1
|
Brönimann S, Mun DH, Hackl M, Yang L, Shariat SF, Waldhoer T. Increase and Plateauing of Testicular Cancer Incidence in Austria-A Time Trend Analysis of the Past Four Decades. EUR UROL SUPPL 2023; 49:104-109. [PMID: 36874603 PMCID: PMC9974997 DOI: 10.1016/j.euros.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Background Testicular germ cell tumors (TGCTs) are the most common malignant tumors in young men. Despite considerable geographic, ethnic, and temporal variations in the incidence of TGCTs, without convincing explanation, incidence rates of TGCTs have been increasing in many countries since, at least, the mid-20th century. Objective To investigate the incidence rates of TGCTs in Austria by analyzing data from the Austrian Cancer Registry. Design setting and participants Available data between 1983 and 2018 were provided by the Austrian National Cancer Registry and analyzed retrospectively. Outcome measurements and statistical analysis Germ cell tumors derived from germ cell neoplasia in situ were classified into seminomas and nonseminomas. Age-specific incidence rates and age-standardized rates were calculated. Annual percent changes (APCs) and average annual percent changes in incidence rates were determined to describe trends from 1983 to 2018. All statistical analyses were performed using SAS version 9.4 and joinpoint. Results and limitations The study population consists of 11 705 patients diagnosed with TGCTs. The median age at diagnosis was 37.7 yr. The standardized incidence rate of TGCTs increased significantly (p < 0.0001) from 4.1 (3.4, 4.8) per 100 000 in 1983 to 8.7 (7.9, 9.6) per 100 000 in 2018 by an average APC of 1.74 (1.20, 2.29). The joinpoint regression revealed a change point in time trend in 1995 with an APC of 4.24 (2.77, 5.72) before 1995 and an APC of 0.47 (0.06, 0.89) thereafter. Incidence rates were about twice as high for seminomas as for nonseminomas. A trend analysis by age group showed that the highest TGCT incidence rate was observed among men aged 30-40 yr, with a steep increase before 1995. Conclusions The incidence rate of TGCTs increased in Austria over the past decades and appears to have reached a plateau at a high level. A time trend analysis by age group for the overall incidence was highest in men aged 30-40 yr, with a steep increase before 1995. These data should lead to awareness campaigns and research to further investigate the causes of this development. Patient summary We reviewed the data between 1983 and 2018 provided by the Austrian National Cancer Registry to analyze the incidence and incidence trend in testicular cancer. Testicular cancer shows an increasing incidence in Austria. The overall incidence was highest in men aged 30-40 yr, with a steep increase before 1995. The incidence appears to have reached a plateau at a high level in recent years.
Collapse
Affiliation(s)
- Stephan Brönimann
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dong-Ho Mun
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Monika Hackl
- Austrian National Cancer Registry, Statistics Austria, Vienna, Austria
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada.,Preventive Oncology & Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, University of Texas Southwestern, Dallas, TX, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.,Karl Landsteiner Institute, Vienna, Austria
| | - Thomas Waldhoer
- Centre for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
3
|
Fukawa T, Kanayama HO. Current knowledge of risk factors for testicular germ cell tumors. Int J Urol 2018; 25:337-344. [PMID: 29345008 DOI: 10.1111/iju.13519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
The development of the human gonads is tightly regulated by the correct sequential expression of many genes and hormonal activity. Disturbance of this regulation does not only prevent proper development of the gonads, but it also contributes to the development of testicular germ cell tumors. Recent genetic studies, especially genome-wide association studies, have made great progress in understanding genetic susceptibility. Although there is strong evidence of inherited risks, many environmental factors also contribute to the development of testicular germ cell tumors. Histopathological studies have shown that most testicular germ cell tumors arise from germ cell neoplasia in situ, which is thought to be arrested and transformed primordial germ cells. Seminoma has features identical to germ cell neoplasia in situ or primordial germ cells, whereas non-seminoma shows varied differentiation. Seminomas and embryonic cell carcinomas have the feature of pluripotency, which is thought to be the cause of histological heterogeneity and mixed pathology in testicular germ cell tumors. Testicular germ cell tumors show high sensitivity to chemotherapies, but 20-30% of patients show resistance to standard chemotherapy. In the present review, the current knowledge of the epidemiological and genomic factors for the development of testicular germ cell tumors is reviewed, and the mechanisms of resistance to chemotherapies are briefly mentioned.
