1
|
Fernandez-De-Los-Reyes I, Gomez-Dorronsoro M, Monreal-Santesteban I, Fernandez-Fernandez A, Fraga M, Azcue P, Alonso L, Fernandez-Marlasca B, Suarez J, Cordoba-Iturriagagoitia A, Guerrero-Setas D. ZEB1 hypermethylation is associated with better prognosis in patients with colon cancer. Clin Epigenetics 2023; 15:193. [PMID: 38093305 PMCID: PMC10720242 DOI: 10.1186/s13148-023-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a heterogeneous disease that is categorized into four Consensus Molecular Subtypes (CMS) according to gene expression. Patients with loco-regional CC (stages II/III) lack prognostic factors, making it essential to analyze new molecular markers that can delineate more aggressive tumors. Aberrant methylation of genes that are essential in crucial mechanisms such as epithelial mesenchymal transition (EMT) contributes to tumor progression in CC. We evaluate the presence of hyper- and hypomethylation in subrogate IHC markers used for CMS classification (CDX2, FRMD6, HTR2B, ZEB1) of 144 stage II/III patients and CC cell lines by pyrosequencing. ZEB1 expression was also studied in control and shRNA-silenced CC cell lines and in paired normal tissue/tumors by quantitative PCR. The pattern of ZEB1 staining was also analyzed in methylated/unmethylated tumors by immunohistochemistry. RESULTS We describe for the first time the hypermethylation of ZEB1 gene and the hypomethylation of the FRMD6 gene in 32.6% and 50.9% of tumors, respectively. Additionally, we confirm the ZEB1 re-expression by epigenetic drugs in methylated cell lines. ZEB1 hypermethylation was more frequent in CMS1 patients and, more importantly, was a good prognostic factor related to disease-free survival (p = 0.015) and overall survival (p = 0.006) in our patient series, independently of other significant clinical parameters such as patient age, stage, lymph node involvement, and blood vessel and perineural invasion. CONCLUSIONS Aberrant methylation is present in the subrogate genes used for CMS classification. Our results are the first evidence that ZEB1 is hypermethylated in CC and that this alteration is an independent factor of good prognosis.
Collapse
Affiliation(s)
- Irene Fernandez-De-Los-Reyes
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Marisa Gomez-Dorronsoro
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Oncogenetic and Hereditary Cancer Group, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Agustín Fernandez-Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Mario Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Pablo Azcue
- Department of Health Science, Public University of Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Laura Alonso
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | | | - Javier Suarez
- Department of Surgery, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Alicia Cordoba-Iturriagagoitia
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Yang W, Guo C, Herman JG, Zhu C, Lv H, Su X, Zhang L, Zhang M, Guo M. Epigenetic silencing of JAM3 promotes esophageal cancer development by activating Wnt signaling. Clin Epigenetics 2022; 14:164. [PMID: 36461092 PMCID: PMC9719220 DOI: 10.1186/s13148-022-01388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The role of JAM3 in different tumors is controversial. The epigenetic regulation and the mechanism of JAM3 remain to be elucidated in human esophageal cancer (EC). METHODS Eleven EC cell lines, 49 cases of esophageal intraepithelial neoplasia (EIN) and 760 cases of primary EC samples were employed. Methylation-specific polymerase chain reaction, immunohistochemistry, MTT, western blot and xenograft mouse models were applied in this study. RESULTS The inverse association between RNA expression and promoter region methylation of JAM3 was found by analyzing 185 cases of EC samples extracted from the TCGA database (p < 0.05). JAM3 was highly expressed in KYSE450, KYSE520, TE1 and YES2 cells, low level expressed in KYSE70 cells and unexpressed in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. JAM3 was unmethylated in KYSE450, KYSE520, TE1 and YES2 cells, partial methylated in KYSE70 cells and completely methylated in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. The expression of JAM3 is correlated with methylation status. The levels of JAM3 were unchanged in KYSE450, KYSE520, TE1 and YES2 cells, increased in KYSE70 cells and restored expression in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells after 5-aza-2'-deoxycytidine treatment, suggesting that the expression of JAM3 is regulated by promoter region methylation. JAM3 was methylated in 26.5% (13/49) of EIN and 51.1% (388/760) of primary EC, and methylation of JAM3 was associated significantly with tumor differentiation and family history (all p < 0.05). Methylation of JAM3 is an independent prognostic factor of poor 5-year overall survival (p < 0.05). JAM3 suppresses cell proliferation, colony formation, migration and invasion and induces G1/S arrest and apoptosis in EC. Further study demonstrated that JAM3 suppressed EC cells and xenograft tumor growth by inhibiting Wnt/β-catenin signaling. CONCLUSION JAM3 is frequently methylated in human EC, and the expression of JAM3 is regulated by promoter region methylation. JAM3 methylation is an early detection and prognostic marker of EC. JAM3 suppresses EC growth both in vitro and in vivo by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Weili Yang
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chao Guo
- grid.414252.40000 0004 1761 8894Laboratory Animal Center, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G. Herman
- grid.478063.e0000 0004 0456 9819The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 USA
| | - Cheng Zhu
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China ,grid.216938.70000 0000 9878 7032Medical College of NanKai University, Tianjin, 300071 China
| | - Honghui Lv
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Xiaomo Su
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Lirong Zhang
- grid.207374.50000 0001 2189 3846Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China
| | - Meiying Zhang
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- grid.414252.40000 0004 1761 8894Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China
| |
Collapse
|
3
|
Li H, Yang W, Zhang M, He T, Zhou F, G Herman J, Hu L, Guo M. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13:1403-1419. [PMID: 34558311 DOI: 10.2217/epi-2021-0217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The role of TMEM176A methylation in lung cancer and its therapeutic application remains unclear. Materials and methods: Nine lung cancer cell lines and 123 cases of cancer tissue samples were employed. Results: TMEM176A was methylated in 53.66% of primary lung cancer. Restoration of TMEM176A expression induced cell apoptosis and G2/M phase arrest, and inhibited colony formation, cell proliferation, migration and invasion. TMEM176A suppressed H1299 cell xenograft growth in mice. Methylation of TMEM176A activated ERK signaling and sensitized H1299 and H23 cells to AZD0156, an ATM inhibitor. Conclusion: The expression of TMEM176A is regulated by promoter region methylation. Methylation of TMEM176A is a potential lung cancer diagnostic marker and a novel synthetic lethal therapeutic marker for AZD0156.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Weili Yang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455000, Henan, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Liming Hu
- Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan, 450052, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
4
|
Gallet P, Oussalah A, Pouget C, Dittmar G, Chery C, Gauchotte G, Jankowski R, Gueant JL, Houlgatte R. Integrative genomics analysis of nasal intestinal-type adenocarcinomas demonstrates the major role of CACNA1C and paves the way for a simple diagnostic tool in male woodworkers. Clin Epigenetics 2021; 13:179. [PMID: 34563241 PMCID: PMC8467244 DOI: 10.1186/s13148-021-01122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background Nasal intestinal-type adenocarcinomas (ITAC) are strongly related to chronic wood dust exposure: The intestinal phenotype relies on CDX2 overexpression but underlying molecular mechanisms remain unknown. Our objectives were to investigate transcriptomic and methylation differences between healthy non-exposed and tumor olfactory cleft mucosae and to compare transcriptomic profiles between non-exposed, wood dust-exposed and ITAC mucosa cells.
