1
|
Chen CC, Tsai CL, Pei JS, Tzeng HE, Hsu PC, Cheng DAC, Lin JC, Tsai CW, Bau DAT, Chang WS. Contribution of Cyclin Dependent Kinase Inhibitor 1A Genotypes to Childhood Acute Lymphocytic Leukemia Risk in Taiwan. Cancer Genomics Proteomics 2025; 22:46-54. [PMID: 39730179 PMCID: PMC11696320 DOI: 10.21873/cgp.20486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM The disruption of cell-cycle control can lead to an imbalance in cell proliferation, often accompanied by genomic instability, which in turn can facilitate carcinogenesis. This study aimed to examine the impact of CDKN1A rs1801270 and rs1059234 polymorphisms on the risk of childhood acute lymphocytic leukemia (ALL) in Taiwan. MATERIALS AND METHODS The genotypes of CDKN1A rs1801270 and rs1059234 in 266 childhood ALL cases and 266 controls were determined using PCR-RFLP techniques. RESULTS The genotypic and allelic frequencies for CDKN1A rs1801270 and rs1059234 did not significantly differ between childhood ALL cases and controls (all p>0.05). However, stratified analysis revealed that the CDKN1A rs1801270 AA variant was associated with a reduced risk of childhood ALL in males (OR=0.40, 95%CI=0.20-0.82, p=0.0178). Additionally, the AC and AA genotypes of rs1801270 were linked to a lower risk classification for childhood ALL and longer survival times (OR=0.57 and 0.31, 95%CI=0.33-0.97 and 0.18-0.56, p=0.0538 and 0.0001, respectively). No significant associations were found for rs1059234 in the stratified analyses (p>0.05 for all). CONCLUSION Although CDKN rs1801270 and rs1059234 genotypes were not associated with an overall risk of childhood ALL, CDKN1A rs1801270 polymorphism may serve as a protective predictor in males and as a potential marker for better prognosis of childhood ALL. Validation in larger and more diverse populations is necessary to confirm the feasibility of this predictor.
Collapse
Affiliation(s)
- Chao-Chun Chen
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Chung-Lin Tsai
- Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jen-Sheng Pei
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Huey-En Tzeng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Pei-Chen Hsu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - DA-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Jiunn-Cherng Lin
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital, Chiayi Branch, Chiayi, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
2
|
Tan L, Zhang H, Ding Y, Huang Y, Sun D. CRTAC1 identified as a promising diagnosis and prognostic biomarker in lung adenocarcinoma. Sci Rep 2024; 14:11223. [PMID: 38755183 PMCID: PMC11099150 DOI: 10.1038/s41598-024-61804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
CRTAC1, one of the pyroptosis-related genes, has been identified as a protective factor in certain kinds of cancer, such as gastric adenocarcinoma and bladder cancer. The study aimed to investigate the role of CRTAC1 in lung adenocarcinoma (LUAD). LUAD datasets were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), pyroptosis-related genes from GeneCard. Limma package used to find differentially expressed genes (DEGs), least absolute shrinkage and selection operator (LASSO) regression and weighted genes co-expression network analysis (WGCNA) to identify CRTAC1 as hub gene. CRTAC1 expression was confirmed in a real-world cohort using quantitative polymerase chain reaction (qPCR) and Western Blot (WB) analyses. Cellular experiments were conducted to investigate CRTAC1's potential oncogenic mechanisms. CRTAC1 mRNA expression was significantly lower in LUAD tissues (p < 0.05) and showed high accuracy in diagnosing LUAD. Reduced CRTAC1 expression was associated with a poor prognosis. Higher CRTAC1 expression correlated with increased immune cell infiltration. Individuals with high CRTAC1 expression showed increased drug sensitivity. Additionally, qPCR and WB analyses showed that CRTAC1 expression was lower in tumor tissue compared to adjacent normal tissue at both the RNA and protein levels. Upregulation of CRTAC1 significantly inhibited LUAD cell proliferation, invasion, and migration in cellular experiments. CRTAC1 has the potential to serve as a diagnostic and prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Lin Tan
- Tianjin Medical University Graduate School, Tianjin, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Han Zhang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yun Ding
