1
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Wang L, Wu L, Zhu Z, Zhang Q, Li W, Gonzalez GM, Wang Y, Rana TM. Role of PCIF1-mediated 5'-cap N6-methyladeonsine mRNA methylation in colorectal cancer and anti-PD-1 immunotherapy. EMBO J 2023; 42:e111673. [PMID: 36514940 PMCID: PMC9841328 DOI: 10.15252/embj.2022111673] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
Adenosine N6-methylation (m6A) and N6,2'-O-dimethylation (m6Am) are regulatory modifications of eukaryotic mRNAs. m6Am formation is catalyzed by the methyl transferase phosphorylated CTD-interacting factor 1 (PCIF1); however, the pathophysiological functions of this RNA modification and PCIF1 in cancers are unclear. Here, we show that PCIF1 expression is upregulated in colorectal cancer (CRC) and negatively correlates with patient survival. CRISPR/Cas9-mediated depletion of PCIF1 in human CRC cells leads to loss of cell migration, invasion, and colony formation in vitro and loss of tumor growth in athymic mice. Pcif1 knockout in murine CRC cells inhibits tumor growth in immunocompetent mice and enhances the effects of anti-PD-1 antibody treatment by decreasing intratumoral TGF-β levels and increasing intratumoral IFN-γ, TNF-α levels, and tumor-infiltrating natural killer cells. We further show that PCIF1 modulates CRC growth and response to anti-PD-1 in a context-dependent mechanism with PCIF1 directly targeting FOS, IFITM3, and STAT1 via m6Am modifications. PCIF1 stabilizes FOS mRNA, which in turn leads to FOS-dependent TGF-β regulation and tumor growth. While during immunotherapy, Pcif1-Fos-TGF-β, as well as Pcif1-Stat1/Ifitm3-IFN-γ axes, contributes to the resistance of anti-PD-1 therapy. Collectively, our findings reveal a role of PCIF1 in promoting CRC tumorigenesis and resistance to anti-PD-1 therapy, supporting that the combination of PCIF1 inhibition with anti-PD-1 treatment is a potential therapeutic strategy to enhance CRC response to immunotherapy. Finally, we developed a lipid nanoparticles (LNPs) and chemically modified small interfering RNAs (CMsiRNAs)-based strategy to silence PCIF1 in vivo and found that this treatment significantly reduced tumor growth in mice. Our results therefore provide a proof-of-concept for tumor growth suppression using LNP-CMsiRNA to silence target genes in cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Lujing Wu
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhouting Zhu
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Gwendolyn Michelle Gonzalez
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.,San Diego Center for Precision Immunotherapy, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Liu Z, Xu Y, Liu X, Wang B. PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 2022; 100:445-457. [PMID: 35926236 DOI: 10.1139/bcb-2021-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yuyang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
4
|
Jee H, Park E, Hur K, Kang M, Kim Y. High-Intensity Aerobic Exercise Suppresses Cancer Growth by Regulating Skeletal Muscle-Derived Oncogenes and Tumor Suppressors. Front Mol Biosci 2022; 9:818470. [PMID: 35801156 PMCID: PMC9254717 DOI: 10.3389/fmolb.2022.818470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
High-intensity aerobic exercise (90% of the maximal heart rate) can effectively suppress cancer cell proliferation in vivo. However, the molecular effects of exercise and its relevance to cancer prevention remain uninvestigated. In this study, mice with colorectal cancer were subjected to high-intensity aerobic exercise, and mRNA-seq analysis was performed on the heart, lungs, and skeletal muscle tissues to analyze the genome-wide molecular effects of exercise. The skeletal muscle-derived genes with exercise-dependent differential expression were further evaluated for their effects on colorectal cancer cell viability. Compared to the results obtained for the control groups (healthy and cancer with no exercise), the regular and high-intensity aerobic physical activity in the mice produced positive results in comprehensive parameters (i.e., food intake, weight gain, and survival rate). A heatmap of differentially expressed genes revealed markedly different gene expression patterns among the groups. RNA-seq analysis of 23,282 genes expressed in the skeletal muscle yielded several anticancer effector genes (e.g., Trim63, Fos, Col1a1, and Six2). Knockdown and overexpression of selected anticancer genes repressed CT26 murine colorectal carcinoma cell proliferation by 20% (p < 0.05). Our findings, based on the aerobic exercise cancer mouse model, suggest that high-intensity aerobic exercise results in a comprehensive change in the expression patterns of genes, particularly those that can affect cancer cell viability. Such an approach may identify key exercise-regulated genes that can help the body combat cancer.
