and controls that have been adjusted according to the clinicopathological features of EBV-associated gastric carcinomas. This study evaluated 25 EBV-associated gastric carcinomas that were positive for EBV-encoded small RNA 1 (EBER-1) by in situ hybridization and 50 EBV-negative gastric carcinomas that were matched with the EBV-associated gastric carcinomas by age, sex, histology, depth of tumor invasion, and stage. Methylation status of 16 loci associated with tumor-related genes was analyzed by methylation-specific polymerase chain reaction (PCR) to identify genes in which DNA methylation specifically occurred in EBV-associated gastric carcinomas. Methylation frequencies of 12 of the 16 genes were higher in EBV-associated gastric carcinomas than in EBV-negative controls, and the frequency of methylation of 6 specific loci (MINT2, MINT31, p14, p16, p73, and RUNX3) was significantly higher in EBV-associated gastric carcinomas than in EBV-negative controls. There were no significant differences in the methylation frequencies of the other genes. The mean methylation index in EBV-associated gastric carcinomas was significantly higher than that in EBV-negative controls. DNA methylation of tumor suppressor genes that regulate the cell cycle and apoptosis specifically occurred in EBV-associated gastric carcinomas. Aberrant DNA methylation might lead to the development and progression of EBV-associated gastric carcinoma.
Collapse
Affiliation(s)
- Mari Saito
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Epigenetic silencing of WNT5A in Epstein-Barr virus-associated gastric carcinoma. Arch Virol 2012; 158:123-32. [PMID: 23001722 DOI: 10.1007/s00705-012-1481-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is responsible for the development of multiple tumors, including EBV-associated gastric carcinoma (EBVaGC), but little is known about its mechanisms in EBVaGC. WNT5A expression and promoter methylation were measured in 5 EBV-positive and 15 EBV-negative GC cell lines. The methylation status of 23 EBV-positive and 25 EBV-negative paired tumor/normal tissue samples was also examined. EBV-positive GC had no or very low expression of WNT5A but a high level of methylation in the promoter region. In contrast, EBV-negative GC had higher WNT5A expression and a lower level of promoter methylation. The reduced WNT5A expression could be restored by treatment with Aza, a methyltransferase inhibitor. Increased expression of WNT5A in vitro inhibited β-catentin expression in EBVaGC cells (SNU719). These results suggest that hypermethylation of WNT5A induced by EBV may contribute to the development of EBVaGC. Ectopic introduction of WNT5A may have preventive/therapeutic potential for tumors with silenced WNT5A.
Collapse
|
29
|
Methylation and Expression of Retinoblastoma and Transforming Growth Factor-β1 Genes in Epstein-Barr Virus-Associated and -Negative Gastric Carcinomas. Gastroenterol Res Pract 2012; 2012:906017. [PMID: 23008701 PMCID: PMC3447358 DOI: 10.1155/2012/906017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/26/2022] Open
Abstract
Background. Retinoblastoma (RB) and transforming growth factor-β1 (TGF-β1) are important tumor-related factors. Methods. A series of 30 EBV-associated gastric carcinoma (EBVaGC) and 38 matched EBV-negative gastric carcinoma (EBVnGC) tissues were examined for the promoter methylation of RB by methylation-specific PCR (MSP) method. The expression of RB and TGF-β1 in gastric carcinoma tissues was detected by immunohistochemistry. Results. The methylation rate of RB gene in EBVaGC and EBVnGC was 80.0% (24/30) and 50.0% (19/38), respectively. The difference of RB methylation rate between EBVaGC and EBVnGC was significant (χ2 = 6.490, P = 0.011). There was no significant difference for RB expression between EBVaGC (43.3%, 13/30) and EBVnGC (63.2%, 24/38), and also for TGF-β1 between EBVaGC (56.7%, 17/30) and EBVnGC (63.2%, 24/38). RB methylation was not reversely correlated with RB expression in gastric carcinoma tissues (χ2 = 2.943, P = 0.086, r = 0.208). RB methylation, loss expression of RB, and TGF-β1 expression were significantly associated with tumor invasion and lymph node metastasis (P < 0.05), but was not associated with sex, age, histological subtype (differentiation status) and tumor location. Conclusions. Methylation of RB is a common event in gastric carcinomas and EBV induces methylation of RB in EBVaGC, which may contribute to the development of gastric carcinomas. EBV has no significant effect on induction of TGF-β1 expression. Detection of RB methylation, RB expression, and TGF-β1 expression may be helpful to judge the status of tumor invasion and lymph node metastasis in gastric carcinomas.
