1
|
Yamamoto N, Ishizawa K, Umemoto M, Nishimura A, Fujikawa T, Inoue S, Nakatani N, Tamura A, Nino N, Uemura S, Hasegawa D, Kosaka Y, Nishimura N. Evaluation of Minimal Residual Disease in Patients with Neuroblastoma. Mol Diagn Ther 2025:10.1007/s40291-025-00788-4. [PMID: 40450177 DOI: 10.1007/s40291-025-00788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2025] [Indexed: 06/03/2025]
Abstract
Neuroblastoma (NB) is a pediatric extracranial solid tumor that accounts for approximately 15% of all pediatric cancer deaths. More than 50% of patients with newly diagnosed NB are classified into a high-risk group with an approximately 50% long-term survival rate. Although most high-risk patients with NB achieve remission, more than half may have minimal residual disease (MRD) that eventually causes relapse. Looking towards an optimal outcome, the accurate evaluation of MRD in patients with NB (NB-MRD) is essential to monitor the treatment response and disease burden. Over the past decades, the quantification of NB-associated messenger RNA (NB-mRNA) by reverse transcriptase-polymerase chain reaction has become widely used to detect NB-MRD, owing to the lack of recurrent genomic aberrations in NB cells. To achieve a more accurate and sensitive detection, the current NB-MRD assays quantify a set of NB-mRNAs to detect NB cells in bone marrow, peripheral blood, and peripheral blood stem cell samples. Among a growing number of NB-MRD assays, several assays quantitating different but overlapping sets of NB-mRNAs are reported to have a significant prognostic value. However, the clinical significance of NB-MRD remains to be established. In this review, we summarize the recent progress in NB-MRD and evaluate its clinical value.
Collapse
Affiliation(s)
- Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kikyo Ishizawa
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Mayuno Umemoto
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Fujikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nanako Nino
- Department of Hematology and Oncology, Kobe Children Hospital, Kobe, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children Hospital, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
| |
Collapse
|
2
|
van Zogchel LMJ, Decarolis B, van Wezel EM, Zappeij-Kannegieter L, Gelineau NU, Schumacher-Kuckelkorn R, Simon T, Berthold F, van Noesel MM, Fiocco M, van der Schoot CE, Hero B, Stutterheim J, Tytgat GAM. Sensitive liquid biopsy monitoring correlates with outcome in the prospective international GPOH-DCOG high-risk neuroblastoma RT-qPCR validation study. J Exp Clin Cancer Res 2024; 43:331. [PMID: 39722049 DOI: 10.1186/s13046-024-03261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Liquid biopsies offer less burdensome sensitive disease monitoring. Bone marrow (BM) metastases, common in various cancers including neuroblastoma, is associated with poor outcomes. In pediatric high-risk neuroblastoma most patients initially respond to treatment, but in the majority the disease recurs with only 40% long-term survivors, stressing the need for more sensitive detection of disseminated disease during therapy. METHODS To validate sensitive neuroblastoma mRNA RT-qPCR BM testing, we prospectively assessed serial BM samples from 345 international high-risk neuroblastoma patients, treated in trials NB2004 (GPOH) or NBL2009 (DCOG), using PHOX2B, TH, DDC, CHRNA3, and GAP43 RT-qPCR mRNA markers and BM GD2-immunocytology. Association between BM-infiltration levels and event-free survival (EFS) and overall survival (OS) was estimated by using Cox regression models and Kaplan-Meier's methodology. RESULTS BM infiltration >10% by RT-qPCR at diagnosis was prognostic for survival (adjusted hazard ratio (HR) 1.82 [95%CI 1.25-2.63] and 2.04 [1.33-3.14] for EFS and OS, respectively). Any post-induction RT-qPCR positivity correlated with poor EFS and OS, with a HR of 2.10 [1.27-3.49] and 1.76 [1.01-3.08] and 5-years EFS of 26.6% [standard error 5.2%] versus 60.4% [6.7] and OS of 43.8% [5.9] versus 65.7% [6.6] for RT-qPCR-positive patients versus RT-qPCR-negative patients. In contrast, post-induction immunocytology positivity was not associated with EFS or OS (HR 1.22 [0.68-2.19] and 1.26 [0.54-2.42]). CONCLUSION This study validates the association of not clearing of BM metastases by sensitive RT-qPCR detection with very poor outcome. We therefore propose implementation of RT-qPCR for minimal residual disease testing in neuroblastoma to guide therapy.