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yangyun Huang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Lan X, Zhao L, Zhang J, Shao Y, Qv Y, Huang J, Cai L. Comprehensive analysis of karyopherin alpha family expression in lung adenocarcinoma: Association with prognostic value and immune homeostasis. Front Genet 2022; 13:956314. [PMID: 35991543 PMCID: PMC9382304 DOI: 10.3389/fgene.2022.956314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Karyopherin alpha (KPNA), a nuclear transporter, has been implicated in the development as well as the progression of many types of malignancies. Immune homeostasis is a multilevel system which regulated by multiple factors. However, the functional significance of the KPNA family in the pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune homeostasis are not well characterized. Methods: In this study, by integrating the TCGA-LUAD database and Masked Somatic Mutation, we first conducted an investigation on the expression levels and mutation status of the KPNA family in patients with LUAD. Then, we constructed a prognostic model based on clinical features and the expression of the KPNA family. We performed functional enrichment analysis and constructed a regulatory network utilizing the differential genes in high-and low-risk groups. Lastly, we performed immune infiltration analysis using CIBERSORT. Results: Analysis of TCGA datasets revealed differential expression of the KPNA family in LUAD. Kaplan-Meier survival analyses indicated that the high expression of KPNA2 and KPNA4 were predictive of inferior overall survival (OS). In addition, we constructed a prognostic model incorporating clinical factors and the expression level of KPNA4 and KPNA5, which accurately predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the high-risk group showed a poor prognosis. Functional enrichment analysis exhibited remarkable enrichment of transcriptional dysregulation in the high-risk group. On the other hand, gene set enrichment analysis (GSEA) displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic in the high-risk group. Finally, analysis of immune infiltration revealed significant differences between the high-and low-risk groups. Further, the high-risk group was more prone to immune evasion while the inflammatory response was strongly associated with the low-risk group. Conclusions: the KPNA family-based prognostic model reflects many biological aspects of LUAD and provides potential targets for precision therapy in LUAD.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingchun Shao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunmeng Qv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | - Li Cai
- *Correspondence: Jian Huang, ; Li Cai,
| |
Collapse
|
4
|
Genetic Association of ERCC6 rs2228526 Polymorphism with the Risk of Cancer: Evidence from a Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2662666. [PMID: 35463969 PMCID: PMC9033365 DOI: 10.1155/2022/2662666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
At present, several studies have assessed the association between ERCC6 rs2228526 polymorphism and the risk of cancer. However, the association remained controversial. To provide a more accurate estimate on the association, we performed a meta-analysis search of case-control studies on the associations of ERCC6 rs2228526 with susceptibility to cancer. PubMed, Embase, Google Scholar, Wanfang database, and Chinese National Knowledge Infrastructure databases (CNKI) China Biological Medicine Database (CBM) (up to August 2021) were searched to identify eligible studies. The effect summary odds ratio (OR) with 95% confidence intervals (CI) was applied to assay the association between the ERCC6 rs2228526 polymorphism and the risk of cancer. 14 studies included 15 case-control studies which contained 5,856 cases, and 6,387 controls were finally determined as qualified studies for this meta-analysis. Overall, based on current studies, we found significant association between ERCC6 rs2228526 polymorphism and the risk of cancer in four genetic models [the allele model G vs. A: 1.10, (1.03–1.17); the homozygous model GG vs. AA: 1.27, (1.07–1.51); heterozygote model GA vs. AA: 1.08, (1.00–1.17); the dominant model GG + GA vs. AA: 1.10, (1.02–1.19); the recessive model GG vs. GA + AA: 1.22, (1.03–1.45)]. In the stratified analysis based on ethnicity, we found significant association in two genetic models in Asians. Further, significant genetic cancer susceptibility was found under PB control on subgroup analysis by source of control. In addition, no significant association was found in lung cancer and bladder cancer patients in subgroup analyses based on cancer style. This study suggests that the ERCC6 rs2228526 polymorphism may be associated with increased cancer risk.
Collapse
|
5
|
Ma C, Li F, Luo H. Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1058. [PMID: 34422970 PMCID: PMC8339871 DOI: 10.21037/atm-20-7936] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/18/2021] [Indexed: 12/25/2022]
Abstract
Background Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD. Methods The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the literature. A univariate Cox regression model was constructed for the training cohort to preliminarily screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better study the functional annotation of the signature and the role of each kind of immune cell. Results A ten-gene signature was constructed from the training cohort and validated in three cohorts by Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis of LUAD. Conclusions We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD prognosis and is closely linked to resting mast cells and resting dendritic cells.