Methods We conducted a prospective monocentric study (NCT0281823) including 16 woodworkers with ITAC, 16 healthy exposed woodworkers and 13 healthy, non-exposed, controls. We compared tumor samples with healthy non-exposed samples, both in transcriptome and in methylome analyses. We also investigated wood dust-induced transcriptome modifications of exposed (without tumor) male woodworkers’ samples and of contralateral sides of woodworkers with tumors. We conducted in parallel transcriptome and methylome analysis, and then, the transcriptome analysis was focused on the genes highlighted in methylome analysis. We replicated our results on dataset GSE17433. Results Several clusters of genes enabled the distinction between healthy and ITAC samples. Transcriptomic and IHC analysis confirmed a constant overexpression of CDX2 in ITAC samples, without any specific DNA methylation profile regarding the CDX2 locus. ITAC woodworkers also exhibited a specific transcriptomic profile in their contralateral (non-tumor) olfactory cleft, different from that of other exposed woodworkers, suggesting that they had a different exposure or a different susceptibility. Two top-loci (CACNA1C/CACNA1C-AS1 and SLC26A10) were identified with a hemimethylated profile, but only CACNA1C appeared to be overexpressed both in transcriptomic analysis and in immunohistochemistry. Conclusions Several clusters of genes enable the distinction between healthy mucosa and ITAC samples even in contralateral nasal fossa thus paving the way for a simple diagnostic tool for ITAC in male woodworkers. CACNA1C might be considered as a master gene of ITAC and should be further investigated. Trial registration: NIH ClinicalTrials, NCT0281823, registered May 23d 2016, https://www.clinicaltrials.gov/NCT0281823. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01122-5.
Collapse
Affiliation(s)
- Patrice Gallet
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France. .,ENT Department, CHRU NANCY, 54511, Vandoeuvre-lès-Nancy, France.
| | - Abderrahim Oussalah
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France
| | - Celso Pouget
- Pathology Department, CHRU NANCY, 54511, Vandoeuvre-lès-Nancy, France
| | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Celine Chery
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France
| | - Guillaume Gauchotte
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France
| | - Roger Jankowski
- ENT Department, CHRU NANCY, 54511, Vandoeuvre-lès-Nancy, France
| | - Jean Louis Gueant
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France
| | - Rémi Houlgatte
- INSERM U1256, NGERE-Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, 54000, Nancy, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Zhu C, Zhang M, Wang Q, Jen J, Liu B, Guo M. Intratumor Epigenetic Heterogeneity-A Panel Gene Methylation Study in Thyroid Cancer. Front Genet 2021; 12:714071. [PMID: 34539742 PMCID: PMC8446600 DOI: 10.3389/fgene.2021.714071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid cancer (TC) is the most common endocrine malignancy, and the incidence is increasing very fast. Surgical resection and radioactive iodine ablation are major therapeutic methods, however, around 10% of differentiated thyroid cancer and all anaplastic thyroid carcinoma (ATC) are failed. Comprehensive understanding the molecular mechanisms may provide new therapeutic strategies for thyroid cancer. Even though genetic heterogeneity is rigorously studied in various cancers, epigenetic heterogeneity in human cancer remains unclear. Methods A total of 405 surgical resected thyroid cancer samples were employed (three spatially isolated specimens were obtained from different regions of the same tumor). Twenty-four genes were selected for methylation screening, and frequently methylated genes in thyroid cancer were used for further validation. Methylation specific PCR (MSP) approach was employed to detect the gene promoter region methylation. Results Five genes (AP2, CDH1, DACT2, HIN1, and RASSF1A) are found frequently methylated (>30%) in thyroid cancer. The five genes panel is used for further epigenetic heterogeneity analysis. AP2 methylation is associated with gender (P < 0.05), DACT2 methylation is associated with age, gender and tumor size (all P < 0.05), HIN1 methylation is associated to tumor size (P < 0.05) and extra-thyroidal extension (P < 0.01). RASSF1A methylation is associated with lymph node metastasis (P < 0.01). For heterogeneity analysis, AP2 methylation heterogeneity is associated with tumor size (P < 0.01), CDH1 methylation heterogeneity is associated with lymph node metastasis (P < 0.05), DACT2 methylation heterogeneity is associated with tumor size (P < 0.01), HIN1 methylation heterogeneity is associated with tumor size and extra-thyroidal extension (all P < 0.01). The multivariable analysis suggested that the risk of lymph node metastasis is 2.5 times in CDH1 heterogeneous methylation group (OR = 2.512, 95% CI 1.135, 5.557, P = 0.023). The risk of extra-thyroidal extension is almost 3 times in HIN1 heterogeneous methylation group (OR = 2.607, 95% CI 1.138, 5.971, P = 0.023). Conclusion Five of twenty-four genes were found frequently methylated in human thyroid cancer. Based on 5 genes panel analysis, epigenetic heterogeneity is an universal event. Epigenetic heterogeneity is associated with cancer development and progression.