Collapse
|
30
|
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) is a recently recognized entity, which is defined by the presence of EBV in the gastric carcinoma cells. EBVaGC represents about 10% of gastric carcinoma worldwide, and >80,000 patients are estimated to develop EBVaGC annually. EBVaGC shows some distinct clinicopathologic characteristics, such as male predominance, predisposition to the proximal stomach, and a high proportion in diffuse-type gastric carcinomas. Besides, EBVaGC also shows characteristic molecular abnormality, that is, global and nonrandom CpG-island methylation of the promoter region of many cancer-related genes, which causes downregulation of their expression. Moreover, EBVaGC has a relative favorable prognosis. The uniform presence of EBV-encoded small RNA in tumor cells but not in the surrounding normal epithelial cells, and the detection of monoclonal EBV episomes in EBVaGC, strongly suggests that EBV play an etiological role in gastric carcinogenesis. Therefore, EBVaGC should be regarded as a distinct entity of gastric carcinoma, although it only accounts for a relatively small fraction of total gastric carcinomas. In this review, the epidemiological and clinicopathologic features of EBVaGC and the genetic abnormalities of EBVaGC cell including chromosomal and epigenetic abnormalities are described. The roles of EBV in gastric carcinogenesis are discussed. We make an emphasis on the EBV latency pattern and genome polymorphisms as well as local immunity in EBVaGC. In addition, the treatment of EBVaGC is also briefly discussed. Taken together, this review aims to give the reader a full understanding of a newly defined entity of gastric carcinoma, EBVaGC.
Collapse
|
31
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Geddert H, Zur Hausen A, Gabbert HE, Sarbia M. EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Cell Oncol (Dordr) 2011; 34:209-14. [PMID: 20978327 DOI: 10.1007/s13402-011-0028-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric carcinomas (GC) constitute a distinct clinicopathological entity of gastric cancer. In order to determine underlying distinct aberrant promoter methylation we tested cardiac and non-cardiac GC with regard to the presence of EBV. METHODS One hundred GC were tested by RNA-in situ hybridization for the presence of EBV by EBV-encoded small RNA (EBER). Aberrant promoter methylation was investigated by methylation-specific real-time PCR for p16, p14, APC and hMLH1. P16 protein expression was assessed by immunohistochemistry. RESULTS In our selected study cohort, EBER-transcripts were detected in 19.6% (18/92) of GC. EBV-positive GC revealed significantly more often gene hypermethylation of p16, p14 and APC (p<0.0001, p<0.0001 and p=0.02, respectively) than EBV-negative GC. The majority of GC with p16 hypermethylation showed a p16 protein loss (22/28). In contrast, no correlation between the presence of EBV and hMLH1 hypermethylation was found (p=0.7). EBV-positive GC showed a trend towards non-cardiac location (p=0.06) and lower stages (I/II) according to the WHO (p=0.05). CONCLUSIONS Hypermethylation of tumor suppressor genes is significantly more frequent in EBV-associated GC compared to EBV-negative GC. Our data add new insights to the role of EBV in gastric carcinogenesis and underline that EBV-associated GC comprise a distinct molecular-pathologic as well as a distinct clinicopathological entity of GC.
Collapse
Affiliation(s)
- Helene Geddert
- Institute of Pathology, University Hospital of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
33
|
Abstract
Epstein-Barr virus (EBV) has been accepted as an infective agent causing gastric carcinoma (GC). Epstein-Barr virus-associated GC, comprising nearly 10% of all cases of GC, is the monoclonal growth of EBV-infected epithelial cells, which express several EBV-latent genes (latency I program). Sequential events in the gastric mucosa could be traced from EBV infection of the pit cells to fully developed carcinomas by EBV encoded small RNA (EBER)-in situ hybridization. The histological features of the carcinoma consist of a lace pattern of carcinoma cells within the mucosa and the dense infiltration of lymphocytes and macrophages at the invasive site, which might be due to cytokines produced by neoplastic cells. The primary molecular abnormality in EBV-associated GC is global and non-random CpG island methylation in the promoter region of many cancer-related genes. The experimental system of recombinant EBV infection using GC cell lines demonstrated that viral latent membrane protein 2A (LMP2A) is responsible for the promotion of DNA methylation. LMP2A up-regulates cellular DNMT1 through the phosphorylation of STAT3, causing CpG methylation of a tumor suppressor gene, PTEN. DNA methylation in EBV-infected stomach cells may be due to overdrive of the cellular defense against foreign DNA, which eventually leads to the development of EBV-associated GC.