Collapse
Affiliation(s)
- Chao Ma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Feng Li
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Peterson LA, Ignatovich IV, Grill AE, Beauchamp A, Ho YY, DiLernia AS, Zhang L. Individual Differences in the Response of Human β-Lymphoblastoid Cells to the Cytotoxic, Mutagenic, and DNA-Damaging Effects of a DNA Methylating Agent, N-Methylnitrosourethane. Chem Res Toxicol 2019; 32:2214-2226. [PMID: 31589032 DOI: 10.1021/acs.chemrestox.9b00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic activation of many carcinogens leads to formation of reactive intermediates that form DNA adducts. These adducts are cytotoxic when they interfere with cell division. They can also cause mutations by miscoding during DNA replication. Therefore, an individual's risk of developing cancer will depend on the balance between these processes as well as their ability to repair the DNA damage. Our hypothesis is that variations of genes participating in DNA damage repair and response pathways play significant roles in an individual's risk of developing tobacco-related cancers. To test this hypothesis, 61 human B-lymphocyte cell lines from the International HapMap project were phenotyped for their sensitivity to the cytotoxic and genotoxic properties of a model methylating agent, N-nitroso-N-methylurethane (NMUr). Cell viability was measured using a luciferase-based assay. Repair of the mutagenic and toxic DNA adduct, O6-methylguanine (O6-mG), was monitored by LC-MS/MS analysis. Genotoxic potential of NMUr was assessed employing a flow-cytometry based in vitro mutagenesis assay in the phosphatidylinositol-glycan biosynthesis class-A (PIG-A) gene. A wide distribution of responses to NMUr was observed with no correlation to gender or ethnicity. While the rate of O6-mG repair partially influenced the toxicity of NMUr, it did not appear to be the major factor affecting individual susceptibility to the mutagenic effects of NMUr. Genome-wide analysis identified several novel single nucleotide polymorphisms to be explored in future functional validation studies for a number of the toxicological end points.
Collapse
|
7
|
Li Y, Xiao X, Bossé Y, Gorlova O, Gorlov I, Han Y, Byun J, Leighl N, Johansen JS, Barnett M, Chen C, Goodman G, Cox A, Taylor F, Woll P, Wichmann HE, Manz J, Muley T, Risch A, Rosenberger A, Han J, Siminovitch K, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Houlston R, Artigas MS, Grankvist K, Johansson M, Shepherd FA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Liu G, Bojesen SE, Wu X, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Bertazzi PA, Pesatori AC, Christiani DC, Caporaso N, Johansson M, McKay JD, Brennan P, Hung RJ, Amos CI. Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget 2019; 10:1760-1774. [PMID: 30956756 PMCID: PMC6442994 DOI: 10.18632/oncotarget.26678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in RGL1:RAD51B (OR=0.44, p value=3.27x10-11 in overall lung cancer and OR=0.41, p value=9.71x10-11 in non-small cell lung cancer), SYNE1:RNF43 (OR=0.73, p value=1.01x10-12 in adenocarcinoma) and FHIT:TSPAN8 (OR=1.82, p value=7.62x10-11 in squamous cell carcinoma) in our analysis. None of these genes have been identified from previous main effect association studies in lung cancer. Further eQTL gene expression analysis in lung tissues provided information supporting the functional role of the identified epistasis in lung tumorigenesis. Gene set enrichment analysis revealed potential pathways and gene networks underlying molecular mechanisms in overall lung cancer as well as histology subtypes development. Our results provide evidence that genetic interactions between oncogenesis-related genes play an important role in lung tumorigenesis and epistasis analysis, combined with functional annotation, provides a valuable tool for uncovering functional novel susceptibility genes that contribute to lung cancer development by interacting with other modifier genes.