Collapse
Affiliation(s)
- Chaofan Zhu
- Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Jin Jen
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Baoguo Liu
- Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Ma J, Xia LL, Yao XQ, Zheng SM, Li S, Xu LS, Sha WH, Li ZS. BARX2 expression is downregulated by CpG island hypermethylation and is associated with suppressed cell proliferation and invasion of gastric cancer cells. Oncol Rep 2020; 43:1805-1818. [PMID: 32236603 PMCID: PMC7160541 DOI: 10.3892/or.2020.7558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
BarH-like homeobox 2 (BARX2), a homeobox gene, is associated with several types of cancers. The present study aimed to determine whether DNA methylation downregulates BARX2 expression and whether BARX2 is associated with suppression of gastric carcinogenesis. BARX2 protein expression in normal and cancerous gastric tissues and various gastric cancer (GC) cell lines was detected using immunohistochemical and western blot assays. BARX2 mRNA levels were detected using both reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR). Promoter hypermethylation in GC cells was detected using methylation-specific PCR or bisulfite DNA sequencing PCR. Effects of BARX2 expression on GC cell proliferation, clonal formation, and migration were evaluated after lentivirus-BARX2 transfection. The effect of stable BARX2 transfection on tumor formation was assessed in a nude xenograft mouse model. BARX2 was strongly expressed in the normal gastric mucosa, but weakly or not expressed in GC tissues and most GC cell lines. BARX2 expression was negatively correlated with DNMT (a marker for DNA methylation) expression in the gastric tissues. The BARX2 promoter fragment was hypermethylated in the GC cell lines. Overexpression of BARX2 significantly inhibited GC cell proliferation, clonal formation, and migration. Stable BARX2 transfection inhibited tumor formation in xenograft mice, which was correlated with decreased expression of E-cadherin, proliferation markers, and matrix metalloproteinases. In conclusion, BARX2 expression is aberrantly reduced in GC, which is associated with increased DNA methylation of its promoter. BARX2 inhibits GC cell proliferation, migration, and tumor formation, suggesting that BARX2 acts as a tumor suppressor in gastric carcinogenesis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ling Xia
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Min Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Li-Shu Xu
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ze-Song Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
7
|
Mahmoudian RA, Bahadori B, Rad A, Abbaszadegan MR, Forghanifard MM. MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 2019; 7:e00746. [PMID: 31090196 PMCID: PMC6625128 DOI: 10.1002/mgg3.746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background MEIS1 (Myeloid ecotropic viral integration site 1), as a homeobox (HOX) transcription factor, has a dual function in different types of cancer. Although numerous roles are proposed for MEIS1 in differentiation, stem cell function, gastrointestinal development and tumorigenesis, the involved molecular mechanisms are poor understood. Our aim in this study was to elucidate the functional correlation between MEIS1, as regulator of differentiation process, and the involved genes in cell differentiation in human esophageal squamous carcinoma (ESC) cell line KYSE‐30. Methods The KYSE‐30 cells were transduced using recombinant retroviral particles containing specific shRNA sequence against MEIS1 to knockdown MEIS1 gene expression. Following RNA extraction and cDNA synthesis, mRNA expression of MEIS1 and the selected genes including TWIST1, EGF, CDX2, and KRT4 was examined using relative comparative real‐time PCR. Results Retroviral transduction caused a significant underexpression of MEIS1 in GFP‐hMEIS1 compared to control GFP cells approximately 5.5‐fold. While knockdown of MEIS1 expression caused a significant decrease in EGF and TWIST1 mRNA expression, nearly ‐8‐ and ‐12‐fold respectively, it caused a significant increase in mRNA expression of differentiation markers including KRT4 and CDX2, approximately 34‐ and 1.14‐fold, correspondingly. Conclusion MEIS1 gene silencing in KYSE‐30 cells increased expression of epithelial markers and decreased expression of epithelial‐mesenchymal transition (EMT) marker TWIST1. It may highlight the role of MEIS1 in differentiation process of KYSE‐30 cells. These results may confirm that MEIS1 silencing promotes differentiation and decreases EMT capability of ESC cell line KYSE‐30.
Collapse
Affiliation(s)
| | - Bahareh Bahadori
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar Univeristy of Medical Sciences, Sabzevar, Iran
| | | | | |
Collapse
|
8
|
Rodrigues MFSD, Esteves CM, Xavier FCA, Nunes FD. Methylation status of homeobox genes in common human cancers. Genomics 2016; 108:185-193. [PMID: 27826049 DOI: 10.1016/j.ygeno.2016.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Approximately 300 homeobox loci were identified in the euchromatic regions of the human genome, of which 235 are probable functional genes and 65 are likely pseudogenes. Many of these genes play important roles in embryonic development and cell differentiation. Dysregulation of homeobox gene expression is a frequent occurrence in cancer. Accumulating evidence suggests that as genetics disorders, epigenetic modifications alter the expression of oncogenes and tumor suppressor genes driving tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. Here, we described the current knowledge regarding homeobox gene DNA methylation in human cancer and describe its relevance in the diagnosis, therapeutic response and prognosis of different types of human cancers.
Collapse
Affiliation(s)
| | | | | | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Silencing NKD2 by Promoter Region Hypermethylation Promotes Esophageal Cancer Progression by Activating Wnt Signaling. J Thorac Oncol 2016; 11:1912-1926. [DOI: 10.1016/j.jtho.2016.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/12/2022]
|
10
|
Joo MK, Park JJ, Chun HJ. Impact of homeobox genes in gastrointestinal cancer. World J Gastroenterol 2016; 22:8247-8256. [PMID: 27729732 PMCID: PMC5055856 DOI: 10.3748/wjg.v22.i37.8247] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett’s esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers.
Collapse
|
11
|
Wang DH, Souza RF. Transcommitment: Paving the Way to Barrett's Metaplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:183-212. [PMID: 27573773 DOI: 10.1007/978-3-319-41388-4_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus is the condition in which metaplastic columnar epithelium that predisposes to cancer development replaces stratified squamous epithelium in the distal esophagus. Potential sources for the cell or tissue of origin for metaplastic Barrett's epithelium are reviewed including native esophageal differentiated squamous cells, progenitor cells native to the esophagus located within the squamous epithelium or in the submucosal glands or ducts, circulating bone marrow-derived stem cells, and columnar progenitor cells from the squamocolumnar junction or the gastric cardia that proximally shift into the esophagus to fill voids left by damaged squamous epithelium. Wherever its source the original cell must undergo molecular reprogramming (i.e., either transdifferentiation or transcommitment) to give rise to specialized intestinal metaplasia. Transcription factors that specify squamous, columnar, intestinal, and mucus-secreting epithelial differentiation are discussed. An improved understanding of how esophageal columnar metaplasia forms could lead to development of effective treatment or prevention strategies for Barrett's esophagus. It could also more broadly inform upon normal tissue development and differentiation, wound healing, and stem cell biology.