Collapse
Affiliation(s)
- Hyunseok Jee
- School of Kinesiology, Yeungnam University, Gyeongsan, South Korea
- College of Life Science and Nano Technology, Hannam University, Daejeon, South Korea
| | - Eunmi Park
- College of Life Science and Nano Technology, Hannam University, Daejeon, South Korea
| | - Kyunghoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Minjeong Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, South Korea
| |
Collapse
|
5
|
Joshi P, Basso B, Wang H, Hong SH, Giardina C, Shin DG. rPAC: Route based pathway analysis for cohorts of gene expression data sets. Methods 2022; 198:76-87. [PMID: 34628030 PMCID: PMC8792230 DOI: 10.1016/j.ymeth.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 02/03/2023] Open
Abstract
Pathway analysis is a popular method aiming to derive biological interpretation from high-throughput gene expression studies. However, existing methods focus mostly on identifying which pathway or pathways could have been perturbed, given differential gene expression patterns. In this paper, we present a novel pathway analysis framework, namely rPAC, which decomposes each signaling pathway route into two parts, the upstream portion of a transcription factor (TF) block and the downstream portion from the TF block and generates a pathway route perturbation analysis scheme examining disturbance scores assigned to both parts together. This rPAC scoring is further applied to a cohort of gene expression data sets which produces two summary metrics, "Proportion of Significance" (PS) and "Average Route Score" (ARS), as quantitative measures discerning perturbed pathway routes within and/or between cohorts. To demonstrate rPAC's scoring competency, we first used a large amount of simulated data and compared the method's performance against those by conventional methods in terms of power curve. Next, we performed a case study involving three epithelial cancer data sets from The Cancer Genome Atlas (TCGA). The rPAC method revealed specific pathway routes as potential cancer type signatures. A deeper pathway analysis of sub-groups (i.e., age groups in COAD or cancer sub-types in BRCA) resulted in pathway routes that are known to be associated with the sub-groups. In addition, multiple previously uncharacterized pathways routes were identified, potentially suggesting that rPAC is better in deciphering etiology of a disease than conventional methods particularly in isolating routes and sections of perturbed pathways in a finer granularity.
Collapse
Affiliation(s)
- Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.
| | - Brent Basso
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT, USA
| | - Honglin Wang
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Charles Giardina
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2020; 40:1555-1569. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, however, the molecular mechanisms underlying the pathogenesis of CRC remain largely unclear. Recent studies have revealed crucial roles of transcription factors in CRC development. Transcription factors essential for the regulation of gene expression by interacting with transcription corepressor/enhancer complexes and they orchestrate downstream signal transduction. Deregulation of transcription factors is a frequent occurrence in CRC, and the accompanying drastic changes in gene expression profiles play fundamental roles in multistep process of tumorigenesis, from cellular transformation, disease progression to metastatic disease. Herein, we summarized current and emerging key transcription factors that participate in CRC tumorigenesis, and highlighted their oncogenic or tumor suppressive functions. Moreover, we presented critical transcription factors of CRC, emphasized the major molecular mechanisms underlying their effect on signal cascades associated with tumorigenesis, and summarized of their potential as molecular biomarkers for CRC prognosis therapeutic response, as well as drug targets for CRC treatment. A better understanding of transcription factors involved in the development of CRC will provide new insights into the pathological mechanisms and reveal novel prognostic biomarkers and therapeutic strategies for CRC.