Collapse
Affiliation(s)
- Lieke M J van Zogchel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Boris Decarolis
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Esther M van Wezel
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Lily Zappeij-Kannegieter
- Department of Immunocytology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina U Gelineau
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Roswitha Schumacher-Kuckelkorn
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical data Science, Section Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, and Medical Faculty, University of Cologne, Köln, Germany
| | | | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory of the Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Wang Z, Wang C, Xu Y, Le J, Jiang Y, Yao W, Wang H, Li K. The Application of and Factors Influencing, the NB5 Assay in Neuroblastomas. Front Oncol 2021; 11:633106. [PMID: 34055604 PMCID: PMC8162211 DOI: 10.3389/fonc.2021.633106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The NB5 assay was performed in bone marrow (BM) and peripheral blood (PB) to detect neuroblastomas (NBs) with micrometastases. The sensitivity and factors influencing the NB5 assay were preliminarily evaluated. Methods The NB5 assay uses RT-PCR to detect the co-expression of five mRNAs from the neuroblastoma-associated genes, CHGA, DCX, DDC, PHOX2B, and TH. We enrolled 180 cases of neuroblastoma and 65 cases of non-neuroblastoma. Bone marrow and peripheral blood were collected from every patient. The gold standard for the diagnosis of NB was pathological evaluation of solid tumor specimens or bone marrow biopsies (BMBs) from hematological tumors. STATA version 15 and SPSS version 17 software were used for analysis. Results We found that 17 patients were BMB (+), and they were diagnosed as the International Neuroblastoma Staging System (INSS) stage IV and the high-risk group. All 17 patients were BM (+), while 15 patients were PB (+) (15/17, 88.2%). Among the 163 children who were BMB (-), 56 were BM (+), 40 were PB (+), and 36 were BM (+) and PB (+). The sensitivity of the NB5 assay in BM (40.5%) and PB (30.5%) was significantly higher than the sensitivity of BMB (9.4%, P = 0.000). In the non-NB group, four cases were BM (+) and one case was PB (+). The specificity of the NB5 assay in BM and PB was 93.8% and 98.5%, respectively. The sensitivity of the NB5 assay in both BM and PB in INSS stage IV patients was significantly higher than that in INSS stage I-II patients (P <0.05). The sensitivity of the NB5 assay in both BM and PB in the high-risk group was significantly higher than that in the middle-low-risk groups (P = 0.0001). Logistic regression analyses indicated that liver metastases and bone metastases were the primary factors influencing the sensitivity of the NB5 assay in BM and PB (P <0.05). Conclusions The NB5 assay had significantly higher sensitivity than the pathological analysis of BMB in detecting NB with micrometastases. The NB5 assay had higher sensitivity in INSS stage IV or the high-risk group. Liver metastases and bone metastases were the primary factors that affected the sensitivity of the NB5 assay.
Collapse
Affiliation(s)
- Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Chengyun Wang
- Department of Pediatric Surgery, Zaozhuang Maternal and Child Health Care Hospital, Shandong, China
| | - Yibing Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Le
- Department of Hematology, Children's Hospital of Fudan University, Shanghai, China
| | - Yuan Jiang
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Hongsheng Wang
- Department of Hematology, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Front Oncol 2019; 9:455. [PMID: 31214500 PMCID: PMC6558004 DOI: 10.3389/fonc.2019.00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumor of neural crest (NC) origin that accounts for up to 15% of all pediatric cancer deaths. The disease arises from a transient population of NC cells that undergo an epithelial-mesenchymal transition (EMT) and generate diverse cell-types and tissues. Patients with neuroblastoma are characterized by their extreme heterogeneity ranging from spontaneous regression to malignant progression. More than half of newly diagnosed patients present highly metastatic tumors and are stratified into a high-risk group with dismal outcome. As many as 20% of high-risk patients have residual disease that is refractory or progressive during induction chemotherapy. Although a majority of high-risk patients achieve remission, larger part of those patients has minimal residual disease (MRD) that causes relapse even after additional consolidation therapy. MRD is composed of drug-resistant tumor cells and dynamically presented as cancer stem cells (CSCs) in residual tumors, circulating tumor cells (CTCs) in peripheral blood (PB), and disseminated tumor cells (DTCs) in bone marrow (BM) and other metastatic sites. EMT appears to be a key mechanism for cancer cells to acquire MRD phenotypes and malignant aggressiveness. Due to the restricted availability of residual tumors, PB and BM have been used to isolate and analyze CTCs and DTCs to evaluate MRD in cancer patients. In addition, recent technical advances make it possible to use circulating tumor DNA (ctDNA) shed from tumor cells into PB for MRD evaluation. Because MRD can be detected by tumor-specific antigens, genetic or epigenetic changes, and mRNAs, numerous assays using different methods and samples have been reported to detect MRD in cancer patients. In contrast to the tumor-specific gene-rearrangement-positive acute lymphoblastic leukemia (ALL) and the oncogenic fusion-gene-positive chronic myelogenous leukemia (CML) and several solid tumors, the clinical significance of MRD remains to be established in neuroblastoma. Given the extreme heterogeneity of neuroblastoma, dynamics of MRD in neuroblastoma patients will hold a key to the clinical validation. In this review, we summarize the biology and detection methods of cancer MRD in general and evaluate the available assays and clinical significance of neuroblastoma MRD to clarify its dynamics in neuroblastoma patients.