Collapse
Affiliation(s)
- Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Wang Z, McGlynn KA, Rajpert-De Meyts E, Bishop DT, Chung C, Dalgaard MD, Greene MH, Gupta R, Grotmol T, Haugen TB, Karlsson R, Litchfield K, Mitra N, Nielsen K, Pyle LC, Schwartz SM, Thorsson V, Vardhanabhuti S, Wiklund F, Turnbull C, Chanock SJ, Kanetsky PA, Nathanson KL. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat Genet 2017; 49:1141-1147. [PMID: 28604732 PMCID: PMC5490654 DOI: 10.1038/ng.3879] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the first analysis of the X chromosome. Eight new loci mapping to 2q14.2, 3q26.2, 4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31, and Xq28 achieved genome-wide significance (P < 5 × 10-8). Most loci harbor biologically plausible candidate genes. We refined previously reported associations at 9p24.3 and 19p12 by identifying one and three additional independent SNPs, respectively. In aggregate, the 39 independent markers identified to date explain 37% of father-to-son familial risk, 8% of which can be attributed to the 12 new signals reported here. Our findings substantially increase the number of known TGCT susceptibility alleles, move the field closer to a comprehensive understanding of the underlying genetic architecture of TGCT, and provide further clues to the etiology of TGCT.
Collapse
Affiliation(s)
- Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Charles Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Marlene D. Dalgaard
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mark H. Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ramneek Gupta
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Trine B. Haugen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Litchfield
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nandita Mitra
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kasper Nielsen
- Center of Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Louise C. Pyle
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia 19104, PA, USA
| | | | | | - Saran Vardhanabhuti
- Department of Biostatistics, Harvard School of Public Health, Cambridge, Massachusetts, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- Genomics England, London, UK
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Katherine L. Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Elzinga-Tinke JE, Dohle GR, Looijenga LH. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis. Asian J Androl 2016; 17:381-93. [PMID: 25791729 PMCID: PMC4430936 DOI: 10.4103/1008-682x.148079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20-40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ(CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS.
Collapse
Affiliation(s)
| | | | - Leendert Hj Looijenga
- Department of Pathology, Laboratory of Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
McMaster ML, Heimdal KR, Loud JT, Bracci JS, Rosenberg PS, Greene MH. Nontesticular cancers in relatives of testicular germ cell tumor (TGCT) patients from multiple-case TGCT families. Cancer Med 2015; 4:1069-78. [PMID: 25882629 PMCID: PMC4529345 DOI: 10.1002/cam4.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
Testicular germ cell tumors (TGCT) exhibit striking familial aggregation that remains incompletely explained. To improve the phenotypic definition of familial TGCT (FTGCT), we studied an international cohort of multiple-case TGCT families to determine whether first-degree relatives of FTGCT cases are at increased risk of other types of cancer. We identified 1041 first-degree relatives of TGCT cases in 66 multiple-case TGCT families from Norway and 64 from the United States (combined follow-up of 31,556 person-years). We collected data on all cancers (except nonmelanoma skin cancers) reported by the family informant in these relatives, and we attempted to verify all reported cancer diagnoses through medical or cancer registry records. We calculated observed-to-expected (O/E) standardized incidence ratios, together with 95% confidence intervals (CI), for invasive cancers other than TGCT. We found no increase in risk of cancer overall (Norway O/E = 0.8; 95% CI: 0.6–1.1 and United States O/E = 0.9; 95% CI: 0.7–1.3). Site-specific analyses pooled across the two countries revealed a leukemia excess (O/E = 6.5; 95% CI: 3.0–12.3), deficit of female breast cancer (O/E = 0.0; 95% CI: 0.0–0.6) and increased risk of soft tissue sarcoma (O/E = 7.2; 95% CI: 2.0–18.4); in all instances, these results were based on small case numbers and statistically significant only in Norway. While limited by sample size and potential issues relating to completeness of cancer reporting, this study in multiple-case TGCT families does not support the hypothesis that cancers other than testis cancer contribute to the FTGCT phenotype.