Collapse
Affiliation(s)
- Masashi Fukayama
- Department of Pathology and Diagnostic Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
34
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
35
|
The presence of JC virus in gastric carcinomas correlates with patient's age, intestinal histological type and aberrant methylation of tumor suppressor genes. Mod Pathol 2010; 23:522-30. [PMID: 20081806 DOI: 10.1038/modpathol.2009.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
JC virus (JCV) is a neurotropic polyomavirus and the causative agent of progressive multifocal leukoencephalopathy. A role for JCV in gastrointestinal malignancies has been recently suggested. This study was carried out to determine the prevalence of polyomaviruses including JCV, BKV and SV40 in gastric cancers in Tunisia and to determine the clinicopathological characteristics of virus-associated gastric carcinomas. The presence of polyomaviruses DNA sequences was surveyed in 61 cases of primary gastric carcinomas and in 53 paired non-tumor gastric mucosa by PCR. Findings were correlated to clinicopathological parameters, p53 expression and methylation status of 11 tumor-related genes. Using PCR assays, JCV T-antigen sequence was more frequently detected in gastric carcinomas than in non-tumor gastric mucosa (26 vs 6%, P=0.03), while those of SV40 and BKV were not detected in any cases. Correlation analysis showed that JCV had higher frequency in patients older than 55 years (P=0.034) and in the intestinal histological type (P=0.04). With regard to methylation status, P16 and P14 showed significantly higher methylation frequencies in JCV-positive gastric carcinomas than in JCV-negative cases (P=0.007 and P=0.003, respectively). Moreover, the mean of the methylation index was significantly higher in JCV-positive than in JCV-negative cases (P=0.024). In multivariate logistic regression analysis, age of patients and the methylation index are only the two independent factors associated with JCV infection. Kaplan-Meier survival analysis showed a trend toward better survival for JCV-associated gastric carcinomas patients (log-rank, P=0.11). Our study suggests a role of JCV as cofactor in the pathogenesis of the intestinal type of gastric carcinomas in older persons.
Collapse
|
36
|
Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood 2010; 115:3098-108. [PMID: 20190193 DOI: 10.1182/blood-2009-07-233858] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA hypermethylation of the p15INK4b tumor suppressor gene is commonly observed in acute myeloid leukemia (AML). Repressive histone modifications and their associated binding proteins have been implicated in the regulation of DNA methylation and the transcriptional repression of genes with DNA methylation. We have used high-density chromatin immunoprecipitation-on-chip to determine the histone modifications that normally regulate p15INK4b expression in AML cells and how these marks are altered in cells that have p15INK4b DNA methylation. In AML patient blasts without p15INK4b DNA methylation, a bivalent pattern of active (H3K4me3) and repressive (H3K27me3) modifications exist at the p15INK4b promoter. AML patient blasts with p15INK4b DNA methylation lose H3K4me3 at p15INK4b and become exclusively marked by H3K27me3. H3K27me3, as well as EZH2, extends throughout p14ARF and p16INK4a, indicating that polycomb repression of p15INK4b is a common feature in all AML blasts irrespective of the DNA methylation status of the gene. Reactivation of p15INK4b expression in AML cell lines and patient blasts using 5-aza-2'-deoxycytidine (decitabine) and trichostatin A increased H3K4me3 and maintained H3K27me3 enrichment at p15INK4b. These data indicate that AML cells with p15INK4b DNA methylation have an altered histone methylation pattern compared with unmethylated samples and that these changes are reversible by epigenetic drugs.
Collapse
|
37
|
Ferrasi AC, Pinheiro NA, Rabenhorst SHB, Caballero OL, Rodrigues MAM, Carvalho F, Souza Leite CV, Ferreira MVP, Barros MAP, Pardini MIMC. Helicobacter pylori and EBV in gastric carcinomas: Methylation status and microsatellite instability. World J Gastroenterol 2010; 16:312-9. [PMID: 20082476 PMCID: PMC2807951 DOI: 10.3748/wjg.v16.i3.312] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To verify the methylation status of CDH1, DAPK, COX2, hMLH1 and CDKN2A genes and to evaluate their association with Helicobacter pylori (H. pylori)-cagA+ and Epstein Barr virus (EBV) infections in gastric adenocarcinomas.