Collapse
Affiliation(s)
- David H Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service, VA North Texas Health Care System, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8852, USA.
| | - Rhonda F Souza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service (111B1), VA North Texas Health Care System, University of Texas Southwestern Medical Center, 4500 S. Lancaster Road, Dallas, TX, 75216, USA
| |
Collapse
|
12
|
Yun T, Liu Y, Gao D, Linghu E, Brock MV, Yin D, Zhan Q, Herman JG, Guo M. Methylation of CHFR sensitizes esophageal squamous cell cancer to docetaxel and paclitaxel. Genes Cancer 2015; 6:38-48. [PMID: 25821560 PMCID: PMC4362483 DOI: 10.18632/genesandcancer.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide. Both genetic and epigenetic changes are involved in esophageal carcinogenesis. CHFR methylation has been found frequently in different cancers and is regarded as a marker of taxane sensitivity. CHFR methylation was found in 0% (0/16) of normal mucosa, 2.9% (1/34) of grade I dysplasia, 0% (0/8) of grade II dysplasia, 12.5% (1/8) of grade III dysplasia and 45% (49/109) of invasive cancer. When treated with docetaxel or paclitaxel, cell viability was lower in CHFR methylated esophageal cancer cells than in unmethylated cells (p<0.05). No difference was found with either cisplatin or VP16 treatment in either group (p>0.05). In CHFR methylated cells, treatment with docetaxel or paclitaxel resulted in almost all cells being suspended in G0/G1 phase of the cell cycle. After 5-AZ treatment, there was an increased fraction of CHFR-methylated cells in S and G2/M phases (p<0.05). In conclusion, CHFR is frequently methylated in ESCC and the expression of CHFR is regulated by promoter region methylation. CHFR methylation is a late stage event in ESCC. Methylation of CHFR sensitized ESCC cells to taxanes. 5-AZ may re-sensitize chemotherapy resistant in refractory tumors by inducing cell cycle phase re-distribution.
Collapse
Affiliation(s)
- Tianyang Yun
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Dan Gao
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
- Medical College of NanKai University, Tianjin, China
| | - Enqiang Linghu
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Malcolm V. Brock
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Dongtao Yin
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - James G. Herman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Zhao Z, Herman JG, Brock MV, Sheng J, Zhang M, Liu B, Guo M. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling. PLoS One 2014; 9:e112336. [PMID: 25375359 PMCID: PMC4223043 DOI: 10.1371/journal.pone.0112336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/08/2014] [Indexed: 01/26/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignant disease and the incidence is increasing. DACT2 was found frequently methylated in human lung cancer and hepatocellular carcinoma. To explore the epigenetic change and the role of DACT2 in thyroid cancer, 7 thyroid cancer cell lines, 10 cases of non-cancerous thyroid tissue samples and 99 cases of primary thyroid cancer samples were involved in this study. DACT2 was expressed and unmethylated in K1, SW579, FTC-133, TT, W3 and 8505C cell lines. Loss of expression and complete methylation was found in TPC-1 cells. Restoration of DACT2 expression was induced by 5-aza-2′deoxycytidine treatment. It demonstrates that the expression of DACT2 was regulated by promoter region methylation. In human primary papillary thyroid cancer, 64.6% (64/99) was methylated and methylation of DACT2 was related to lymph node metastasis (p<0.01). Re-expression of DACT2 suppresses cell proliferation, invasion and migration in TPC-1 cells. The activity of TCF/LEF was inhibited by DACT2 in wild-type or mutant β-catenin cells. The activity of TCF/LEF was increased by co-transfecting DACT2 and Dvl2 in wild-type or mutant β-catenin cells. Overexpression of wild-type β-catenin promotes cell migration and invasion in DACT2 stably expressed cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were decreased and the level of phosphorylated β-catenin (p-β-catenin) was increased after restoration of DACT2 expression in TPC-1 cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were increased and the level of p-β-catenin was reduced after knockdown of DACT2 in W3 and SW579 cells. These results suggest that DACT2 suppresses human papillary thyroid cancer growth and metastasis by inhibiting Wnt signaling. In conclusion, DACT2 is frequently methylated in papillary thyroid cancer. DACT2 expression was regulated by promoter region methylation. DACT2 suppresses papillary thyroid cancer proliferation and metastasis by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Zhiyan Zhao
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G. Herman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Malcolm V. Brock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Jindong Sheng
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
| | - Meiying Zhang
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- The Medical College of Nan Kai University, #94 Weijin Road, Tianjin 300071, China
| | - Baoguo Liu
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- * E-mail: (MG); (BL)
| | - Mingzhou Guo
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- * E-mail: (MG); (BL)
| |
Collapse
|
14
|
Ahrens TD, Werner M, Lassmann S. Epigenetics in esophageal cancers. Cell Tissue Res 2014; 356:643-55. [DOI: 10.1007/s00441-014-1876-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
|
15
|
Wu L, Herman JG, Brock MV, Wu K, Mao G, Yan W, Nie Y, Liang H, Zhan Q, Li W, Guo M. Silencing DACH1 promotes esophageal cancer growth by inhibiting TGF-β signaling. PLoS One 2014; 9:e95509. [PMID: 24743895 PMCID: PMC3990688 DOI: 10.1371/journal.pone.0095509] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/26/2014] [Indexed: 11/19/2022] Open
Abstract
Human Dachshund homologue 1 (DACH1) is a major component of the Retinal Determination Gene Network. Loss of DACH1 expression was found in breast, prostate, lung, endometrial, colorectal and hepatocellular carcinoma. To explore the expression, regulation and function of DACH1 in human esophageal cancer, 11 esophageal cancer cell lines, 10 cases of normal esophageal mucosa, 51 cases of different grades of dysplasia and 104 cases of primary esophageal squamous cancer were employed. Methylation specific PCR, immunohistochemistry, western blot, flow cytometry, small interfering RNAs, colony formation techniques and xenograft mice model were used. We found that DACH1 expression was regulated by promoter region hypermethylation in esophageal cancer cell lines. 18.8% (6 of 32) of grade 1, 42.1% (8 of 19) of grade 2 and grade 3 dysplasia (ED2,3), and 61.5% (64 of 104) of esophageal cancer were methylated, but no methylation was found in 10 cases of normal esophageal mucosa. The methylation was increased in progression tendency during esophageal carcinogenesis (P<0.01). DACH1 methylation was associated with poor differentiation (P<0.05) and late tumor stage (P<0.05). Restoration of DACH1 expression inhibited cell growth and activated TGF-β signaling in KYSE150 and KYSE510 cells. DACH1 suppressed human esophageal cancer cell tumor growth in xenograft mice. In conclusion, DACH1 is frequently methylated in human esophageal cancer and methylation of DACH1 is involved in the early stage of esophageal carcinogenesis. DACH1 expression is regulated by promoter region hypermethylation. DACH1 suppresses esophageal cancer growth by activating TGF-β signaling.