Collapse
Affiliation(s)
- Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-9769.,Commissioned Corps of the U.S. Public Health Service, U.S. Department of Health and Human Services, Washington, District of Columbia
| | - Ketil R Heimdal
- Section for Clinical Genetics, Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-9769
| | | | - Philip S Rosenberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-9769
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-9769
| |
Collapse
|
7
|
Kristiansen W, Karlsson R, Rounge TB, Whitington T, Andreassen BK, Magnusson PK, Fossa SD, Adami HO, Turnbull C, Haugen TB, Grotmol T, Wiklund F. Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Hum Mol Genet 2015; 24:4138-46. [DOI: 10.1093/hmg/ddv129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/08/2015] [Indexed: 11/14/2022] Open
|
8
|
Zechel JL, Doerner SK, Lager A, Tesar PJ, Heaney JD, Nadeau JH. Contrasting effects of Deadend1 (Dnd1) gain and loss of function mutations on allelic inheritance, testicular cancer, and intestinal polyposis. BMC Genet 2013; 14:54. [PMID: 23773267 PMCID: PMC3693958 DOI: 10.1186/1471-2156-14-54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Certain mutations in the Deadend1 (Dnd1) gene are the most potent modifiers of testicular germ cell tumor (TGCT) susceptibility in mice and rats. In the 129 family of mice, the Dnd1Ter mutation significantly increases occurrence of TGCT-affected males. To test the hypothesis that he Dnd1Ter allele is a loss-of-function mutation; we characterized the consequences of a genetically-engineered loss-of-function mutation in mice, and compared these results with those for Dnd1Ter. Results We found that intercrossing Dnd1+/KO heterozygotes to generate a complete loss-of-function led to absence of Dnd1KO/KO homozygotes and significantly reduced numbers of Dnd1+/KO heterozygotes. Further crosses showed that Dnd1Ter partially rescues loss of Dnd1KO mice. We also found that loss of a single copy of Dnd1 in Dnd1KO/+ heterozygotes did not affect baseline occurrence of TGCT-affected males and that Dnd1Ter increased TGCT risk regardless whether the alternative allele was loss-of-function (Dnd1KO) or wild-type (Dnd1+). Finally, we found that the action of Dnd1Ter was not limited to testicular cancer, but also significantly increased polyp number and burden in the Apc+/Min model of intestinal polyposis. Conclusion These results show that Dnd1 is essential for normal allelic inheritance and that Dnd1Ter has a novel combination of functions that significantly increase risk for both testicular and intestinal cancer.
Collapse
Affiliation(s)
- Jennifer L Zechel
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chung CC, Kanetsky PA, Wang Z, Hildebrandt MAT, Koster R, Skotheim RI, Kratz CP, Turnbull C, Cortessis VK, Bakken AC, Bishop DT, Cook MB, Erickson RL, Fosså SD, Jacobs KB, Korde LA, Kraggerud SM, Lothe RA, Loud JT, Rahman N, Skinner EC, Thomas DC, Wu X, Yeager M, Schumacher FR, Greene MH, Schwartz SM, McGlynn KA, Chanock SJ, Nathanson KL. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 2013; 45:680-5. [PMID: 23666239 PMCID: PMC3723930 DOI: 10.1038/ng.2634] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/10/2013] [Indexed: 12/14/2022]
Abstract
We conducted a meta-analysis to identify new susceptibility loci for testicular germ cell tumor (TGCT). In the discovery phase, we analyzed 931 affected individuals and 1,975 controls from 3 genome-wide association studies (GWAS). We conducted replication in 6 independent sample sets comprising 3,211 affected individuals and 7,591 controls. In the combined analysis, risk of TGCT was significantly associated with markers at four previously unreported loci: 4q22.2 in HPGDS (per-allele odds ratio (OR) = 1.19, 95% confidence interval (CI) = 1.12-1.26; P = 1.11 × 10(-8)), 7p22.3 in MAD1L1 (OR = 1.21, 95% CI = 1.14-1.29; P = 5.59 × 10(-9)), 16q22.3 in RFWD3 (OR = 1.26, 95% CI = 1.18-1.34; P = 5.15 × 10(-12)) and 17q22 (rs9905704: OR = 1.27, 95% CI = 1.18-1.33; P = 4.32 × 10(-13) and rs7221274: OR = 1.20, 95% CI = 1.12-1.28; P = 4.04 × 10(-9)), a locus that includes TEX14, RAD51C and PPM1E. These new TGCT susceptibility loci contain biologically plausible genes encoding proteins important for male germ cell development, chromosomal segregation and the DNA damage response.