METHODS: Methylation-specific PCR (MSP) assay was performed in 89 primary gastric carcinomas (intestinal and diffuse types). Microsatellite instability (MSI) analysis was performed using the BAT26 primer set and PCR products were analyzed with the ABI PRISM 3100 Genetic Analyzer using Genescan 3.7 software (Applied Biosystems). Detection of H. pylori and genotyping were performed by PCR, using specific primers for ureaseC and cagA genes. The presence of EBV was assessed by in situ hybridization. Statistical analyses were performed using the χ2 or Fisher’s exact test.
RESULTS: The most frequent hypermethylated gene was COX-2 (63.5%) followed by DAPK (55.7%), CDH1 (51%), CDKN2A (36%) and hMLH1 (30.3%). Intestinal and diffuse adenocarcinomas showed different methylation profiles and there was an association between methylation of E-CDH1 and H. pylori-cagA+ in the intestinal adenocarcinoma type. MSI was correlated with hMLH1 methylation. There was an inverse correlation between DAPK hypermethylation and MSI.
CONCLUSION: We found a strong association between CDH1 methylation and H. pylori-cagA+ in intestinal-type gastric cancer, association of MSI and better prognosis and an heterogeneous COX-2 overexpression.
Collapse
|
38
|
Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 2009; 69:2766-74. [PMID: 19339266 DOI: 10.1158/0008-5472.can-08-3070] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CpG island promoter methylation of tumor suppressor genes is one of the most characteristic abnormalities in EBV-associated gastric carcinoma (GC). Aberrant promoter methylation and expression loss of PTEN were evaluated in cancer tissues of GC by methylation-specific PCR and immunohistochemistry, respectively, showing that both abnormalities occurred concurrently in EBV-associated GC. PTEN abnormalities were reiterated in GC cell lines MKN-1 and MKN-7 infected with recombinant EBV, and DNA methyltransferase 1 (DNMT1) was commonly overexpressed in both cell lines. Stable and transient transfection systems in MKN-1 similarly showed that viral latent membrane protein 2A (LMP2A) up-regulated DNMT1, leading to an increase in methylation of the PTEN promoter. Importantly, the level of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) increased in the nuclei of LMP2A-expressing GC cells, and knockdown of STAT3 counteracted LMP2A-mediated DNMT1 overexpression. Immunohistochemistry for both pSTAT3 and DNMT1 showed diffuse labeling in the nuclei of the cancer cells in GC tissues, especially in EBV-associated GC. Taken together, LMP2A induces the phosphorylation of STAT3, which activates DNMT1 transcription and causes PTEN expression loss through CpG island methylation of the PTEN promoter in EBV-associated GC. LMP2A plays an essential role in the epigenetic abnormalities in host stomach cells and in the development and maintenance of EBV-associated cancer.
Collapse
Affiliation(s)
- Rumi Hino
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Niller HH, Wolf H, Minarovits J. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol 2009; 19:158-64. [PMID: 19429479 DOI: 10.1016/j.semcancer.2009.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is associated with a wide variety of malignant tumors. The expression of the latent viral RNAs is under strict, host-cell dependent transcriptional control. This results in an almost complete transcriptional silencing of the EBV genome in memory B-cells. In tumor cells, germinal center B-cells and lymphoblastoid cells, distinct viral latency promoters are active. Epigenetic mechanisms contribute to this strict control. In EBV-infected cells, epigenetic mechanisms also alter the expression of cellular genes, including tumor suppressor genes. In Nasopharyngeal Carcinoma, the hypermethylation of certain cellular promoters is attributed to the upregulation of DNA methyltransferases by the viral oncoprotein LMP1 (latent membrane protein 1) via JNK/AP1-signaling. The role of other viral latency products in the epigenetic dysregulation of the cellular genome remains to be established. Analysis of epigenetic alterations in EBV-associated neoplasms may result in a better understanding of their pathogenesis and may facilitate the development of new therapies.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene at the University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
40
|
Fukayama M, Hino R, Uozaki H. Epstein-Barr virus and gastric carcinoma: virus-host interactions leading to carcinoma. Cancer Sci 2008; 99:1726-33. [PMID: 18616681 PMCID: PMC11158613 DOI: 10.1111/j.1349-7006.2008.00888.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (GC) is a distinct subgroup of GC, comprising 10% of all cases of GC. EBV-associated carcinoma is the monoclonal growth of EBV-infected epithelial cells, and it represents a model of virus-host interactions leading to carcinoma. EBV-infected cells express several latent proteins (latency I program of viral latent gene expression) in EBV-associated GC. However, latent membrane protein 2A (LMP2A) up-regulates the cellular survivin gene through the NFkB pathway, conferring resistance to apoptotic stimuli on the neoplastic cells. EBV-associated GC also shows characteristic abnormality, that is, global and non-random CpG island methylation of the promoter region of many cancer-related genes. Since the viral genes are also regulated by promoter methylation in the infected cells, the DNA methylation mechanism specific to EBV-associated GC may be an exaggeration of the cellular mechanism, which is primarily for defense against foreign DNA. Production of several immunomodulator molecules, inducing tumor-infiltrating lymphocyte and macrophages, serves to form the characteristic histologic pattern in EBV-associated GC. The proposed sequence of events within the mucosa is as follows: EBV infection of certain gastric stem cells; expression of viral latent genes; abnormality of signal pathways caused by viral gene products; DNA methylation-mediated repression of tumor suppressor genes; and monoclonal growth of EBV-infected cells through interaction with other etiologic factors. Potentially useful therapeutic approaches to EBV-associated GC are those that utilize the virus-host interactions, such as bortezomib-induced and viral enzyme-targeted radiotherapy.