Collapse
Affiliation(s)
- Suguru Uemura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Khin Kyae Mon Thwin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Takafuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Trigg RM, Shaw JA, Turner SD. Opportunities and challenges of circulating biomarkers in neuroblastoma. Open Biol 2019; 9:190056. [PMID: 31088252 PMCID: PMC6544987 DOI: 10.1098/rsob.190056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular analysis of nucleic acid and protein biomarkers is becoming increasingly common in paediatric oncology for diagnosis, risk stratification and molecularly targeted therapeutics. However, many current and emerging biomarkers are based on analysis of tumour tissue, which is obtained through invasive surgical procedures and in some cases may not be accessible. Over the past decade, there has been growing interest in the utility of circulating biomarkers such as cell-free nucleic acids, circulating tumour cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here, we review the potential of emerging circulating biomarkers in the management of neuroblastoma and highlight challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacqui A. Shaw
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
Gholamin S, Mirzaei H, Razavi S, Hassanian SM, Saadatpour L, Masoudifar A, ShahidSales S, Avan A. GD2‐targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol 2017; 233:866-879. [DOI: 10.1002/jcp.25793] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCalifornia
- Department of Bioengineering at California Institute of TechnologyPasadenaCalifornia
| | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Seyed Mahdi Hassanian
- Department of Medical BiochemistrySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Microanatomy Research CenterMashhad University of Medical SciencesMashhadIran
| | - Leila Saadatpour
- Department of NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Aria Masoudifar
- Department of Molecular BiotechnologyCell Science Research Center, Royan Institute for Biotechnology, ACECRIsfahanIran
| | - Soodabeh ShahidSales
- Cancer Research CenterSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Metabolic Syndrome Research CenterSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Molecular Medicine group, Department of Modern Sciences and TechnologiesMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Brownhill SC, Burchill SA. PCR-based amplification of circulating RNAs as prognostic and predictive biomarkers - Focus on neuroblastoma. Pract Lab Med 2017; 7:41-44. [PMID: 28856217 PMCID: PMC5575362 DOI: 10.1016/j.plabm.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/16/2016] [Indexed: 01/18/2023] Open
Abstract
Metastatic disease is a major challenge for cancer cure, haematogenous spread and subsequent growth of tumour cells at distant sites being the cause of most cancer deaths. Molecular characterization and detection of the tumour cells responsible for haematogenous spread may increase understanding of the biology of metastasis, help improve patient management and allow evaluation of novel treatments to prevent and eradicate this disease. The bone marrow is a common site to which tumour cells metastasize, from which they may re-circulate to other organs with a favourable microenvironment for growth. The detection of tumour cells in blood suggests one route for metastasis, and provides an accessible, minimally invasive liquid sample through which it may be possible to monitor and detect minimal disease and early signs of metastasis. Significant improvements in the sensitivity and specificity of tumour cell detection have been made, such that it is now possible to unambiguously detect a single tumour cell in over 10 million normal cells. However, the clinical impact of such low level disease and how to interpret the natural variation that can arise from sequential sampling of bone marrow aspirates and blood is currently largely unknown. This commentary will focus on the technical advancements and application of reverse transcriptase polymerase chain reaction to detect cancer mRNAs in bone marrow and blood, and discuss the potential clinical impact of this test in neuroblastoma.