Collapse
Affiliation(s)
- Liang Wu
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - James G. Herman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Malcolm V. Brock
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kongming Wu
- Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Gaoping Mao
- Department of Gastroenterology, General Air Force Hospital, Beijing, China
| | - Wenji Yan
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Yan Nie
- Department of Gastroenterology & Hepatology, The Affiliated Hainan Hospital of the Chinese PLA General Hospital, Hai Tang wan, Sanya, China
| | - Hao Liang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen Li
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Yan LH, Wang XT, Yang J, Lian C, Kong FB, Wei WY, Luo W, Xiao Q, Xie YB. Reversal of multidrug resistance in gastric cancer cells by CDX2 downregulation. World J Gastroenterol 2013; 19:4155-4165. [PMID: 23864778 PMCID: PMC3710417 DOI: 10.3748/wjg.v19.i26.4155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/06/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of CDX2 in the multi-drug resistance (MDR) process of gastric cancer in vitro and in vivo. METHODS A cisplatin-resistant gastric cancer cell line with stable downregulation of CDX2 was established. mRNA and protein expression levels of CDX2, survivin, cyclin D1, and c-Myc were detected by western blotting and semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). The influence of downregulation of CDX2 on MDR was assessed by measuring IC50 of SGC7901/DDP cells to cisplatin, doxorubicin, and 5-fluorouracil, rate of doxorubicin efflux, apoptosis, and cell cycle progression detected by flow cytometry. In addition, we determined the in vivo effects of CDX2 small interfering RNA (siRNA) on tumor size, and apoptotic cells in tumor tissues were detected by deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and hematoxylin and eosin staining. RESULTS CDX2 siRNA led to downregulation of endogenous CDX2 mRNA (0.31 ± 0.05 vs 1.10 ± 0.51, 0.31 ± 0.05 vs 1.05 ± 0.21, P = 0.003) and protein (0.12 ± 0.08 vs 0.51 ± 0.07, 0.12 ± 0.08 vs 0.55 ± 0.16, P = 2.57 × 10(-4)) expression. It significantly promoted the sensitivity of SGC7901/DDP cells to cisplatin (0.12 ± 0.05 vs 0.33 ± 0.08, 0.12 ± 0.05 vs 0.39 ± 0.15, P = 0.001), doxorubicin (0.52 ± 0.13 vs 4.11 ± 1.25, 0.52 ± 0.13 vs 4.05 ± 1.44, P = 2.81 × 10(-4)), and 5-fluorouracil (0.82 ± 0.13 vs 2.81 ± 0.51, 0.82 ± 0.13 vs 3.28 ± 1.03, P = 1.71 × 10(-4)). Flow cytometry confirmed that the percentage of apoptotic cells increased after CDX2 downregulation (32.15% ± 2.15% vs 17.63% ± 3.16%, 32.15% ± 2.15% vs 19.3% ± 2.25%, P = 1.73 × 10(-6)). This notion was further supported by the observation that downregulation of CDX2 blocked entry into the S-phase of the cell cycle (31.53% ± 3.78% vs 65.05% ± 7.25%, 31.53% ± 3.78% vs 62.27% ± 5.02%, P = 7.55 × 10(-7)). Furthermore, downregulation of CDX2 significantly increased intracellular accumulation of doxorubicin (0.21 ± 0.06 vs 0.41 ± 0.11, 0.21 ± 0.06 vs 0.40 ± 0.08, P = 0.003). In molecular studies, semiquantitative RT-PCR and western blotting revealed that CDX2 downregulation could inhibit expression of c-Myc, survivin and cyclin D1. CONCLUSION CDX2 may be involved in regulating multiple signaling pathways in reversing MDR, suggesting that CDX2 may represent a novel target for gastric cancer therapy.