Collapse
Affiliation(s)
- Masashi Fukayama
- Department of Pathology and Diagnostic Pathology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
41
|
Yalcin A, Serin MS, Emekdas G, Tiftik N, Aslan G, Eskandari G, Tezcan S. Promoter methylation of P15(INK4B) gene is possibly associated with parvovirus B19 infection in adult acute leukemias. Int J Lab Hematol 2008; 31:407-19. [PMID: 18384396 DOI: 10.1111/j.1751-553x.2008.01052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we examined the P15(INK4B) gene promoter methylation in patients with myelodysplastic syndrome and acute leukemia and its possible relationship with parvovirus B19 and Epstein-Barr virus infections. P15(INK4B) methylation frequency was significantly higher in acute leukemia patients than in that of non-malignant patients (P < 0.05). When the patients with myelodysplastic syndrome were included, no significant difference was found between these groups regarding the methylation status. The possible correlation between P15(INK4B) promoter methylation and parvovirus B19 infection was observed in adult acute leukemia patients (P < 0.05). However, no similar relationship in EBV-infected patients was observed. To the best of our knowledge, this is the first report showing the possible association between P15(INK4B) promoter methylation and parvovirus B19 infection in acute leukemia.
Collapse
Affiliation(s)
- A Yalcin
- Department of Hematology, Faculty of Medicine, University of Mersin, Mersin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tresnasari K, Takakuwa T, Ham MF, Rahadiani N, Nakajima H, Aozasa K. Telomere dysfunction and inactivation of the p16(INK4a)/Rb pathway in pyothorax-associated lymphoma. Cancer Sci 2007; 98:978-84. [PMID: 17428253 PMCID: PMC11158100 DOI: 10.1111/j.1349-7006.2007.00482.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have indicated that genome instability is involved in the lymphomagenesis of pyothorax-associated lymphoma (PAL), which develops in patients with a long-standing history of pyothorax. One of the well-known causes of genome instability is telomere dysfunction. In the present study, the condition of telomeres was analyzed in the cell lines and clinical samples from PAL. Telomere length (TL) in PAL cell lines was extremely short (<4.5 kbp). TL in tumor samples was broad in range, and shorter than that in the peripheral blood leukocytes from the matched patients. Three of five PAL cell lines showed frequent loss of telomere signals (telomere erosion); however, telomerase activity in PAL cell lines was similar to that in Burkitt lymphoma cell lines. Rb expression was detected in three PAL cell lines and four of 15 clinical samples, respectively. Rb protein expressed in three PAL cell lines was heavily phosphorylated, indicating that function of Rb protein was suppressed. p16(INK4a) expression was not detected in either cell lines or clinical samples. The promoter region in p16(INK4a) was heavily methylated in all cell lines as well as the clinical samples. Inactivation of the p16(INK4a)/Rb pathway may allow continuous cell division and critical telomere shortening, which induce genome instability, finally leading to malignant transformation. Taken together, telomere dysfunction and inactivation of the p16(INK4a)/Rb pathway might play a role for PAL development.