Collapse
Affiliation(s)
- Yafang Li
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Olga Gorlova
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| | - Ivan Gorlov
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| | | | | | - Natasha Leighl
- University Health Network, The Princess Margaret Cancer Centre, Toronto, CA, USA
| | - Jakob S. Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matt Barnett
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Fiona Taylor
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Penella Woll
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - H. Erich Wichmann
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith Manz
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Angela Risch
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Center for Lung Research (DKFZ), Heidelberg, Germany
- University of Salzburg and Cancer Cluster, Salzburg, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Jiali Han
- Indiana University, Bloomington, IN, USA
| | | | | | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ciprian Bolca
- Institute of Pneumology “Marius Nasta”, Bucharest, Romania
| | - Ivana Holcatova
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimir Janout
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Milica Kontic
- Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jolanta Lissowska
- M. Sklodowska-Curie Cancer Center, Institute of Oncology, Warsaw, Poland
| | - Anush Mukeria
- Department of Epidemiology and Prevention, N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | - Tadeusz M. Orlowski
- Department of Surgery, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
| | - David Zaridze
- Department of Epidemiology and Prevention, N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vidar Skaug
- National Institute of Occupational Health, Oslo, Norway
| | | | - Eric J. Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | | | | | - María Soler Artigas
- Department of Health Sciences, Genetic Epidemiology Group, University of Leicester, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | - Michael W. Marcus
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Jonas Manjer
- Faculty of Medicine, Lund University, Lund, Sweden
| | | | - David C. Muller
- School of Public Health, St. Mary’s Campus, Imperial College London, London, UK
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Rosario Tumino
- Molecular and Nutritional Epidemiology Unit CSPO (Cancer Research and Prevention Centre), Scientific Institute of Tuscany, Florence, Italy
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William S. Bush
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Adonina Tardon
- IUOPA, University of Oviedo and CIBERESP, Faculty of Medicine, Campus del Cristo s/n, Oviedo, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - M. Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - John K. Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Aage Haugen
- National Institute of Occupational Health, Oslo, Norway
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, Canada
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Pier Alberto Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - David C. Christiani
- Department of Epidemiology, Program in Molecular and Genetic Epidemiology Harvard School of Public Health, Boston, MA, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - James D. McKay
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Paul Brennan
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Rayjean J. Hung
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | |
Collapse
|
8
|
Ryan BM. Lung cancer health disparities. Carcinogenesis 2019; 39:741-751. [PMID: 29547922 DOI: 10.1093/carcin/bgy047] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Compared with all other racial and ethnic groups in the United States, African Americans are disproportionally affected by lung cancer, both in terms of incidence and survival. It is likely that smoking, as the main etiological factor associated with lung cancer, contributes to these disparities, but the precise mechanism is still unclear. This paper seeks to explore the history of lung cancer disparities and review to the literature regarding the various factors that contribute to them.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Walworth K, Bodas M, Campbell RJ, Swanson D, Sharma A, Vij N. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression. PLoS One 2016; 11:e0158507. [PMID: 27434122 PMCID: PMC4951140 DOI: 10.1371/journal.pone.0158507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover, we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001) inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery.
Collapse
Affiliation(s)
- Kyla Walworth
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ryan John Campbell
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Doug Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: ;
| |
Collapse
|
10
|
Han J, Shi X, Zhang Y, Xu Y, Jiang Y, Zhang C, Feng L, Yang H, Shang D, Sun Z, Su F, Li C, Li X. ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis. Sci Rep 2015; 5:13044. [PMID: 26267116 PMCID: PMC4533315 DOI: 10.1038/srep13044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther).
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Harbin, 150081, PR China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
11
|
Hu JL, Hu SS, Hou XX, Zhu X, Cao J, Jiang LH, Ge MH. Abnormal Expression of DNA Double-Strand Breaks Related Genes, ATM and GammaH2AX, in Thyroid Carcinoma. Int J Endocrinol 2015; 2015:136810. [PMID: 25861265 PMCID: PMC4378699 DOI: 10.1155/2015/136810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
ATM and γH2AX play a vital role in the detection of DNA double-strand breaks (DSB) and DNA damage response (DDR). This study aims to investigate ATM and γH2AX expression in thyroid cancer and discuss possible relationship between thyroid function tests and DNA damage. The expression of ATM and γH2AX was detected by immunohistochemistry in 30 cases of benign nodular goiter, 110 cases of well differentiated thyroid cancer, 22 cases of poorly differentiated thyroid cancer, and 21 cases of anaplastic thyroid cancer. Clinicopathological features, including differentiation stages, distant metastasis, lymph node metastasis, T classification, TNM stage, and tests of thyroid functions (TPOAb, Tg Ab, T3, FT3, T4, FT4, TSH, and Tg), were reviewed and their associations with γH2AX and ATM were analyzed. γH2AX and ATM expressed higher in thyroid cancer tissues than in benign nodular goiter and normal adjacent tissues. γH2AX was correlated with ATM in thyroid cancer. Both γH2AX and ATM expression were associated with FT3. γH2AX was also associated with T classification, TNM stage, FT4, TSH, and differentiation status. Therefore both of ATM and γH2AX seem to correlate with thyroid hormones and γH2AX plays a role in the differentiation status of thyroid cancer.