Collapse
|
17
|
Zhang X, Yang Y, Liu X, Herman JG, Brock MV, Licchesi JDF, Yue W, Pei X, Guo M. Epigenetic regulation of the Wnt signaling inhibitor DACT2 in human hepatocellular carcinoma. Epigenetics 2013; 8:373-82. [PMID: 23449122 DOI: 10.4161/epi.24113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DACT2 (Dapper, Dishevelled-associated antagonist of β-catenin homolog 2) is a member of the DACT family involved in the regulation of embryonic development. Human DACT2 is localized on 6q27, a region of frequent loss of heterozygosity in human cancers. However, the regulation of DACT2 expression and function in hepatocellular carcinoma (HCC) remains unclear. In this study, genetic and epigenetic changes of DACT2 were analyzed in HCC cell lines and primary cancer. We found no single-nucleotide polymorphism (SNP) associated with HCC. Promoter region methylation was correlated with loss or reduction of DACT2 expression, and restoration of DACT2 expression was induced by 5-aza-2'-deoxycytidine (5-AZA) in HCC cell lines. Promoter region methylation was found in 54.84% of primary HCC. Reduction of DACT2 expression was associated with promoter hypermethylation, and expression of DACT2 was inversely related to β-catenin expression in primary HCC. DACT2 suppressed cell proliferation, induced G 2-M arrest in cell lines and inhibited tumor growth in xenograft nude mice. The transcriptional activity of TCF-4 and the expression of Wnt signaling downstream genes were suppressed by DACT2 re-expression and reactivated by depletion of DACT2. In conclusion, DACT2 is frequently methylated in HCC and its expression is regulated by promoter hypermethylation. DACT2 suppresses HCC by inhibiting Wnt signaling in human HCC.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Gastroenterology & Hepatology; Chinese PLA General Hospital; Beijing, P.R. China
| | - Yunsheng Yang
- Department of Gastroenterology & Hepatology; Chinese PLA General Hospital; Beijing, P.R. China
| | - Xuefeng Liu
- Department of Gastroenterology & Hepatology; Chinese PLA General Hospital; Beijing, P.R. China
| | - James G Herman
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins; Johns Hopkins University; Baltimore, MD USA
| | - Malcolm V Brock
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins; Johns Hopkins University; Baltimore, MD USA
| | - Julien D F Licchesi
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins; Johns Hopkins University; Baltimore, MD USA
| | - Wen Yue
- Stem Cells and Regenerative Medicine Lab; Beijing Institute of Transfusion Medicine; Beijing, P.R. China
| | - Xuetao Pei
- Stem Cells and Regenerative Medicine Lab; Beijing Institute of Transfusion Medicine; Beijing, P.R. China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology; Chinese PLA General Hospital; Beijing, P.R. China
| |
Collapse
|
18
|
Baba Y, Watanabe M, Baba H. A review of the alterations in DNA methylation in esophageal squamous cell carcinoma. Surg Today 2013; 43:1355-64. [DOI: 10.1007/s00595-012-0451-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
|
19
|
Kusaka G, Uno K, Iijima K, Endo H, Asano N, Koike T, Imatani A, Shimosegawa T. The role of nitric oxide in the induction of caudal-type homeobox 2 through epidermal growth factor receptor in the development of Barrett's esophagus. Scand J Gastroenterol 2012; 47:1148-1158. [PMID: 22834965 DOI: 10.3109/00365521.2012.703232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The high concentration of nitric oxide (NO) around the gastro-esophageal junction (GEJ) might play an important role in the development of Barrett's esophagus (BE), a precursor of Barrett's adenocarcimona. Although previous studies revealed that the expression of caudal-type homeobox 2 (CDX2), an important marker of BE, might be induced through Epidermal Growth Factor Receptor (EGFR), the roles of NO in this signal transduction remain unclear. MATERIAL AND METHODS First, we investigated the expressions of EGFR, CDX2 and nitrotyrosine by immunohistochemical study for BE and squamous epithelium of human specimens. Second, we studied the effect of peroxynitrite, peroxynitrite stimulator, SIN-1, or NO donor, NOC7, on the expression of phosphorylated EGFR and CDX2 in KYSE30, an EGFR-rich human esophageal squamous cell carcinoma cell-line. Specific inhibitors for EGFR, AG1478 and small interfering RNA for EGFR (EGFR-siRNA) were employed to elucidate the role of EGFR in the induction of CDX2. RESULTS The immunohistochemical study revealed that the expressions of EGFR, CDX2 and nitrotyrosine in BE were stronger than those in squamous epithelium with positive correlations. Exposure to peroxynitrite, SIN-1 or NOC7 induced EGFR phosphorylation and CDX2 expression in dose- and time-dependent manners. Both EGFR phosphorylation and CDX2 induction were significantly diminished by AG 1478 and EGFR-siRNA. CONCLUSIONS We revealed for the first time that extrinsic NO might directly induce CDX2 expression through EGFR phosphorylation. We suggested that NO had an important role in the development of BE from squamous epithelium around GEJ.
Collapse
Affiliation(s)
- Gen Kusaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu X, Zhang X, Zhan Q, Brock MV, Herman JG, Guo M. CDX2 serves as a Wnt signaling inhibitor and is frequently methylated in lung cancer. Cancer Biol Ther 2012; 13:1152-7. [PMID: 22892849 PMCID: PMC3469472 DOI: 10.4161/cbt.21344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant promoter region hypermethylation of upstream transcription factors may be responsible for silencing entire anti-neoplastic gene networks. In this study, we explored whether transcription factor coding gene, caudal-related homeobox 2 (CDX2), is silenced by promoter hypermethylation in lung cancer, and examined its potential tumor-suppressive functions. Semi-quantitative RT-PCR showed that four of six lung cancer cell lines exhibited no or weak CDX2 expression. Expression of CDX2 was correlated to CDX2 promoter region methylation status, as determined by methylation-specific PCR (MSP) and bisulfite sequencing. Restoration of CDX2 expression was induced by treatment with demethylating drug 5-aza-2'-deoxycytidine (5-AZA) in lung cancer cell lines. Methylation of CDX2 was common in human primary lung cancer (61 of 110 tumors, 55.45%), but no methylation was found in normal lung tissues. Re-expression of CDX2 suppressed lung cancer cell proliferation and blocked cells in G1 phase. β-catenin/TCF activity and downstream genes expression were inhibited by re-expression of CDX2, and increased by depletion of CDX2. In conclusion, CDX2 is frequently methylated in lung cancer, and expression of CDX2 is regulated by promoter region hypermethylation. CDX2 may serve as a tumor suppressor in lung cancer and inhibits lung cancer cell proliferation by suppressing Wnt signaling.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
21
|
Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn 2012; 14:577-85. [PMID: 22921431 DOI: 10.1016/j.jmoldx.2012.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022] Open
Abstract
In this study, we explored the possibility of SOX17 promoter region methylation as an esophageal cancer detection marker, the regulation of SOX17 expression, and the function of SOX17 in the WNT signaling pathway in esophageal cancer. Eight esophageal cancer cell lines, 9 normal esophageal mucosa samples, 60 cases of dysplasia, and 169 cancer tissue samples were included. Methylation-specific PCR, semiquantitative reverse transcription-PCR, immunohistochemistry, luciferase reporter assay, colony formation, and Western blot analysis were used to analyze methylation and function of SOX17 in esophageal cancer. MicroRNA-related detection methods were performed to evaluate microRNA regulation of SOX17. SOX17 methylation was found in progression tendency with 0% of normal mucosa, 39% of grade 1 dysplasia, 48% of grades 2 and 3 dysplasia, and 65% of primary cancer. SOX17 methylation is related to esophageal cancer patients' history of alcohol use and may induce β-catenin expression and redistribution. Loss of SOX17 expression is correlated to promoter region hypermethylation, and re-expression was activated by 5-aza-2'-deoxycytidine treatment in esophageal cancer cell lines. Restoration of SOX17 expression suppresses TCF/β-catenin-dependent transcription and colony formation. MicroRNA 141 was also found to down-regulate SOX17 expression and activate the WNT signal pathway. SOX17 is frequently methylated in esophageal cancer and in a progression tendency during esophageal carcinogenesis. Loss of SOX17 removes the normal inhibition of WNT signaling and promotes esophageal tumorigenesis.