Collapse
|
43
|
Ushiku T, Chong JM, Uozaki H, Hino R, Chang MS, Sudo M, Rani BR, Sakuma K, Nagai H, Fukayama M. p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 2007; 120:60-6. [PMID: 17058198 DOI: 10.1002/ijc.22275] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To clarify the significance of p73 in Epstein-Barr virus (EBV)-associated gastric carcinoma (GC), the immunohistochemical expression and CpG-island methylation of p73 were evaluated in cancer tissues and adjacent nonneoplastic tissues of GC with and without EBV infection. Loss of p73 expression by immunohistochemistry was specific to EBV-associated GC (11/13) compared to EBV-negative GC (3/38), which was independent of abnormal p53 expression. With methylation-specific polymerase chain reaction (MSP), the aberrant methylation of p73 exon 1 was similarly specific to EBV-associated GC (12/13), and also rare in EBV-negative GC (2/38). Bisulfite sequencing for p73 exon 1 and its 5' region confirmed the MSP results, showing uniform and high-density methylation in EBV-associated GC. Comparative MSP analysis of p14, p16 and p73 methylation, using 20 cases each of formalin-fixed and paraffin-embedded tissues of early GC with and without EBV infection, confirmed 2 types of methylation: global methylation with increased rates (p14 and p16) and specific methylation of p73 in EBV-associated GC. In nonneoplastic mucosa, p14, p16 and p73 methylation occurred in both EBV-associated (8/33, 6/34 and 3/38, respectively) and EBV-negative GC (6/23, 4/35, and 1/35). p73 methylation was observed in the mucosa without H. pylori infection in all 4 samples. Loss of p73 expression through aberrant methylation of the p73 promoter occurs specifically in EBV-associated GC, together with the global methylation of p14 and p16. A specific type of gastritis, prone to a higher grade of atrophy and p73 methylation, may facilitate the development of EBV-associated GC.
Collapse
Affiliation(s)
- Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The identification of high-risk human papillomavirus (HPV) types as a necessary cause of cervical cancer offers the prospect of effective primary prevention and the possibility of improving the efficiency of cervical screening programmes. However, for these opportunities to be realized, a more complete understanding of the natural history of HPV infection, and its relationship to the development of epithelial abnormalities of the cervix, is required. We discuss areas of uncertainty, and their possible effect on disease prevention strategies.
Collapse
Affiliation(s)
- Ciaran B J Woodman
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
45
|
Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res 2006; 12:2995-3002. [PMID: 16707594 DOI: 10.1158/1078-0432.ccr-05-1601] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE EBV-associated gastric carcinoma shows global CpG island methylation of the promoter region of various cancer-related genes. To further clarify the significance of CpG island methylator phenotype (CIMP) status in gastric carcinoma, we investigated methylation profile and clinicopathologic features including overall survival in four subgroups defined by EBV infection and CIMP status: EBV-associated gastric carcinoma and EBV-negative/CIMP-high (H), EBV-intermediate (I), and EBV-negative (N) gastric carcinoma. EXPERIMENTAL DESIGN Methylation-specific PCR was applied to 106 gastric carcinoma cases. CIMP-N, CIMP-I, and CIMP-H status was determined by the number (0, 1-3, and 4-5, respectively) of methylated marker genes (LOX, HRASLS, FLNc, HAND1, and TM), that were newly identified as highly methylated in gastric cancer cell lines. The methylation status of 10 other cancer-related genes (p14, p15, p16, p73, TIMP-3, E-cadherin, DAPK, GSTP1, hMLH1, and MGMT) was also evaluated. RESULTS Nearly all (14 of 15) of EBV-associated gastric carcinoma exhibited CIMP-H, constituting a homogenous group (14%). EBV-negative gastric carcinoma consisted of CIMP-H (24%), CIMP-I (38%), and CIMP-N (24%). EBV-associated gastric carcinoma showed significantly higher frequencies of methylation of cancer-related genes (mean number +/- SD = 6.9 +/- 1.5) even if compared with EBV-negative/CIMP-H gastric carcinoma (3.5 +/- 1.8). Among EBV-negative gastric carcinoma subgroups, CIMP-H gastric carcinoma showed comparatively higher frequency of methylation than CIMP-I or CIMP-N, especially of p16 and hMLH1. CIMP-N gastric carcinoma predominantly consisted of advanced carcinoma with significantly higher frequency of lymph node metastasis. The prognosis of the patients of CIMP-N was significantly worse compared with other groups overall by univariate analysis (P = 0.0313). CONCLUSION The methylation profile of five representative genes is useful to stratify gastric carcinomas into biologically different subgroups. EBV-associated gastric carcinoma showed global CpG island methylation, comprising a pathogenetically distinct subgroup in CIMP-H gastric carcinoma.