Collapse
Affiliation(s)
- Sam C Brownhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, School of Medicine and Health, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Sue A Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, School of Medicine and Health, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
9
|
Lee NH, Son MH, Choi YB, Yi E, Lee JW, Yoo KH, Sung KW, Koo HH. Clinical Significance of Tyrosine Hydroxylase mRNA Transcripts in Peripheral Blood at Diagnosis in Patients with Neuroblastoma. Cancer Res Treat 2016; 48:1399-1407. [PMID: 27034145 PMCID: PMC5080821 DOI: 10.4143/crt.2015.481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 12/29/2022] Open
Abstract
Purpose The purpose of this study is to investigate the clinical significance of tyrosine hydroxylase (TH) expression in peripheral blood (PB) at diagnosis in patients with neuroblastoma. Materials and Methods TH mRNA expression in PB was measured by reverse transcription quantitative real-time polymerase chain reaction in 210 patients who were newly diagnosed with neuroblastoma from July 2005 to June 2015 and the clinical significance of TH expression in PB at diagnosis was evaluated. Results TH expression was positive in 60 patients (28.6%). Fifty of 60 TH-positive patients had metastatic tumors and the remaining 10 had localized tumors. TH expression was associated with high-risk features (i.e., advanced stage, older age, unfavorable pathology, and MYCN amplification) at diagnosis. Among TH-positive patients, higher TH expression level was observed in high-risk patients than in low- or intermediate-risk patients (p=0.035). The probability of 5-year progression-free survival (PFS) was lower in TH-positive patients than in TH-negative patients (63.8±6.9% vs. 94.7±2.1%, p < 0.001). In analysis confined to high-risk patients, the 5-year probability of PFS remained lower in TH-positive patients (55.7±8.2% vs. 89.6±5.8%, p < 0.001). Among TH-positive patients, a higher expression level of TH was associated with a worse outcome. In multivariate analyses, positive TH expression in PB at diagnosis was an independent poor prognostic factor for PFS. Conclusion The treatment intensity should be tailored according to TH expression in PB at diagnosis.
Collapse
Affiliation(s)
- Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Meong Hi Son
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Young Bae Choi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eunsang Yi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget 2016; 6:11175-90. [PMID: 25883214 PMCID: PMC4484448 DOI: 10.18632/oncotarget.3579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification correlates with aggressive neuroblastoma and chemotherapy-based treatment failure, co-treatment with cathepsin inhibitors might be a better avenue for disease management.
Collapse
|
11
|
Yáñez Y, Hervás D, Grau E, Oltra S, Pérez G, Palanca S, Bermúdez M, Márquez C, Cañete A, Castel V. TH and DCX mRNAs in peripheral blood and bone marrow predict outcome in metastatic neuroblastoma patients. J Cancer Res Clin Oncol 2016; 142:573-80. [PMID: 26498952 DOI: 10.1007/s00432-015-2054-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE In metastatic neuroblastoma (NB) patients, accurate risk stratification and disease monitoring would reduce relapse probabilities. This study aims to evaluate the independent prognostic significance of detecting tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral blood (PB) and bone marrow (BM) samples from metastatic NB patients. PROCEDURES RT-qPCR was performed on PB and BM samples from metastatic NB patients at diagnosis, post-induction therapy and at the end of treatment for TH and DCX mRNAs detection. RESULTS High levels of TH and DCX mRNAs when detected in PB and BM at diagnosis independently predicted worse outcome in a cohort of 162 metastatic NB. In the subgroup of high-risk metastatic NB, TH mRNA detected in PB remained as independent predictor of EFS and OS at diagnosis. After the induction therapy, high levels of TH mRNA in PB and DCX mRNA in BM independently predicted poor EFS and OS. Furthermore TH mRNA when detected in BM predicted worse EFS. TH mRNA in PB samples at the end of treatment is an independent predictor of worse outcome. CONCLUSION TH and DCX mRNAs levels in PB and BM assessed by RT-qPCR should be considered in new pre-treatment risk stratification strategies to reliable estimate outcome differences in metastatic NB patients. In those high-risk metastatic NB, TH and DCX mRNA quantification could be used for the assessment of response to treatment and for early detection of progressive disease or relapses.
Collapse
Affiliation(s)
- Yania Yáñez
- Unidad de Oncología Pediátrica, Hospital La Fe, Avda. Fernando Abril Martorell, 106, 46026, Valencia, Spain.