Collapse
|
7
|
Wen W, Chen H, Fu K, Wei J, Qin L, Pan T, Xu S. Fructus Viticis methanolic extract attenuates trigeminal hyperalgesia in migraine by regulating injury signal transmission. Exp Ther Med 2019; 19:85-94. [PMID: 31853276 PMCID: PMC6909769 DOI: 10.3892/etm.2019.8201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
Migraine, characterized by hyperalgesia of the trigeminovascular system, is a severe condition that leads to severe reductions in the quality of life. Upon external stimulation, the levels of various neurotransmitters, including aspartic acid (Asp), glutamic acid (Glu), γ-amino butyric acid (GABA), norepinephrine (NE) and 5-hydroxytryptamine (5-HT), are significantly altered; this directly or indirectly promotes trigeminal hypersensitivity. Fructus Viticis is a Traditional Chinese Medicine with analgesic properties to provide efficient relief of migraine. In the present study, the underlying mechanisms of the analgesic effect of Fructus Viticis methanolic extract were assessed in rats with nitroglycerin-induced migraine. The plasma levels of the neurotransmitters calcitonin gene-related peptide (CGRP) and substance P (SP), as well as the amount of c-fos immunoreactive cells (c-fos IR cells) in the brain, were detected. The analgesic effect was obvious, as Fructus Viticis methanolic extract ameliorated migraine-like behaviours in nitroglycerin-induced rats. The levels of 5-HT, GABA and NE in the brain of migraine model rats was lower compared with that of control rats, whereas opposite observations were made in the contents of excitatory amino acids. Pre-treatment with Fructus Viticis methanolic extract elevated the levels of 5-HT, GABA and NE, and also lowered the levels of excitatory amino acids, including Glu and Asp. In addition, treatment with Fructus Viticis methanolic extract lowered the plasma levels of CGRP and SP and decreased the c-fos IR cells in the brainstem. The present study provided a further scientific basis for the anti-migraine effects of Fructus Viticis.
Collapse
Affiliation(s)
- Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Huan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Kun Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Department of Pharmacy, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, P.R. China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Lixia Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Ting Pan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
8
|
miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget 2018; 7:61312-61324. [PMID: 27494869 PMCID: PMC5308653 DOI: 10.18632/oncotarget.11016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3′-UTRs of SFRP2 and SIAH1, and activated Wnt/β-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.
Collapse
|
9
|
Liu ZG, Jiang G, Tang J, Wang H, Feng G, Chen F, Tu Z, Liu G, Zhao Y, Peng MJ, He ZW, Chen XY, Lindsay H, Xia YF, Li XN. c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget 2018; 7:65946-65956. [PMID: 27602752 PMCID: PMC5323205 DOI: 10.18632/oncotarget.11779] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
c-Fos is a major component of activator protein (AP)-1 complex. It has been implicated in cell differentiation, proliferation, angiogenesis, invasion, and metastasis. To investigate the role of c-Fos in glioma radiosensitivity and to understand the underlying molecular mechanisms, we downregulated c-Fos gene expression by lentivirus-mediated shRNA in glioma cell lines and subsequently analyzed the radiosensitivity, DNA damage repair capacity, and cell cycle distribution. Finally, we explored its prognostic value in 41 malignant glioma patients by immunohistochemistry. Our results showed that silencing c-Fos sensitized glioma cells to radiation by increasing radiation-induced DNA double strand breaks (DSBs), disturbing the DNA damage repair process, promoting G2/M cell cycle arrest, and enhancing apoptosis. c-Fos protein overexpression correlated with poor prognosis in malignant glioma patients treated with standard therapy. Our findings provide new insights into the mechanism of radioresistance in malignant glioma and identify c-Fos as a potentially novel therapeutic target for malignant glioma patients.