Collapse
Affiliation(s)
- Moon-Sung Chang
- Department of Pathology, Graduate School of Medicine and Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oue N, Mitani Y, Motoshita J, Matsumura S, Yoshida K, Kuniyasu H, Nakayama H, Yasui W. Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer 2006; 106:1250-9. [PMID: 16475210 DOI: 10.1002/cncr.21754] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The authors purpose in this study was to clarify the difference in terms of clinicopathologic features between gastric cancer (GC) with high numbers of DNA methylated genes and CpG island methylator phenotype (CIMP)-positive GC as originally defined. METHODS We analyzed DNA methylation of 12 tumor-related genes (hMLH1, MGMT, p16(INK4a), CDH1, RAR-beta, HLTF, RIZ1, TM, FLNc, LOX, HRASLS, HAND1) in 75 samples of GC from 75 patients, 25 samples of corresponding nonneoplastic mucosa from 25 patients, and 10 samples of normal gastric mucosa from 10 healthy young individuals by methylation-specific polymerase chain reaction (PCR) and bisulfite PCR. We also investigated CIMP status by examining the methylation of five MINT loci and p53 mutation status by PCR single-strand conformation polymorphism. We measured levels of expression of mRNAs for these 12 genes by quantitative reverse transcription PCR in 50 GC specimens. RESULTS The average number of methylated genes per tumor was 4.83. DNA methylation of each gene was correlated with low expression of the respective mRNA. High methylation (GC with 5 or more methylated genes) was detected in 39 (52.0%) of 75 GCs. Twenty-nine (37.8%) of 75 GCs were CIMP-positive. DNA methylation of each of the 12 genes was observed more frequently in the high-methylation group than in the low-methylation group. Methylation of 6 specific genes occurred more frequently in CIMP-positive GC than in CIMP-negative GC. Methylation of the remaining 6 genes was not correlated with CIMP-status. High methylation was found more frequently in Stage III/IV GC (26 of 40 cases, 65.0%) than in Stage I/II GC (13 of 35 cases, 37.1%, P = 0.029).CONCLUSIONS.These findings indicate that GCs with higher numbers of methylated genes have more distinct DNA methylation profiles than the originally defined CIMP-positive GCs. DNA methylation of tumor-related genes accumulates in conjunction with tumor progression.
Collapse
Affiliation(s)
- Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kouidou S, Agidou T, Kyrkou A, Andreou A, Katopodi T, Georgiou E, Krikelis D, Dimitriadou A, Spanos P, Tsilikas C, Destouni H, Tzimagiorgis G. Non-CpG cytosine methylation of p53 exon 5 in non-small cell lung carcinoma. Lung Cancer 2005; 50:299-307. [PMID: 16125822 DOI: 10.1016/j.lungcan.2005.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 12/12/2022]
Abstract
Non-CpG methylation of cytosine residues, a mechanism associated with regulation of gene expression, has not been investigated in human cancer until now. Analysis of the p53 exon 5 mutation spectrum in mutation databases for lung cancer reveals frequent GC>AT transitions, several of which occur at non-CpG sequences. To investigate the involvement of cytosine methylation in this mutagenesis process, we analyzed the methylation profile of p53 exon 5, in lung carcinoma. In this report, we present evidence that extensive clustered non-CpG methylation is observed in three regions of this exon, namely the sequences spanning codons 156-159, 175-179 and the 3' splice site, as well as in scattered CpA sequences. This methylation pattern was verified using direct methylation sequencing, and a two-stage methylation-specific PCR assay (MSP), designed for the detection of methylation in a GC rich region (oligo C sequence, of codons 175-179) of exon 5. The results from this MSP assay reveal that DNA from cancerous specimens was more heavily methylated in non-CpG cytosines, compared to that from non-cancerous lung tissue of cancer patients (14/19 cancerous and 6/19 non-cancerous, respectively). DNA isolated from human leucocytes and some non-cancerous specimens (2/19) was free of non-CpG methylation. Careful analysis of the mutations reported in p53 mutation databases also provides corroborating evidence that the high incidence of GC>AT mutations in the p53 gene, observed in lung cancer, might also be related to non-CpG methylation, as well as to the overall increase of methylation sites in this locus.
Collapse
Affiliation(s)
- Sofia Kouidou
- Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang L, Zhu HY, Cheng ZH, Lu R, Chen YX, Fang JY. Expression and methylation of tumor-associated genes in human gastric cancer cell lines. Shijie Huaren Xiaohua Zazhi 2005; 13:1493-1498. [DOI: 10.11569/wcjd.v13.i13.1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and methylation of tumor suppressor genes and oncogenes in the carcinogenesis of gastric cancer, and to further explore new methods for the treatment of gastric cancer.