| | - David Hervás
- Unidad de Bioestadística, Hospital La Fe, Valencia, Spain
| | - Elena Grau
- Unidad de Oncología Pediátrica, Hospital La Fe, Avda. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Silvestre Oltra
- Unidad de Genética y Diagnóstico Prenatal, Hospital La Fe, Valencia, Spain
| | - Gema Pérez
- Laboratorio de Biología Molecular, Hospital La Fe, Valencia, Spain
| | - Sarai Palanca
- Laboratorio de Biología Molecular, Hospital La Fe, Valencia, Spain
| | - Mar Bermúdez
- Servicio de Oncología Pediátrica, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Catalina Márquez
- Servicio de Oncología Pediátrica, Hospital Virgen del Rocio, Seville, Spain
| | - Adela Cañete
- Unidad de Oncología Pediátrica, Hospital La Fe, Avda. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Victoria Castel
- Unidad de Oncología Pediátrica, Hospital La Fe, Avda. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
12
|
Berois N, Osinaga E. Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 2014; 4:114. [PMID: 24904828 PMCID: PMC4033258 DOI: 10.3389/fonc.2014.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein–carbohydrate interactions impact on biological behavior and patient clinical outcome.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay ; Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
13
|
Viprey VF, Gregory WM, Corrias MV, Tchirkov A, Swerts K, Vicha A, Dallorso S, Brock P, Luksch R, Valteau-Couanet D, Papadakis V, Laureys G, Pearson AD, Ladenstein R, Burchill SA. Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: a European HR-NBL1/SIOPEN study. J Clin Oncol 2014; 32:1074-83. [PMID: 24590653 DOI: 10.1200/jco.2013.53.3604] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
PURPOSE To evaluate the hypothesis that detection of neuroblastoma mRNAs by reverse transcriptase quantitative polymerase chain reaction (RTqPCR) in peripheral blood (PB) and bone marrow aspirates (BM) from children with stage 4 neuroblastoma are clinically useful biomarkers of risk. METHODS RTqPCR for paired-like homeobox 2b (PHOX2B), tyrosine hydroxylase (TH), and doublecortin (DCX) mRNA in PB and BM of children enrolled onto the High-Risk Neuroblastoma Trial-1 of the European Society of Pediatric Oncology Neuroblastoma Group (HR-NBL1/SIOPEN) was performed at diagnosis and after induction therapy. RESULTS High levels of TH, PHOX2B, or DCX mRNA in PB or BM at diagnosis strongly predicted for worse event-free survival (EFS) and overall survival (OS) in a cohort of 290 children. After induction therapy, high levels of these mRNAs predicted worse EFS and OS in BM but not in PB. Combinations of mRNAs in BM did not add to the predictive power of any single mRNA. However, in the original (n = 182) and validation (n = 137) PB cohorts, high TH (log10TH > 0.8) or high PHOX2B (log10PHOX2B > 0.28) identify 19% of children as ultrahigh risk, with 5-year EFS and OS rates of 0%; OS rate was 25% (95% CI, 16% to 36%) and EFS rate was 38% (95% CI, 28% to 49%) in the remaining children. The magnitude of reduction in mRNA level between diagnosis and postinduction therapy in BM or PB was not of additional predictive value. CONCLUSION High levels of TH and PHOX2B mRNA in PB at diagnosis objectively identify children with ultrahigh-risk disease who may benefit from novel treatment approaches. The level of TH, PHOX2B, and DCX mRNA in BM and/or PB at diagnosis might contribute to an algorithm to improve stratification of children for treatment.
Collapse
Affiliation(s)
- Virginie F Viprey
- Virginie F. Viprey and Susan A. Burchill, Leeds Institute of Cancer and Pathology; Walter M. Gregory, Clinical Trials Research Unit, University of Leeds, Leeds; Penelope Brock, Great Ormond Street Hospital, London; Andrew D. Pearson, Institute of Cancer Research/Royal Marsden National Health Service Foundation Trust, Sutton, United Kingdom; Maria V. Corrias and Sandro Dallorso, Gaslini Institute, Genoa; Roberto Luksch, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milano, Italy; Andrei Tchirkov, Centre Hospitalier Universitaire Clermont-Ferrand and Clermont Université, Université d'Auvergne, Clermont-Ferrand; Dominique Valteau-Couanet, Institut Gustave Roussy, Villejuif, France; Katrien Swerts and Genevieve Laureys, University Hospital Ghent, Ghent, Belgium; Ales Vicha, Charles University and University Hospital Motol, Prague, Czech Republic; Vassilios Papadakis, Agia Sofia Children's Hospital, Athens, Greece; and Ruth Ladenstein, Children's Cancer Research Institute/St Anna Children's Hospital, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Florou D, Papadopoulos IN, Fragoulis EG, Scorilas A. L-Dopa decarboxylase (DDC) constitutes an emerging biomarker in predicting patients' survival with stomach adenocarcinomas. J Cancer Res Clin Oncol 2013; 139:297-306. [PMID: 23064786 DOI: 10.1007/s00432-012-1326-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/24/2012] [Indexed: 01/26/2023]
Abstract
PURPOSE Stomach adenocarcinoma represents a major health problem and is regarded as the second commonest cause of cancer-associated mortality, universally, since it is still difficult to be perceived at a curable stage. Several lines of evidence have pointed out that the expression of L-Dopa decarboxylase (DDC) gene and/or protein becomes distinctively modulated in several human neuroendocrine neoplasms as well as adenocarcinomas. METHODS In order to elucidate the clinical role of DDC on primary gastric adenocarcinomas, we determined qualitatively and quantitatively the mRNA levels of the gene with regular PCR and real-time PCR by using the comparative threshold cycle method, correspondingly, and detected the expression of DDC protein by immunoblotting in cancerous and normal stomach tissue specimens. RESULTS A statistically significant association was disclosed between DDC expression and gastric intestinal histotype as well as tumor localization at the distal third part of the stomach (p = 0.025 and p = 0.029, respectively). Univariate and multivariate analyses highlighted the powerful prognostic importance of DDC in relation to disease-free survival and overall survival of gastric cancer patients. According to Kaplan-Meier curves, the relative risk of relapse was found to be decreased in DDC-positive (p = 0.031) patients who, also, exhibited higher overall survival rates (p = 0.016) than those with DDC-negative tumors. CONCLUSIONS This work is the first to shed light on the potential clinical usefulness of DDC, as an efficient tumor biomarker in gastric cancer. The provided evidence underlines the propitious predictive value of DDC expression in the survival of stomach adenocarcinoma patients.