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Guanmin Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Jiao Tang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Guokai Feng
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Furong Chen
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ziwei Tu
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Guiyun Liu
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Ming-Jing Peng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Zheng-Wen He
- Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Xiao-Yan Chen
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston TX, 77030, USA
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston TX, 77030, USA
| |
Collapse
|
10
|
Nakatani Y, Miyazaki Y, Hara S. Cytosolic Prostaglandin E Synthase Is Involved in c-Fos Expression in Rat Fibroblastic 3Y1 Cells. Biol Pharm Bull 2017; 40:1963-1967. [PMID: 29093345 DOI: 10.1248/bpb.b17-00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic prostaglandin (PG) E synthase (cPGES/p23) plays a role in the biosynthesis of PGE2 and in the molecular chaperone machinery. Studies of knockout mice lacking cPGES/p23 have demonstrated that cPGES/p23 is essential in fetal mouse development. A cDNA microarray analysis revealed that a lack of cPGES/p23 decreases the expression of some immediate early genes, such as c-fos and activating transcription factor 3 (ATF3). Here we report the involvement of cPGES/p23 in c-Fos expression. A stable knockdown of cPGES/p23 in cultured fibroblasts not only reduced serum-induced c-Fos expression, but also decreased the phosphorylation of extracellular signal regulated kinase (ERK). These results suggest that cPGES/p23 is involved in the activation of ERK to promote c-Fos expression.
Collapse
Affiliation(s)
- Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuki Miyazaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
11
|
Xu JX, Xiong W, Zeng Z, Tang Y, Wang YL, Xiao M, Li M, Li QS, Song GL, Kuang J. Effect of ART1 on the proliferation and migration of mouse colon carcinoma CT26 cells in vivo. Mol Med Rep 2017; 15:1222-1228. [PMID: 28138708 PMCID: PMC5367323 DOI: 10.3892/mmr.2017.6152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Arginine-specific mono-ADP-ribosyltransferase 1 (ART1) is an important enzyme that catalyzes arginine-specific mono-ADP-ribosylation. There is evidence that arginine-specific mono-ADP-ribosylation may affect the proliferation of smooth muscle cells via the Rho-dependent signaling pathway. Previous studies have demonstrated that ART1 may have a role in the proliferation, invasion and apoptosis of colon carcinoma in vitro. However, the effect of ART1 on the proliferation and invasion of colon carcinoma in vivo has yet to be elucidated. In the present study, mouse colon carcinoma CT26 cells were infected with a lentivirus to produce ART1 gene silencing or overexpression, and were then subcutaneously transplanted. To observe the effect of ART1 on tumor growth or liver metastasis in vivo, a spleen transplant tumor model of CT26 cells in BALB/c mice was successfully constructed. Expression levels of focal adhesion kinase (FAK), Ras homolog gene family member A (RhoA) and the downstream factors, c-myc, c-fos and cyclooxygenase-2 (COX-2) proteins, were measured in vivo. The results demonstrated that ART1 gene silencing inhibited the growth of the spleen transplanted tumor and its ability to spread to the liver via metastasis. There was also an accompanying increase in expression of FAK, RhoA, c-myc, c-fos and COX-2, whereas CT26 cells with ART1 overexpression demonstrated the opposite effect. These results suggest a potential role for ART1 in the proliferation and invasion of CT26 cells and a possible mechanism in vivo.