METHODS: The gastric cancer MKN-45 and HGC-27 cell lines were cultured and then exposed to different concentrations (2 μmol/L, 5 μmol/L and 10 μmol/L) of 5-aza-2'-deoxycytidine (5-aza-dC) for 24 and 72 h. MTT assay was used to examine the viability of the cells. Then the DNA and RNA of the cells were extracted and the expression of p16INK4A, p21WAF1, p53, c-myc, and c-Ha-ras were detected by reverse transcription polymerase chain reaction (RT-PCR). At the same time, the cell cycles of MKN-45 and HGC-27 were observed by flow cytometry. Bisulfite modification and sequencing and methylation-specific PCR were used to detect the methylation of p16INK4A and c-myc promoter region.
RESULTS: The concentrations and exposed time of 5-aza-dC had no significant effect on the viability of gastric cancer cells. p16INK4A was expressed in both MKN-45 and HGC-27 cells before treatment. After treated with 5-aza-dC, p16INK4A expression was increased in both kinds of the cells, and the 5-aza-dC concentration and exposed time were different between the two kinds of cells when the most markedly increased expression of p16INK4A appeared. p53, p21WAF1, c-myc and c-Ha-ras were all expressed before and after treatment. HGC-27 cells were blocked at G1 period, but no changes of MKN-45 cell cycle were observed. Methylation in p16INK4A promoter region occurred so that the expression of this gene was reduced. After treated with demethylation agent 5-aza-dC, the expression of p16INK4A was increased.
CONCLUSION: Methylation regulates the expression of p16INK4A, but not p21WAF1, p53, c-myc, and c-Ha-ras. 5-aza-dC can up-regulate the transcription of tumor suppressor gene through demethylation, in which its concentration and exposed time play an important role.
Collapse
|
49
|
Sakuma K, Uozaki H, Chong JM, Hironaka M, Sudo M, Ushiku T, Nagai H, Fukayama M. Cancer risk to the gastric corpus in Japanese, its correlation with interleukin-1beta gene polymorphism (+3953*T) and Epstein-Barr virus infection. Int J Cancer 2005; 115:93-7. [PMID: 15688413 DOI: 10.1002/ijc.20903] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymorphisms of interleukin-1 (IL-1) genes have been reported to modify the risk of gastric carcinoma (GC) in Caucasians. The significance of IL-1beta gene polymorphisms was evaluated in Japanese GC patients with or without infection of Helicobacter pylori and Epstein Barr virus (EBV) with special reference to the topographic features of GC. IL-1beta gene polymorphisms at positions -511 and +3953 were evaluated by PCR-RFLP and a penta-allelic polymorphism of IL-1RA by PCR in healthy controls (n = 103) and GC (n =140; corpus 95, antrum 45). EBV-infection was determined in the neoplastic tissues by EBER1 in situ hybridization, and H. pylori infection in nonneoplastic gastric mucosa by PCR targeting of the H. pylori urease A gene. GC consisted of EBV-associated (n = 24) and EBV-negative (n = 116) patients, whereas H. pylori infection was positive in 130 cases. Among IL-1beta gene polymorphisms, genotype IL-1beta+3953 C/T was more frequent in the EBV-negative (21%) and corpus GC (23%) patients, compared to the controls (10%), respectively, although there was no genotype IL-1beta+3953 T/T in either group. Thus, the effect of IL-1beta+3953 T was statistically significant in logistic regression models adjusted for age in EBV negativity (odds ratio [OR] 2.27, 95% confidence interval [CI] 1.02-5.05) and in the corpus GC (2.70, 1.19-6.12) with highest OR 3.55 (1.54-8.23) in EBV-negative corpus GC. There was no significant influence of IL-1 gene polymorphism in EBV-associated GC, but it occurred predominantly in the corpus (24/24) compared to EBV-negative GC (71/116) (p = 0.00002). There was no correlation between H. pylori infection and IL-1 gene polymorphism in GC. The cancer risk of the gastric corpus in Japanese is influenced by IL-1beta+3953 polymorphisms. On the other hand, the risk of EBV-associated GC, which occurs predominantly in the corpus, is not influenced by this pro-inflammatory polymorphism.
Collapse
Affiliation(s)
- Kazuya Sakuma
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection, prognosis, and therapy of cancer.
Collapse
Affiliation(s)
- Hsin Pai Li
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Kwei-shan, Taoyuan, Taiwan
| | | | | |
Collapse
|