Collapse
Affiliation(s)
- Dimitra Florou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | | | | | |
Collapse
|
15
|
Corrias MV, Haupt R, Carlini B, Cappelli E, Giardino S, Tripodi G, Tonini GP, Garaventa A, Pistoia V, Pistorio A. Multiple target molecular monitoring of bone marrow and peripheral blood samples from patients with localized neuroblastoma and healthy donors. Pediatr Blood Cancer 2012; 58:43-9. [PMID: 21254375 DOI: 10.1002/pbc.22960] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/11/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multiple target molecular monitoring of minimal residual disease in neuroblastoma (NB) patients may increase sensitivity and overcome tumor heterogeneity. However, multiple target analysis is costly and time consuming, thus improvement with respect to single target monitoring needs to be achieved. PROCEDURES Italian patients with localized NB were evaluated at diagnosis for TH, GD2-s, DDC, DCX, ELAV-4, STX, and Phox2b mRNA expressions. Patients with metastatic NB were tested as positive controls, together with NB primary tumors and cell lines, while healthy donors were tested as negative controls. RESULTS All NB-related markers but Phox2b were expressed in healthy donors, and in a high percentage of patients with localized NB without association with clinical events. The introduction of cut-off levels increased marker specificity, although the percentage of positive results was only slightly modified. While TH positivity in PB samples significantly associated with a worse prognosis, a paradox association was found for GD2-s mRNA expression. No correlation and agreement between quantitative and qualitative results obtained with the two assays were found. In the set of samples tested for all markers, no pattern of expression was found to be associated with a specific clinical situation. CONCLUSION These findings suggest that positive molecular results may not reflect the presence of disease, and that correlation among different markers is small in condition of low tumor burden. Thus, to reduce cost and amount of precious samples, in addition to TH, whose prognostic value was confirmed, only Phox2b warrants further evaluation in multi-center, prospective studies for high risk patients.
Collapse
|
16
|
Stutterheim J, Ichou FA, den Ouden E, Versteeg R, Caron HN, Tytgat GAM, van der Schoot CE. Methylated RASSF1a is the first specific DNA marker for minimal residual disease testing in neuroblastoma. Clin Cancer Res 2011; 18:808-14. [PMID: 22142825 DOI: 10.1158/1078-0432.ccr-11-0849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PCR-based detection of minimal residual disease (MRD) in neuroblastoma (NB) is presently based on NB-specific transcripts. However, the expression of these targets varies between patients and upon treatment, and only PHOX2B is truly specific. RASSF1a is methylated (RASSF1a(M)) in NB, and we investigated whether it can serve as a specific and stable DNA MRD marker. PATIENTS AND METHODS The RASSF1a(M)-specific quantitative real-time PCR was tested on control bone marrow (BM; n = 50), on 71 NB tumors, and on 159 clinical BM samples at diagnosis and at follow-up of 77 patients. Results were compared with a panel of RNA markers and correlated with prognosis. RESULTS RASSF1a(M) was present in all stage 4 and 4s tumors (n = 50) and in 86% stages 1 to 3 tumors (n = 21). The level of methylation in stage 4 NB was correlated with overall survival (P = 0.02). RASSF1a(M)-PCR was highly specific (only 1 amplification in 50 control samples tested in triplicate) and had a similar sensitivity as the RNA-based PCRs, as shown on clinical samples. Moreover, RASSF1a(M) enabled accurate quantification without need for the original tumor. CONCLUSIONS RASSF1a(M) is a novel, highly specific DNA marker for MRD detection in NB, equal to PHOX2B in specificity and sensitivity, and better suitable for MRD quantification. We propose to include RASSF1a(M) in further prospective MRD studies in NB alongside RNA MRD markers. In addition, this assay might also be applicable for detection of circulating tumor cells in patients with other cancers withRASSF1a(M) such as breast or lung cancer.