Collapse
Affiliation(s)
- Jian-Xia Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xiong
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Zeng
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang-Lin Song
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Kuang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Djouina M, Esquerre N, Desreumaux P, Vignal C, Body-Malapel M. Toxicological consequences of experimental exposure to aluminum in human intestinal epithelial cells. Food Chem Toxicol 2016; 91:108-16. [DOI: 10.1016/j.fct.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
|
13
|
Sheaffer KL, Elliott EN, Kaestner KH. DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prev Res (Phila) 2016; 9:534-46. [PMID: 26883721 DOI: 10.1158/1940-6207.capr-15-0349] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Intestinal cancer is a heterogeneous disease driven by genetic mutations and epigenetic changes. Approximately 80% of sporadic colorectal cancers are initiated by mutation and inactivation of the adenomatous polyposis coli (APC) gene, which results in unrestrained intestinal epithelial growth and formation of adenomas. Aberrant DNA methylation promotes cancer progression by the inactivation of tumor suppressor genes via promoter methylation. In addition, global DNA hypomethylation is often seen before the formation of adenomas, suggesting that it contributes to neoplastic transformation. Previous studies employed mice with a hypomorphic mutation in DNA methyltransferase 1 (Dnmt1), which exhibited constitutive global DNA hypomethylation and decreased tumorigenesis in the Apc(Min/+) mouse model of intestinal cancer. However, the consequences of intestinal epithelial-specific acute hypomethylation during Apc(Min/+) tumor initiation have not been reported. Using temporally controlled intestinal epithelial-specific gene ablation, we show that total loss of Dnmt1 in the Apc(Min/+) mouse model of intestinal cancer causes accelerated adenoma initiation. Deletion of Dnmt1 precipitates an acute response characterized by hypomethylation of repetitive elements and genomic instability, which surprisingly is followed by remethylation with time. Two months post-Dnmt1 ablation, mice display increased macroadenoma load, consistent with a role for Dnmt1 and DNA methylation in maintaining genomic stability. These data suggest that DNA hypomethylation plays a previously unappreciated role in intestinal adenoma initiation. Cancer Prev Res; 9(7); 534-46. ©2016 AACRSee related article by Lee and Laird, p. 509.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen N Elliott
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Reduction of CRKL expression in patients with partial DiGeorge syndrome is associated with impairment of T-cell functions. J Allergy Clin Immunol 2016; 138:229-240.e3. [PMID: 26875746 DOI: 10.1016/j.jaci.2015.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 10/07/2015] [Accepted: 10/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Partial DiGeorge syndrome (pDGS) is caused by deletion of the 22q11.2 region. Within this region lies CrK-like (CRKL), a gene encoding an adapter protein belonging to the Crk family that is involved in the signaling cascade of IL-2, stromal cell-derived factor 1α, and type I interferon. Although recurrent infections can be observed in patients with deletion of chromosome 22 syndrome, the immune pathogenesis of this condition is yet not fully understood. OBJECTIVE We aimed to investigate the role of CRKL in T-cell functional responses in patients affected with pDGS. METHODS Protein expression levels and phosphorylation of CRKL were evaluated in patients with pDGS. T-cell functional assays in vitro and gene-silencing experiments were also performed. RESULTS CRKL protein expression, as well as its phosphorylation, were reduced in all patients with pDGS, especially on IL-2 stimulation. Moreover, T cells presented impaired proliferation and reduced IL-2 production on anti-CD3/CD28 stimulation and decreased c-Fos expression. Finally, CRKL silencing in Jurkat T cells resulted in impaired T-cell proliferation and reduced c-Fos expression. CONCLUSIONS The impaired T-cell proliferation and reduction of CRKL, phosphorylated CRKL, and c-Fos levels suggest a possible role of CRKL in functional deficiencies of T cells in patients with pDGS.