Collapse
Affiliation(s)
- Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Peter A. Kanetsky
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick Inc., NCI-Frederick, Frederick, Maryland, USA
| | | | - Roelof Koster
- Department of Medicine, Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rolf I. Skotheim
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian P. Kratz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Victoria K. Cortessis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Anne C. Bakken
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, Cancer Research UK Clinical Centre at Leeds, St James’ University Hospital, Leeds, UK
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - R. Loren Erickson
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sophie D. Fosså
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | - Kevin B. Jacobs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Larissa A. Korde
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Division of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Sigrid M. Kraggerud
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer T. Loud
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Eila C. Skinner
- Department of Urology, Stanford University, Stanford, California, USA
| | - Duncan C. Thomas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Fredrick R. Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Mark H. Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Stephen M. Schwartz
- Fred Hutchinson Cancer Research Center and School of Public Health, University of Washington, Seattle, Washington, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Katherine L. Nathanson
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc Natl Acad Sci U S A 2012; 109:E2766-73. [PMID: 22923694 DOI: 10.1073/pnas.1207169109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Environmental agents and genetic variants can induce heritable epigenetic changes that affect phenotypic variation and disease risk in many species. These transgenerational effects challenge conventional understanding about the modes and mechanisms of inheritance, but their molecular basis is poorly understood. The Deadend1 (Dnd1) gene enhances susceptibility to testicular germ cell tumors (TGCTs) in mice, in part by interacting epigenetically with other TGCT modifier genes in previous generations. Sequence homology to A1cf, the RNA-binding subunit of the ApoB editing complex, raises the possibility that the function of Dnd1 is related to Apobec1 activity as a cytidine deaminase. We conducted a series of experiments with a genetically engineered deficiency of Apobec1 on the TGCT-susceptible 129/Sv inbred background to determine whether dosage of Apobec1 modifies susceptibility, either alone or in combination with Dnd1, and either in a conventional or a transgenerational manner. In the paternal germ-lineage, Apobec1 deficiency significantly increased susceptibility among heterozygous but not wild-type male offspring, without subsequent transgenerational effects, showing that increased TGCT risk resulting from partial loss of Apobec1 function is inherited in a conventional manner. By contrast, partial deficiency in the maternal germ-lineage led to suppression of TGCTs in both partially and fully deficient males and significantly reduced TGCT risk in a transgenerational manner among wild-type offspring. These heritable epigenetic changes persisted for multiple generations and were fully reversed after consecutive crosses through the alternative germ-lineage. These results suggest that Apobec1 plays a central role in controlling TGCT susceptibility in both a conventional and a transgenerational manner.
Collapse
|
11
|
Kanetsky PA, Mitra N, Vardhanabhuti S, Vaughn DJ, Li M, Ciosek SL, Letrero R, D'Andrea K, Vaddi M, Doody DR, Weaver J, Chen C, Starr JR, Håkonarson H, Rader DJ, Godwin AK, Reilly MP, Schwartz SM, Nathanson KL. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 2011; 20:3109-17. [PMID: 21551455 PMCID: PMC3131044 DOI: 10.1093/hmg/ddr207] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/25/2011] [Accepted: 05/03/2011] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to testicular germ cell tumors (TGCT) has a significant heritable component, and genome-wide association studies (GWASs) have identified association with variants in several genes, including KITLG, SPRY4, BAK1, TERT, DMRT1 and ATF7IP. In our GWAS, we genotyped 349 TGCT cases and 919 controls and replicated top hits in an independent set of 439 cases and 960 controls in an attempt to find novel TGCT susceptibility loci. We identified a second marker (rs7040024) in the doublesex and mab-3-related transcription factor 1 (DMRT1) gene that is independent of the previously described risk allele (rs755383) at this locus. In combined analysis that mutually conditions on both DMRT1 single nucleotide polymorphism markers, TGCT cases had elevated odds of carriage of the rs7040024 major A allele [per-allele odds ratio (OR) = 1.48, 95% confidence interval (CI) 1.23, 1.78; P = 2.52 × 10(-5)] compared with controls, while the association with rs755383 persisted (per allele OR = 1.26, 95% CI 1.08, 1.47, P = 0.0036). In similar analyses, the association of rs7040024 among men with seminomatous tumors did not differ from that among men with non-seminomatous tumors. In combination with KITLG, the strongest TGCT susceptibility locus found to date, men with TGCT had greatly elevated odds (OR = 14.1, 95% CI 5.12, 38.6; P = 2.98 × 10(-7)) of being double homozygotes for the risk (major) alleles at DMRT (rs7040024) and KITLG (rs4474514) when compared with men without TGCT. Our findings continue to corroborate that genes influencing male germ cell development and differentiation have emerged as the major players in inherited TGCT susceptibility.