Collapse
|
22
|
Li JS, Ying JM, Wang XW, Wang ZH, Tao Q, Li LL. Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma. CHINESE JOURNAL OF CANCER 2012; 32:3-11. [PMID: 22572016 PMCID: PMC3845589 DOI: 10.5732/cjc.011.10381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and fatal cancer in China and other Asian countries. Epigenetic silencing of key tumor suppressor genes (TSGs) is critical to ESCC initiation and progression. Recently, many novel TSGs silenced by promoter methylation have been identified in ESCC, and these genes further serve as potential tumor markers for high-risk group stratification, early detection, and prognosis prediction. This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC, providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.
Collapse
Affiliation(s)
- Ji-Sheng Li
- Department of Chemotherapy, Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Wang XT, Xie YB, Xiao Q. siRNA targeting of Cdx2 inhibits growth of human gastric cancer MGC-803 cells. World J Gastroenterol 2012; 18:1903-14. [PMID: 22563170 PMCID: PMC3337565 DOI: 10.3748/wjg.v18.i16.1903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/07/2011] [Accepted: 04/05/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of small interference RNA (siRNA) targeting of Cdx2 on human gastric cancer MGC-803 cells in vitro and in vivo.
METHODS: The recombinant pSilencer 4.1-Cdx2 siRNA plasmids were constructed and transfected into gastric cancer MGC-803 cells in vitro. The stable transfectants were selected. The effects of Cdx2 siRNA on growth, proliferation, cell cycle, apoptosis, migration and invasiveness of human gastric cancer MGC-803 cells were evaluated and the expression of phosphatase and tensin homolog (PTEN), caspase-9 and caspase-3 was observed in vitro by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting analysis. We also investigated the effect of Cdx2 siRNA on growth of MGC-803 cells in nude mice in vivo.
RESULTS: Cdx2 siRNA led to inhibition of endogenous Cdx2 mRNA and protein expression as determined by RT-PCR and Western blotting analysis. Cdx2 siRNA significantly inhibited cell growth and proliferation, blocked entry into the S-phase of the cell cycle, induced cell apoptosis, and reduced the motility and invasion of MGC-803 cells. Cdx2 siRNA also increased PTEN expression, and activated caspase-9 and caspase-3 in MGC-803 cells in vitro . In addition, siRNA targeting of Cdx2 inhibited the growth of MGC-803 cells and promoted tumor cell apoptosis in vivo in nude mice tumor models.
CONCLUSION: Cdx2 was involved in regulating pro-gression of human gastric cancer cells MGC-803. Manipulation of Cdx2 expression may be a potential therapeutic strategy for gastric cancer.
Collapse
|
24
|
Ma J, Liu QH, Wang BB, Liao SY, Sha WH, Wang QY. Construction of a reporter vector regulated by the Pdx1 promoter and evaluation of the effect of DNA methylation on Pdx1 promoter activity in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2011; 19:3222-3228. [DOI: 10.11569/wcjd.v19.i31.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a reporter vector regulated by the Pdx1 promoter to determine the effect of DNA methylation on the promoter activity of Pdx1 gene.
METHODS: PCR amplification was performed to obtain nine potential Pdx1 promoter fragments, which were then cloned into the pGL3-basic vector to obtain recombinant pGL3-Pdx1 constructs. Promoter activity of different Pdx1 fragments in gastric cancer cells was detected by luciferase assay to identify the potential promoter area. The activity of the Pdx1 promoter with or without SssI methylase treatment was also evaluated by luciferase assay.
RESULTS: Luciferase assay showed that three fragments (F383, F720 and F1039), all of which contained the F383 sequence, had stronger promoter activity than pGL3-basic control. The promoter activity of these three fragments decreased significantly after SssI methylase treatment (all P < 0.05).
CONCLUSION: A luciferase reporter gene system containing the Pdx1 promoter was successfully constructed. F383 is the potential core area of the Pdx1 promoter. These results provide a basis for studying the epigenetic mechanism of Pdx1 gene silencing in gastric cancer.
Collapse
|
25
|
Zhang XM, Guo MZ. The value of epigenetic markers in esophageal cancer. ACTA ACUST UNITED AC 2010; 4:378-84. [PMID: 21107750 DOI: 10.1007/s11684-010-0230-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/10/2010] [Indexed: 12/12/2022]
Abstract
Developing esophageal cancer is a multi-step process that begins with the accumulation of genetic and epigenetic alterations, and leads to the activation of oncogenes and the inactivation or loss of tumor suppressor genes (TSG). In addition to genetic alteration, epigenetic modifications, and in particular DNA methylation, are recognized as a common molecular alteration in human tumors. In esophageal cancer, aberrant methylation of promoter regions occurs not only in advanced cancer, but also in premalignant lesions. DNA methylation is related to survival time and sensitivity of chemoradiotherapy. This review is mainly focused on epigenetic changes in esophageal cancer and the value of early detection for patient prognosis, treatment choices, and potential targeting therapy.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | | |
Collapse
|
26
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CSC, Chen MH, Pang R, Tan VPY, Hung IF, Lan HY, Wang QY, Wong BCY. Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis 2010; 31:1552-60. [PMID: 20622005 DOI: 10.1093/carcin/bgq140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS The expression of pancreatic-duodenal homeobox 1 (PDX1) in gastric cancer is aberrantly reduced. The aim of this study was to elucidate the regulation of DNA methylation and histone acetylation at the promoter for PDX1 silencing in gastric cancer. METHODS PDX1 expression in response to demethylation and acetylation was detected in human gastric cancer cell lines by reverse transcription-polymerase chain reaction (PCR) and western blot. Four CpG islands within the 5'-flanking region of PDX1 gene were analyzed with their transcription activities being detected by dual luciferase assay. Promoter hypermethylation was identified in gastric cancer cell lines and cancer tissues by methylation-specific PCR or bisulfite DNA sequencing PCR analysis. Histone acetylation was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS Demethylation by 5'-aza-2'-deoxycytidine (5'-aza-dC) and/or acetylation by trichostatin A (TSA) restored PDX1 expression in gastric cancer cells. Hypermethylation was found in four CpG islands in six of seven cancer cell lines. However, only the distal CpG island located in the promoter fragment of PDX1, F383 (c.-2063 to -1681 nt upstream of the ATG start codon) displayed significant transcriptional activity that could be suppressed by SssI methylase and increased by 5'-aza-dC and TSA. More than 70% of the single CpG sites in F383 were methylated with hypermethylation of F383 fragment more common in gastric cancerous tissues compared with the paired normal tissues (P < 0.05). ChIP assay showed F383 was also associated with low hypoacetylation level of the histones. CONCLUSION Promoter hypermethylation and histone hypoacetylation contribute to PDX1 silencing in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:231-70. [PMID: 21075347 PMCID: PMC6005371 DOI: 10.1016/b978-0-12-381280-3.00010-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal metaplasia (IM) is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric IM and Barrett's esophagus (BE). In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intestinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric IM as well as in BE. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric IM and BE.