Collapse
Affiliation(s)
- Jin-lin Hu
- Department of Pathology, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Si-si Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiu-xiu Hou
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Jun Cao
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Lie-hao Jiang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Ming-hua Ge
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
- *Ming-hua Ge:
| |
Collapse
|
12
|
Gu Y, Yu Y, Ai L, Shi J, Liu X, Sun H, Liu Y. Association of the ATM gene polymorphisms with papillary thyroid cancer. Endocrine 2014; 45:454-61. [PMID: 23925578 DOI: 10.1007/s12020-013-0020-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, yet few genetic markers of PTC risk useful for screening exist. Our study aimed to evaluate the association between single nucleotide polymorphisms (SNPs) of the ataxia telangiectasia mutated (ATM) gene and PTC risk. 358 patients with PTC and 360 healthy controls were included in the case-control study. Four ATM SNPs (rs664677, rs373759, rs4988099, and rs189037) were genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The analysis of genetic data was performed using the SNPStats program. The allele frequencies and genotype distributions of the four ATM SNPs were not different between PTC patients and controls. We did not observe any tendency of increasing the frequency of the risk allele from controls, patients without metastasis to patients with metastasis (P(trend) > 0.05). Interestingly, the AG genotype of rs373759 was associated with PTC risk under an overdominant model of inheritance (adjusted OR = 1.38; 95 % CI, 1.03-1.87; P = 0.03). No haplotype was observed to be significantly associated with PTC risk. Our results suggest that heterozygosity for the ATM rs373759 polymorphism may be a potential risk factor for PTC.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene 2013; 33:3688-95. [PMID: 23975433 PMCID: PMC3936004 DOI: 10.1038/onc.2013.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Defective DNA replication can result in genomic instability, cancer, and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model which, by virtue of an amino acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ATM double strand break response pathway (Atm, p21/Cdkn1a, Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. ATM deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development.
Collapse
|
14
|
Torres SM, Luo L, Lilyquist J, Stidley CA, Flores K, White KAM, Erdei E, Gonzales M, Paine S, Vogel RI, Lazovich D, Berwick M. DNA repair variants, indoor tanning, and risk of melanoma. Pigment Cell Melanoma Res 2013; 26:677-84. [PMID: 23659246 DOI: 10.1111/pcmr.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Although ultraviolet radiation (UV) exposure from indoor tanning has been linked to an increased risk of melanoma, the role of DNA repair genes in this process is unknown. We evaluated the association of 92 single nucleotide polymorphisms (SNPs) in 20 DNA repair genes with the risk of melanoma and indoor tanning among 929 patients with melanoma and 817 controls from the Minnesota Skin Health Study. Significant associations with melanoma risk were identified for SNPs in ERCC4, ERCC6, RFC1, XPC, MGMT, and FBRSL1 genes; with a cutoff of P < 0.05. ERCC6 and FBRSL1 gene variants and haplotypes interacted with indoor tanning. However, none of the 92 SNPs tested met the correction criteria for multiple comparisons. This study, based on an a priori interest in investigating the role of DNA repair capacity using variants in base excision and nucleotide excision repair, identified several genes that may play a role in resolving UV-induced DNA damage.
Collapse
Affiliation(s)
- Salina M Torres
- Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marshall AL, Christiani DC. Genetic susceptibility to lung cancer--light at the end of the tunnel? Carcinogenesis 2013; 34:487-502. [PMID: 23349013 PMCID: PMC3581605 DOI: 10.1093/carcin/bgt016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is one of the most common and deadliest cancers in the world. The major socio-environmental risk factor involved in the development of lung cancer is cigarette smoking. Additionally, there are multiple genetic factors, which may also play a role in lung cancer risk. Early work focused on the presence of relatively prevalent but low-penetrance alterations in candidate genes leading to increased risk of lung cancer. Development of new technologies such as genomic profiling and genome-wide association studies has been helpful in the detection of new genetic variants likely involved in lung cancer risk. In this review, we discuss the role of multiple genetic variants and review their putative role in the risk of lung cancer. Identifying genetic biomarkers and patterns of genetic risk may be useful in the earlier detection and treatment of lung cancer patients.