Collapse
Affiliation(s)
- Janine Stutterheim
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Identification of reference microRNAs and suitability of archived hemopoietic samples for robust microRNA expression profiling. Anal Biochem 2011; 421:566-72. [PMID: 22074795 DOI: 10.1016/j.ab.2011.10.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022]
Abstract
In many cancers, including neuroblastoma, microRNA (miRNA) expression profiling of peripheral blood (PB) and bone marrow (BM) may increase understanding of the metastatic process and lead to the identification of clinically informative biomarkers. The quality of miRNAs in PB and BM samples archived in PAXgene™ blood RNA tubes from large-scale clinical studies and the identity of reference miRNAs for standard reporting of data are to date unknown. In this study, we evaluated the reliability of expression profiling of 377 miRNAs using quantitative polymerase chain reaction (qPCR) in PB and BM samples (n=90) stored at -80 °C for up to 5 years in PAXgene™ blood RNA tubes. There was no correlation with storage time and variation of expression for any single miRNA (r < 0.50). The profile of miRNAs isolated as small RNAs or co-isolated with small/large RNAs was highly correlated (r=0.96). The mean expression of all miRNAs and the geNorm program identified miR-26a, miR-28-5p, and miR-24 as the most stable reference miRNAs. This study describes detailed methodologies for reliable miRNA isolation and profiling of PB and BM, including reference miRNAs for qPCR normalization, and demonstrates the suitability of clinical samples archived at -80 °C into PAXgene™ blood RNA tubes for miRNA expression studies.
Collapse
|
18
|
Yáñez Y, Grau E, Oltra S, Cañete A, Martínez F, Orellana C, Noguera R, Palanca S, Castel V. Minimal disease detection in peripheral blood and bone marrow from patients with non-metastatic neuroblastoma. J Cancer Res Clin Oncol 2011; 137:1263-72. [PMID: 21706131 DOI: 10.1007/s00432-011-0997-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE In non-metastatic neuroblastoma (NB), the identification of the cases that require more intensive treatment is still difficult. Minimal disease (MD) and minimal residual disease (MRD) detection in outcome prediction seems to be important in advanced neuroblastoma, but there are not many studies focused on patients with non-metastatic disease. The aim of this study was to determine whether the presence of MD detected at diagnosis could be associated with bad prognosis. PROCEDURES Quantitative reverse transcriptase-polymerase chain reaction QRT-PCR was performed on peripheral blood (PB) and bone marrow (BM) samples from patients with non-metastatic NB at diagnosis for tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs detection. RESULTS The frequencies of detecting MD in our series of 102 patients with non-metastatic NB were as follows: 6.2% (5/81) PB samples and 10.6% (10/94) BM samples. Overall survival was similar for patients who expressed or not the MD biomarkers at diagnosis. However, patients with MD detected in PB showed lower EFS than patients with negative PB (P = 0.038). CONCLUSIONS Minimal disease detection in PB seems to be useful for predicting relapse probabilities in patients with non-metastatic NB. The stages 1 and 2 patients with neuroblastoma showed high survival rates, and MD was detected in a small number of patients probably being non-contributory for predicting patient outcome. For stage 3 patients with NB, MD detection by QRT-PCR in PB at diagnosis could be useful for predicting outcome and for early and sensitive detection of relapsing disease.
Collapse
Affiliation(s)
- Yania Yáñez
- Unidad de Oncología Pediátrica, Hospital Universitario y Politécnico La Fe, Bulevar Sur S/N, 46026 Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stutterheim J, Zappeij-Kannegieter L, Versteeg R, Caron HN, van der Schoot CE, Tytgat GAM. The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma. Eur J Cancer 2011; 47:1193-202. [PMID: 21429738 DOI: 10.1016/j.ejca.2011.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/04/2011] [Accepted: 02/09/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Quantitative real-time (q)PCR for detection of minimal residual disease (MRD) in children with neuroblastoma (NB) can evaluate molecular bone marrow (BM) response to therapy, but the prognostic value of tumour kinetics in the BM during induction treatment remains to be established. The purpose of this study was to analyse at which time points MRD detection by sequential molecular assessment of BM was prognostic for overall survival (OS). METHODS In this single centre study, qPCR was performed with five NB-specific markers: PHOX2B, TH, DDC, GAP43 and CHRNA3, on 106 retrospectively analysed BM samples of 53 patients >1 year with stage 4 neuroblastoma. The prognostic impact of MRD at diagnosis (n = 39), at 3 months after diagnosis (n = 38) and after completing induction chemotherapy (n = 29) was assessed using univariate and bivariate Cox regression analyses. RESULTS There was no correlation between tumour load at diagnosis and outcome (p = 0.93). Molecular BM remission was observed in 11/38 (29%) of patients at 3 months after diagnosis and associated with favourable outcome (5-y-OS 62 ± 15.0% versus 19 ± 8%; p = 0.009). After completion of induction chemotherapy, BM of 41% (12/29) of the patients was still MRD positive, which was associated with poor outcome (5-y-OS 0% versus 52 ± 12%; p<0.001). For both time points, the prognostic value of molecular response remained significant in bivariate analysis. CONCLUSIONS MRD detection measured by a panel of NB specific-PCR targets could identify fast responders, who clear their BM early during treatment. Fast molecular response was a prognostic factor, associated with better outcome. Our data indicate that MRD analysis during induction therapy should be included in prospective MRD studies.