Collapse
|
15
|
Song Y, Peng X, Wang M, Xie J, Tan G. Gene expression profiling of taxol-resistant nasopharyngeal carcinoma cells with siRNA-mediated FOLR1 downregulation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11314-11322. [PMID: 26617855 PMCID: PMC4637671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Our previous study has shown that downregulation of FOLR1 by siRNA partially reversed taxol-resistant phenotype in taxol-resistant nasopharyngeal carcinoma cell lines. We aim to gain further insight into the molecular mechanisms of this process and identify the differentially expressed genes after FOLR1 downregulation. METHOD The global gene expression profile was identified and analyzed using the Affymetrix HG-U133 Plus 2.0 array. RESULTS There was a significant dysregulation in the global gene expression of the FOLR1-suppressed taxol-resistant nasopharyngeal carcinoma cell lines. There were 41 upregulated genes and 109 downregulated genes. QRT-PCR validation of the selected differentially expressed genes demonstrated there was a good correlation with the microarray analysis. There was a significant deregulation of expression in the apoptosis-related genes such as BIRC3, PRKX, TNFRSF10A and involved in Viral carcinogenesis, MAPK signaling pathways after FOLR1 was downregulated. CONCLUSION The suppression of FOLR1 by RNA interference altered gene expression profile of taxol-resistant nasopharyngeal carcinoma cell lines. The apoptosis-related genes and the gene alterations in viral carcinogenesis, MAPK signaling pathways might be important in FOLR1 siRNA-induced taxol-resistant reversal.
Collapse
Affiliation(s)
- Yexun Song
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South UniversityChangsha, Hunan, China
| | - Xiaowei Peng
- Department of Head and Neck Surgery and Oncology Plastic Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, Central South UniversityChangsha, Hunan, China
| | - Min Wang
- Department of Otolaryngology-Head Neck Surgery, The Hunan Children’s HospitalChangsha, Hunan, China
| | - Jun Xie
- Department of Otolaryngology-Head Neck Surgery, The Hunan Children’s HospitalChangsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South UniversityChangsha, Hunan, China
| |
Collapse
|
16
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
17
|
Ribeiro-Varandas E, Ressurreição F, Viegas W, Delgado M. Cytotoxicity of Eupatorium cannabinum L. ethanolic extract against colon cancer cells and interactions with Bisphenol A and Doxorubicin. Altern Ther Health Med 2014; 14:264. [PMID: 25056133 PMCID: PMC4117973 DOI: 10.1186/1472-6882-14-264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
Background Eupatorium cannabinum L. has long been utilized in traditional medicine, however no information is available regarding cellular effects of full extracts. Here we assessed the effects of E. cannabinum ethanolic extract (EcEE) on the colon cancer line HT29. Potential interactions with bisphenol A (BPA) a synthetic phenolic compound to which humans are generally exposed and a commonly used chemotherapeutic agent, doxorubicin (DOX) were also evaluated. Methods HT29 cells were exposed to different concentrations (0.5 to 50 μg/ml) of EcEE alone or in combination with BPA or DOX. Cell viability was analyzed through resazurin assay. Gene transcription levels for NCL, FOS, p21, AURKA and bcl-xl were determined through qRT-PCR. Cytological analysis included evaluation of nuclear and mitotic anomalies after DAPI staining, immunodetection of histone H3 lysine 9 acetylation (H3K9ac) and assessment of DNA damage by TUNEL assay. Results Severe loss of HT29 cell viability was detected for 50 μg/ml EcEE immediately after 24 h exposure whereas the lower concentrations assayed (0.5, 5 and 25 μg/ml) resulted in significant viability decreases after 96 h. Exposure to 25 μg/ml EcEE for 48 h resulted in irreversible cell damage leading to a drastic decrease in cell viability after 72 h recovery in EcEE-free medium. 48 h 25 μg/ml EcEE treatment also induced alteration of colony morphology, H3K9 hyperacetylation, transcriptional up regulation of p21 and down regulation of NCL, FOS and AURKA, indicating reduced proliferation capacity. This treatment also resulted in drastic mitotic and nuclear disruption accompanied by up-regulation of bcl-xl, limited TUNEL labeling and nuclear size increase, suggestive of a non-apoptocic cell death pathway. EcEE/BPA co-exposure increased mitotic anomalies particularly for the lowest EcEE concentration, although without major effects on viability. Conversely, EcEE/DOX co-exposure decreased cell viability in relation to DOX for all EcEE concentrations, without affecting the DOX-induced cell cycle arrest. Conclusions EcEE has cytotoxic activity on HT29 cancer cells leading to mitotic disruption and non-apoptotic cell death without severe induction of DNA damage. Interaction experiments showed that EcEE can increase BPA aneugenic effects and EcEE synergistic effects with DOX supporting a potential use as adjuvant in chemotherapeutic approaches.