Collapse
Affiliation(s)
- Peter A Kanetsky
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stang A, Kuss O. Etiologic Differences Between Seminoma and Nonseminoma of the Testis: A Systematic Review of Epidemiologic Studies. Hematol Oncol Clin North Am 2011; 25:473-86, vii. [DOI: 10.1016/j.hoc.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Nordsborg RB, Meliker JR, Wohlfahrt J, Melbye M, Raaschou-Nielsen O. Cancer in first-degree relatives and risk of testicular cancer in Denmark. Int J Cancer 2011; 129:2485-91. [PMID: 21207375 DOI: 10.1002/ijc.25897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/24/2010] [Accepted: 12/07/2010] [Indexed: 11/09/2022]
Abstract
Familial aggregation of testicular cancer has been reported consistently, but it is less clear if there is any association between risk of testicular cancer and other cancers in the family. We conducted a population-based case-control study to examine the relationship between risk of testicular cancer and 22 different cancers in first-degree relatives. We included 3,297 cases of testicular cancer notified to the Danish Cancer Registry between 1991 and 2003. A total of 6,594 matched controls were selected from the Danish Civil Registration System, which also provided the identity of 40,104 first-degree relatives of case and controls. Familial cancer was identified by linkage to the Danish Cancer Registry, and we used conditional logistic regression to analyze whether cancer among first-degree relatives was associated with higher risk of testicular cancer. Rate ratio for testicular cancer was 4.63 (95% CI: 2.41-8.87) when a father, 8.30 (95% CI: 3.81-18.10) when a brother and 5.23 (95% CI: 1.35-20.26) when a son had testicular cancer compared to no familial testicular cancer. Results were similar when analyses were stratified by histologic subtypes of testicular cancer. Familial non-Hodgkin lymphoma and esophageal cancer were associated with testicular cancer; however, these may be chance findings. The familial aggregation of testicular and possibly other cancers may be explained by shared genes and/or shared environmental factors, but the mutual importance of each of these is difficult to determine.
Collapse
|
14
|
Alam SS, Cantwell MM, Cardwell CR, Cook MB, Murray LJ. Maternal body mass index and risk of testicular cancer in male offspring: a systematic review and meta-analysis. Cancer Epidemiol 2010; 34:509-15. [PMID: 20800565 DOI: 10.1016/j.canep.2010.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To date a number of studies have examined the association between maternal weight and testicular cancer risk although results have been largely inconsistent. This systematic review and meta-analysis investigated the nature of this association. METHODS Search strategies were conducted in Ovid Medline (1950-2009), Embase (1980-2009), Web of Science (1970-2009), and CINAHL (1937-2009) using keywords for maternal weight (BMI) and testicular cancer. RESULTS The literature search produced 1689 hits from which 63 papers were extracted. Only 7 studies met the pre-defined criteria. Random effects meta-analyses were conducted. The combined unadjusted OR (95% CI) of testicular cancer in the highest reported category of maternal BMI compared with the moderate maternal BMI was 0.82 (0.65-1.02). The Cochran's Q P value was 0.82 and the corresponding I(2) was 0%, both indicating very little variability among studies. The combined unadjusted OR (95% CI) for testicular cancer risk in the lowest reported category of maternal BMI compared to a moderate maternal BMI category was 0.88 (0.65-1.20). The Cochran's Q P value was 0.05 and the corresponding I(2) was 54%, indicating evidence of statistical heterogeneity. The combined unadjusted OR (95% CI) of testicular cancer risk per unit increase in maternal BMI was 1.01 (0.97-1.06). The Cochran's Q test had a P value of 0.05 and the corresponding I(2) was 55% indicating evidence of statistical heterogeneity. CONCLUSION This meta-analysis, which included a small number of studies, showed that a higher maternal weight does not increase the risk of testicular cancer in male offspring. Though an inverse association between high maternal BMI and testicular cancer risk was detected, it was not statistically significant. Further primary studies with adjustment for appropriate confounders are required.
Collapse
Affiliation(s)
- Shama S Alam
- Cancer Epidemiology & Health Services Research Group, Centre for Public Health, Queen's University Belfast, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Goede J, Hack WW, van der Voort-Doedens L, Pierik FH, Looijenga LH, Sijstermans K. Testicular Microlithiasis in Boys and Young Men With Congenital or Acquired Undescended (Ascending) Testis. J Urol 2010; 183:1539-43. [DOI: 10.1016/j.juro.2009.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Indexed: 10/19/2022]
Affiliation(s)
- Joery Goede
- Department of Pediatrics, Medical Center Alkmaar, Alkmaar, The Netherlands
| | - Wilfried W.M. Hack
- Department of Pediatrics, Medical Center Alkmaar, Alkmaar, The Netherlands
| | | | - Frank H. Pierik
- Netherlands Organization for Applied Scientific Research TNO, Delft, The Netherlands
| | - Leendert H.J. Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
16
|
Clinical stage I seminoma: the case for surveillance. World J Urol 2009; 27:433-9. [DOI: 10.1007/s00345-009-0430-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022] Open
|