Collapse
Affiliation(s)
- J Stutterheim
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Corrias MV, Pistorio A, Cangemi G, Tripodi G, Carlini B, Scaruffi P, Fardin P, Garaventa A, Pistoia V, Haupt R. Detection of cell-free RNA in children with neuroblastoma and comparison with that of whole blood cell RNA. Pediatr Blood Cancer 2010; 54:897-903. [PMID: 20405510 DOI: 10.1002/pbc.22498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Since there is no validated assay to monitor disease in children with neuroblastoma (NB), we tested whether NB specific cell-free RNA could be detected in their plasma samples. Moreover, with the aim of reducing patients' discomfort, we compared this assay to a recently standardized procedure that uses a larger amount of whole blood. PROCEDURES Using conditions that excluded RNA recovery from contaminating tumor cells, the total amount of cell-free RNA present in healthy children and patients with NB was quantified. Expression of tyrosine hydroxylase (TH) was assayed by quantitative RT-PCR. RESULTS In patients with NB the amount of cell-free RNA was higher than in healthy children. However, it was less and more degraded than in healthy adults. The median amount of cell-free RNA that was reverse transcribed, measured through the use of standard curves for reference genes, was 0.03 (range 0-30) pg of input RNA, that is, always less than 1/10,000 of that reverse transcribed from total RNA extracted from whole cells. Despite the presence of disease and the positive results obtained with RNA extracted from peripheral blood cells, few cell-free RNA samples tested positive by the TH assay. Similar results were obtained also with TH primers specifically designed to amplify 50 bp RNA fragments. CONCLUSION These findings suggest that for monitoring disease status detection of cell-free tumor-specific RNAs in patients with NB is not a reliable alternative to whole cell RNA.
Collapse
|
21
|
Coufal M, Invernizzi P, Gaudio E, Bernuzzi F, Frampton GA, Onori P, Franchitto A, Carpino G, Ramirez JC, Alvaro D, Marzioni M, Battisti G, Benedetti A, DeMorrow S. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Int J Cancer 2010; 126:2112-22. [PMID: 19795457 DOI: 10.1002/ijc.24909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. Symptoms are usually evident after blockage of the bile duct by the tumor, and at this late stage, they are relatively resistant to chemotherapy and radiation therapy. Therefore, it is imperative that alternative treatment options are explored. We have previously shown that serotonin metabolism is dysregulated in cholangiocarcinoma leading to an increased secretion of serotonin, which has growth-promoting effects. Because serotonin and dopamine share the degradation machinery, we evaluated the secretion of dopamine from cholangiocarcinoma and its effects on cell proliferation. Using 4 cholangiocarcinoma cell lines and human biopsy samples, we demonstrated that there was an increase in mRNA and protein expression of the dopamine synthesis enzymes tyrosine hydroxylase and dopa decarboxylase in cholangiocarcinoma. There was increased dopamine secretion from cholangiocarcinoma cell lines compared to H69 and HIBEC cholangiocytes and increased dopamine immunoreactivity in human biopsy samples. Furthermore, administration of dopamine to all cholangiocarcinoma cell lines studied increased proliferation by up to 30%, which could be blocked by the pretreatment of the D2 and D4 dopamine receptor antagonists, whereas blocking dopamine production by alpha-methyldopa administration suppressed growth by up to 25%. Administration of alpha-methyldopa to nude mice also suppressed cholangiocarcinoma tumor growth. The data presented here represent the first evidence that dopamine metabolism is dysregulated in cholangiocarcinoma and that modulation of dopamine synthesis may represent an alternative target for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Monique Coufal
- Department of Medicine, Scott & White Hospital, Texas A&M Health Science Center College of Medicine, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Bertil Kågedal
- Department of Clinical Chemistry, University Hospital, Linköping, Sweden
| |
Collapse
|
23
|
Beiske K, Burchill SA, Cheung IY, Hiyama E, Seeger RC, Cohn SL, Pearson ADJ, Matthay KK. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer 2009; 100:1627-37. [PMID: 19401690 PMCID: PMC2696761 DOI: 10.1038/sj.bjc.6605029] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/16/2009] [Accepted: 03/17/2009] [Indexed: 01/23/2023] Open
Abstract
Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside G(D2) and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups.
Collapse
Affiliation(s)
- K Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|