Collapse
Affiliation(s)
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
16
|
Xu L, Morari EC, Wei Q, Sturgis EM, Ward LS. Functional variations in the ATM gene and susceptibility to differentiated thyroid carcinoma. J Clin Endocrinol Metab 2012; 97:1913-21. [PMID: 22438227 PMCID: PMC3387410 DOI: 10.1210/jc.2011-3299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT ATM is critical in response to ionizing radiation-induced DNA damage. OBJECTIVE Variations in ATM are hypothesized to affect individual susceptibility to thyroid cancer. Our objective was to evaluate the association between ATM polymorphisms and thyroid cancer risk. DESIGN, PARTICIPANTS, AND METHODS Six ATM single nucleotide polymorphisms (SNP) were genotyped in two independent case-control series including 592 patients with differentiated thyroid carcinoma (DTC) and 885 healthy individuals. An unconditional logistic regression model was applied to calculate odds ratios (OR) and 95% confidence intervals (CI) for each SNP with respect to risk of DTC and the combination effect of SNP on cancer risk. RESULTS The risk-allele frequencies of all the SNP were similar in the two case-control populations. Under a dominant model of inheritance, the G allele of ATM rs189037 exhibited a protective effect against DTC (adjusted OR = 0.8; 95% CI, 0.6-1.0; P = 0.04), and the G allele of rs1800057 was associated with increased risk of DTC (adjusted OR = 1.9; 95% CI, 1.1-3.1; P = 0.02). A protective haplotype (A-G-C-T-C-A) was associated with decreased risk of DTC in non-Hispanic whites (adjusted OR = 0.2; 95% CI, 0.0-0.8; P = 0.03). A significant dose-response relationship was observed between the total number of risk alleles of ATM and DTC risk (P = 0.01). Carriers of a combination of six to seven and eight to 10 risk alleles were at 30% (adjusted OR = 1.3; 95% CI, 1.0-1.7) and 50% (adjusted OR = 1.5; 95% CI, 1.1-2.1) increased risk of DTC, respectively. CONCLUSION Individual susceptibility to DTC may be attributable to polymorphisms of ATM, and the associations warrant confirmation in independent studies.
Collapse
Affiliation(s)
- Li Xu
- Departments of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, Purdy JA, Applegate K, Yahalom J, Constine LS, Gilbert ES, Boice JD. Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 2012; 104:357-70. [PMID: 22312134 PMCID: PMC3295744 DOI: 10.1093/jnci/djr533] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/29/2022] Open
Abstract
Second malignant neoplasms (SMNs) and cardiovascular disease (CVD) are among the most serious and life-threatening late adverse effects experienced by the growing number of cancer survivors worldwide and are due in part to radiotherapy. The National Council on Radiation Protection and Measurements (NCRP) convened an expert scientific committee to critically and comprehensively review associations between radiotherapy and SMNs and CVD, taking into account radiobiology; genomics; treatment (ie, radiotherapy with or without chemotherapy and other therapies); type of radiation; and quantitative considerations (ie, dose-response relationships). Major conclusions of the NCRP include: 1) the relevance of older technologies for current risk assessment when organ-specific absorbed dose and the appropriate relative biological effectiveness are taken into account and 2) the identification of critical research needs with regard to newer radiation modalities, dose-response relationships, and genetic susceptibility. Recommendation for research priorities and infrastructural requirements include 1) long-term large-scale follow-up of extant cancer survivors and prospectively treated patients to characterize risks of SMNs and CVD in terms of radiation dose and type; 2) biological sample collection to integrate epidemiological studies with molecular and genetic evaluations; 3) investigation of interactions between radiotherapy and other potential confounding factors, such as age, sex, race, tobacco and alcohol use, dietary intake, energy balance, and other cofactors, as well as genetic susceptibility; 4) focusing on adolescent and young adult cancer survivors, given the sparse research in this population; and 5) construction of comprehensive risk prediction models for SMNs and CVD to permit the development of follow-up guidelines and prevention and intervention strategies.