Collapse
Affiliation(s)
- Douglas B Stairs
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
28
|
Vaninetti N, Williams L, Geldenhuys L, Porter GA, Guernsey DL, Casson AG. Regulation of CDX2 expression in esophageal adenocarcinoma. Mol Carcinog 2009; 48:965-74. [PMID: 19415720 DOI: 10.1002/mc.20549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reflux of acidic gastric contents and bile acids into the lower esophagus has been identified to have a central role in esophageal malignancy and is reported to upregulate caudal-related homologue 2 (CDX2), a regulatory gene involved in embryonic development and axial patterning of the alimentary tract. The aim of this study was to characterize the expression of CDX2 in a well-defined series of human esophageal tissues, comprising reflux-induced esophagitis, premalignant Barrett esophagus (BE), and primary esophageal adenocarcinoma (EADC). To explore potential molecular regulatory mechanisms, we also studied the expression of beta-catenin, SOX9, and CDX2 promoter methylation in esophageal tissues, in addition to the effect of bile acids and nitric oxide (NO) on CDX2 expression in the normal human esophageal cell line Het1A. Relative to matched normal esophageal epithelia, CDX2 was overexpressed in esophagitis (37% for RNA; cytoplasmic immunoreactivity in 48% of tissues), a high proportion (91%) of BE tissues, and in EADC (57% for RNA; cell nuclear immunopositivity in 80%). An association with beta-catenin expression was seen, but not with SOX9 or CDX2 promoter methylation. In Het1A cells, CDX2 was upregulated following exposure to bile acids and NO, alone and in combination. These results further implicate CDX2 and beta-catenin in the molecular pathogenesis of human EADC. The observed synergistic effect of NO on the efficacy of bile acid-induction of CDX2 suggests a novel role for NO in modulating the development of the Barrett phenotype and esophageal adenocarcinogenesis.
Collapse
Affiliation(s)
- Nadine Vaninetti
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Pereira B, Oliveira C, David L, Almeida R. CDX2promoter methylation is not associated with mRNA expression. Int J Cancer 2009; 125:1739-42. [DOI: 10.1002/ijc.24544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Lu X, Freund JN, Muller M, Ravey J, Nicolas JP, Gueant JL, Namour F. Differential regulation of CDX1 and CDX2 gene expression by deficiency in methyl group donors. Biochimie 2007; 90:697-704. [PMID: 18187048 DOI: 10.1016/j.biochi.2007.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The CDX2 and CDX1 homeobox genes have respectively a tumour suppressor and proliferative role in the intestinal epithelium. We analyzed DNA methylation and histones modifications associated with CDX2 and CDX1 promoters in two human colon cancer cell lines expressing differentially these genes, Caco2/TC7 [CDX2 positive-CDX1 negative] and HT29 [CDX2 negative-CDX1 negative] cells. Chromatin immunoprecipitation experiments indicated that CDX2 and CDX1 gene expression correlated with a histone modifications pattern characterizing active chromatin (H3K4 trimethylated and H3 acetylated). Bisulfite DNA sequencing and methylation-specific PCR showed that CDX2 and CDX1 promoters display no methylation in HT29 cells even though both genes are not expressed. In contrast, the CDX1 promoter is methylated in Caco2/TC7. DNA demethylation by 5aza-dC or the combination of 5aza-dC plus SAHA, an inhibitor of histone deacetylases, restored CDX1 expression in Caco2/TC7 cells but these treatments were inefficient on both CDX2 and CDX1 in HT29 cells. Thus, in colon cancer cells the changes in chromatin conformation are heterogeneous and repression of CDX2 and CDX1 in HT29 cells is not due to epigenetic mechanisms. In vivo, dietary deprivation of methyl groups in rats upregulated CDX1 mRNA and downregulated to a lesser extent CDX2 mRNA expression. Moreover, methyl group deprivation downregulated CDX2 protein by changing its phosphorylation pattern. The changes in CDX2 and CDX1 expression determined by methyl group deprivation may constitute one of the mechanisms sustaining the protective role attributed to folate in colon cancer.
Collapse
Affiliation(s)
- Xiaohong Lu
- INSERM, UMR-S0724, Vandoeuvre-les-Nancy F-54505, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Tsou JA, Galler JS, Siegmund KD, Laird PW, Turla S, Cozen W, Hagen JA, Koss MN, Laird-Offringa IA. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer 2007; 6:70. [PMID: 17967182 PMCID: PMC2206053 DOI: 10.1186/1476-4598-6-70] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/29/2007] [Indexed: 02/04/2023] Open
Abstract
Background Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients. Results We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value << 0.0001). Using the current tissue collection and 5-fold cross validation, the four most significant loci (CDKN2A EX2, CDX2, HOXA1 and OPCML) individually distinguish lung adenocarcinoma from non-cancer lung with a sensitivity of 67–86% and specificity of 74–82%. DNA methylation of these loci did not differ significantly based on gender, race, age or tumor stage, indicating their wide applicability as potential lung adenocarcinoma markers. We applied random forests to determine a good classifier based on a subset of our loci and determined that combined use of the same four top markers allows identification of lung cancer tissue from non-lung cancer tissue with 94% sensitivity and 90% specificity. Conclusion The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.
Collapse
Affiliation(s)
- Jeffrey A Tsou
- Norris Cancer Center and Department of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|