Collapse
|
18
|
Walter I, Wolfesberger B, Miller I, Mair G, Burger S, Gallè B, Steinborn R. Human osteosarcoma cells respond to sorafenib chemotherapy by downregulation of the tumor progression factors S100A4, CXCR4 and the oncogene FOS. Oncol Rep 2013; 31:1147-56. [PMID: 24378831 DOI: 10.3892/or.2013.2954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is a rare but aggressive bone neoplasm in humans, which is commonly treated with surgery, classical chemotherapy and radiation. Sorafenib, an inhibitor of a number of kinases targeting the Raf/MEK/ERK pathway, is a promising new chemotherapeutic agent in human medicine that has been approved since 2006 for the therapy of renal cell carcinoma and since 2007 for the treatment of hepatocellular carcinoma. Here, we studied the antimetastatic potential of 4 µM of this multikinase inhibitor in a human osteosarcoma cell line. DNA microarray-based gene expression profiling detected 297 and 232 genes upregulated or downregulated at a threshold of >2-fold expression alteration (P<0.05) in the sorafenib-treated cells. Three genes (CXCR4, FOS and S100A4) that are involved in tumor progression were chosen for validation by quantitative PCR (qPCR) and protein expression analysis. The decrease in RNA expression detected by microarray profiling was confirmed by qPCR for all three genes (P<0.01). On the protein level, sorafenib-induced reduction of S100A4 was verified both by western blotting and immunohistochemistry. For CXCR4 and c-Fos, a reduced protein expression was shown by immunohistochemistry, for c-Fos also by immunoblotting. We conclude that sorafenib could serve as a potent chemotherapeutical agent by which to inhibit the metastatic progression of osteosarcomas.
Collapse
Affiliation(s)
- Ingrid Walter
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Birgitt Wolfesberger
- Clinic for Companion Animal Medicine, Unit for Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Ingrid Miller
- Institute for Medical Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Georg Mair
- VetOmics Core Facility, VetCore, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Stefanie Burger
- VetOmics Core Facility, VetCore, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Ralf Steinborn
- VetOmics Core Facility, VetCore, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
19
|
Decreased tumor progression and invasion by a novel anti-cell motility target for human colorectal carcinoma cells. PLoS One 2013; 8:e66439. [PMID: 23755307 PMCID: PMC3670870 DOI: 10.1371/journal.pone.0066439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 12/16/2022] Open
Abstract
We have previously described a novel modulator of the actin cytoskeleton that also regulates Ras and mitogen-activated protein kinase activities in TGFβ-sensitive epithelial cells. Here we examined the functional role of this signaling regulatory protein (km23-1) in mediating the migration, invasion, and tumor growth of human colorectal carcinoma (CRC) cells. We show that small interfering RNA (siRNA) depletion of km23-1 in human CRC cells inhibited constitutive extracellular signal-regulated kinase (ERK) activation, as well as pro-invasive ERK effector functions that include phosphorylation of Elk-1, constitutive regulation of c-Fos-DNA binding, TGFβ1 promoter transactivation, and TGFβ1 secretion. In addition, knockdown of km23-1 reduced the paracrine effects of CRC cell-secreted factors in conditioned medium and in fibroblast co-cultures. Moreover, km23-1 depletion in human CRC cells reduced cell migration and invasion, as well as expression of the ERK-regulated, metastasis-associated scaffold protein Ezrin. Finally, km23-1 inhibition significantly suppressed tumor formation in vivo. Thus, our results implicate km23-1 as a novel anti-metastasis target for human colon carcinoma cells, capable of decreasing tumor growth and invasion via a mechanism involving suppression of various pro-migratory features of CRC. These include a reduction in ERK signaling, diminished TGFβ1 production, decreased expression of the plasma membrane-cytoskeletal linker Ezrin, as well as attenuation of the paracrine effects of colon carcinoma-secreted factors on fibroblast migration and mitogenesis. As such, km23-1 inhibitors may represent a viable therapeutic strategy for interfering with colon cancer progression and invasion.