Collapse
MESH Headings
- Adult
- Age of Onset
- Arrhythmias, Cardiac/epidemiology
- Arrhythmias, Cardiac/etiology
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/prevention & control
- Child
- Confounding Factors, Epidemiologic
- Dose-Response Relationship, Radiation
- Female
- Genetic Predisposition to Disease
- Heart Block/epidemiology
- Heart Block/etiology
- Humans
- Incidence
- Male
- Myocardial Infarction/epidemiology
- Myocardial Infarction/etiology
- Neoplasms/radiotherapy
- Neoplasms, Radiation-Induced/epidemiology
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/prevention & control
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/prevention & control
- Polymorphism, Genetic
- Radiotherapy/adverse effects
- Radiotherapy/methods
- Radiotherapy Dosage
- Radiotherapy, Adjuvant/adverse effects
- Radiotherapy, Conformal/adverse effects
- Radiotherapy, Conformal/methods
- Radiotherapy, Intensity-Modulated
- Risk Assessment
- Risk Factors
- SEER Program
- Stroke/epidemiology
- Stroke/etiology
- Survivors/statistics & numerical data
- United States/epidemiology
Collapse
Affiliation(s)
- Lois B Travis
- Rubin Center for Cancer Survivorship and Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester Medical Center, 265 Crittenden Blvd, CU 420318, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kotnis A, Namkung J, Kannan S, Jayakrupakar N, Park T, Sarin R, Mulherkar R. Multiple pathway-based genetic variations associated with tobacco related multiple primary neoplasms. PLoS One 2012; 7:e30013. [PMID: 22253860 PMCID: PMC3256192 DOI: 10.1371/journal.pone.0030013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 12/11/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In order to elucidate a combination of genetic alterations that drive tobacco carcinogenesis we have explored a unique model system and analytical method for an unbiased qualitative and quantitative assessment of gene-gene and gene-environment interactions. The objective of this case control study was to assess genetic predisposition in a biologically enriched clinical model system of tobacco related cancers (TRC), occurring as Multiple Primary Neoplasms (MPN). METHODS Genotyping of 21 candidate Single Nucleotide Polymorphisms (SNP) from major metabolic pathways was performed in a cohort of 151 MPN cases and 210 cancer-free controls. Statistical analysis using logistic regression and Multifactor Dimensionality Reduction (MDR) analysis was performed for studying higher order interactions among various SNPs and tobacco habit. RESULTS Increased risk association was observed for patients with at least one TRC in the upper aero digestive tract (UADT) for variations in SULT1A1 Arg²¹³His, mEH Tyr¹¹³His, hOGG1 Ser³²⁶Cys, XRCC1 Arg²⁸⁰His and BRCA2 Asn³⁷²His. Gene-environment interactions were assessed using MDR analysis. The overall best model by MDR was tobacco habit/p53(Arg/Arg)/XRCC1(Arg³⁹⁹His)/mEH(Tyr¹¹³His) that had highest Cross Validation Consistency (8.3) and test accuracy (0.69). This model also showed significant association using logistic regression analysis. CONCLUSION This is the first Indian study on a multipathway based approach to study genetic susceptibility to cancer in tobacco associated MPN. This approach could assist in planning additional studies for comprehensive understanding of tobacco carcinogenesis.
Collapse
Affiliation(s)
- Ashwin Kotnis
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Junghyun Namkung
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sadhana Kannan
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Nallala Jayakrupakar
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Taesung Park
- Department of Statistics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Rajiv Sarin
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Rita Mulherkar
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
19
|
Ma L, Huang Y, Zhu W, Zhou S, Zhou J, Zeng F, Liu X, Zhang Y, Yu J. An integrated analysis of miRNA and mRNA expressions in non-small cell lung cancers. PLoS One 2011; 6:e26502. [PMID: 22046296 PMCID: PMC3203153 DOI: 10.1371/journal.pone.0026502] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression.
Collapse
Affiliation(s)
- Lina Ma
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Yanyan Huang
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Wangyu Zhu
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Shiquan Zhou
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Jihang Zhou
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Fang Zeng
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
| | - Xiaoguang Liu
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
- * E-mail: (XL); (YZ); (JY)
| | - Yongkui Zhang
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
- * E-mail: (XL); (YZ); (JY)
| | - Jun Yu
- Joint Laboratory of Immunogenomics, Zhoushan Hospital-BIGCAS, Zhejiang, People's Republic of China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (XL); (YZ); (JY)
| |
Collapse
|