Collapse
|
20
|
Yamada K, Ohno T, Aoki H, Semi K, Watanabe A, Moritake H, Shiozawa S, Kunisada T, Kobayashi Y, Toguchida J, Shimizu K, Hara A, Yamada Y. EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice. J Clin Invest 2013; 123:600-10. [PMID: 23281395 DOI: 10.1172/jci63572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 11/01/2012] [Indexed: 12/17/2022] Open
Abstract
Clear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12;22) translocation that leads to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying the involvement of EWS/ATF1 in CCS development. In addition, the cellular origins of CCS have not been determined. Here, we generated EWS/ATF1-inducible mice and examined the effects of EWS/ATF1 expression in adult somatic cells. We found that forced expression of EWS/ATF1 resulted in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembled that of CCS, and EWS/ATF1-induced tumor cells expressed CCS markers, including S100, SOX10, and MITF. Lineage-tracing experiments indicated that neural crest-derived cells were subject to EWS/ATF1-driven transformation. EWS/ATF1 directly induced Fos in an ERK-independent manner. Treatment of human and EWS/ATF1-induced CCS tumor cells with FOS-targeted siRNA attenuated proliferation. These findings demonstrated that FOS mediates the growth of EWS/ATF1-associated sarcomas and suggest that FOS is a potential therapeutic target in human CCS.
Collapse
Affiliation(s)
- Kazunari Yamada
- Department of Orthopedic Surgery, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jin Q, Ding W, Mulder KM. The TGFβ receptor-interacting protein km23-1/DYNLRB1 plays an adaptor role in TGFβ1 autoinduction via its association with Ras. J Biol Chem 2012; 287:26453-63. [PMID: 22637579 DOI: 10.1074/jbc.m112.344887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously elucidated the signaling events that are required for TGFβ1 autoinduction (Yue, J., and Mulder, K. M. (2000) J. Biol. Chem. 275, 30765-30773). Further, we have reported that the TGFβ receptor (TβR)-interacting protein km23-1 plays an important role in TGFβ signal transduction (Jin, Q., Ding, W., and Mulder, K. M. (2007) J. Biol. Chem. 282, 19122-19132). Here we examined the role of km23-1 in TGFβ1 autoinduction in TGFβ-sensitive epithelial cells. siRNA blockade of km23-1 reduced TGFβ1 mRNA expression, as well as DNA binding and transcriptional activation of the relevant activator protein-1 site in the human TGFβ1 promoter. Further, knockdown of km23-1 inhibited TGFβ-mediated activation of ERK and JNK, phosphorylation of c-Jun, and transactivation of the c-Jun promoter. Sucrose gradient analyses indicate that km23-1 was present in lipid rafts together with Ras and TβRII after TGFβ treatment. Immunoprecipitation/blot analyses revealed the formation of a TGFβ-inducible complex between Ras and km23-1 in vivo within minutes of TGFβ addition. Moreover, we demonstrate for the first time that km23-1 is required for Ras activation by TGFβ. Our results indicate that km23-1 is required for TGFβ1 autoinduction through Smad2-independent Ras/ERK/JNK pathways. More importantly, our findings demonstrate that km23-1 functions as a critical adaptor coupling TβR activation to activation of Ras effector pathways downstream.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Biochemistry and Molecular Biology, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|