1
|
Zhao D, Wang L, Chen Z, Zhang L, Xu L. KRAS is a prognostic biomarker associated with diagnosis and treatment in multiple cancers. Front Genet 2022; 13:1024920. [PMID: 36330448 PMCID: PMC9624065 DOI: 10.3389/fgene.2022.1024920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
KRAS encodes K-Ras proteins, which take part in the MAPK pathway. The expression level of KRAS is high in tumor patients. Our study compared KRAS expression levels between 33 kinds of tumor tissues. Additionally, we studied the association of KRAS expression levels with diagnostic and prognostic values, clinicopathological features, and tumor immunity. We established 22 immune-infiltrating cell expression datasets to calculate immune and stromal scores to evaluate the tumor microenvironment. KRAS genes, immune check-point genes and interacting genes were selected to construct the PPI network. We selected 79 immune checkpoint genes and interacting related genes to calculate the correlation. Based on the 33 tumor expression datasets, we conducted GSEA (genome set enrichment analysis) to show the KRAS and other co-expressed genes associated with cancers. KRAS may be a reliable prognostic biomarker in the diagnosis of cancer patients and has the potential to be included in cancer-targeted drugs.
Collapse
Affiliation(s)
- Da Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- School of food and drug, Shenzhen Polytechnic, Shenzhen, China
| | - Lizhuang Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Zheng Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- School of food and drug, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of food and drug, Shenzhen Polytechnic, Shenzhen, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
- *Correspondence: Lei Xu,
| |
Collapse
|
2
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
3
|
Correia L, Magno R, Xavier JM, de Almeida BP, Duarte I, Esteves F, Ghezzo M, Eldridge M, Sun C, Bosma A, Mittempergher L, Marreiros A, Bernards R, Caldas C, Chin SF, Maia AT. Allelic expression imbalance of PIK3CA mutations is frequent in breast cancer and prognostically significant. NPJ Breast Cancer 2022; 8:71. [PMID: 35676284 PMCID: PMC9177727 DOI: 10.1038/s41523-022-00435-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
PIK3CA mutations are the most common in breast cancer, particularly in the estrogen receptor-positive cohort, but the benefit of PI3K inhibitors has had limited success compared with approaches targeting other less common mutations. We found a frequent allelic expression imbalance between the missense mutant and wild-type PIK3CA alleles in breast tumors from the METABRIC (70.2%) and the TCGA (60.1%) projects. When considering the mechanisms controlling allelic expression, 27.7% and 11.8% of tumors showed imbalance due to regulatory variants in cis, in the two studies respectively. Furthermore, preferential expression of the mutant allele due to cis-regulatory variation is associated with poor prognosis in the METABRIC tumors (P = 0.031). Interestingly, ER-, PR-, and HER2+ tumors showed significant preferential expression of the mutated allele in both datasets. Our work provides compelling evidence to support the clinical utility of PIK3CA allelic expression in breast cancer in identifying patients of poorer prognosis, and those with low expression of the mutated allele, who will unlikely benefit from PI3K inhibitors. Furthermore, our work proposes a model of differential regulation of a critical cancer-promoting gene in breast cancer.
Collapse
Affiliation(s)
- Lizelle Correia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Ramiro Magno
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Joana M Xavier
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Bernardo P de Almeida
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- The Research Institute of Molecular Pathology, Vienna, Austria
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Filipa Esteves
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Universidade do Algarve, Faro, Portugal
| | - Marinella Ghezzo
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
| | - Chong Sun
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- DKFZ, Heidelberg, Germany
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lorenza Mittempergher
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal.
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
4
|
Subbarayan K, Massa C, Leisz S, Steven A, Bethmann D, Biehl K, Wickenhauser C, Seliger B. Biglycan as a potential regulator of tumorgenicity and immunogenicity in K-RAS-transformed cells. Oncoimmunology 2022; 11:2069214. [PMID: 35529675 PMCID: PMC9067524 DOI: 10.1080/2162402x.2022.2069214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix component biglycan (BGN) plays an essential role in various physiological and pathophysiological processes. A deficient BGN expression associated with reduced immunogenicity was found in HER-2/neu-overexpressing cells. To determine whether BGN is suppressed by oncogene-driven regulatory networks, the expression and function of BGN was analyzed in murine and human BGNlow/BGNhigh K-RASG12V-transformed model systems as well as in different patients' datasets of colorectal carcinoma (CRC) lesions. K-RAS-mutated CRC tissues expressed low BGN mRNA and protein levels when compared to normal colon epithelial cells, which was associated with a reduced patients' survival. Transfection of BGN in murine and human BGNlow K-RAS-expressing cells resulted in a reduced growth and migration of BGNhigh vs BGNlow K-RAS cells. In addition, increased MHC class I surface antigens as a consequence of an enhanced antigen processing machinery component expression was found upon restoration of BGN, which was confirmed by RNA-sequencing of BGNlow vs. BGNhigh K-RAS models. Furthermore, a reduced tumor formation of BGNhigh versus BGNlow K-RAS-transformed fibroblasts associated with an enhanced MHC class I expression and an increased frequency of tumor-infiltrating lymphocytes in tumor lesions was found. Our data provide for the first time an inverse link between BGN and K-RAS expression in murine and human K-RAS-overexpressing models and CRC lesions associated with altered growth properties, reduced immunogenicity and worse patients' outcome. Therefore, reversion of BGN might be a novel therapeutic option for K-RAS-associated malignancies.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
5
|
Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Mol Psychiatry 2022; 27:1373-1383. [PMID: 35091668 PMCID: PMC9095490 DOI: 10.1038/s41380-021-01420-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a severe, complex mental disorder characterized by a combination of positive symptoms, negative symptoms, and impaired cognitive function. Schizophrenia is highly heritable (~80%) with multifactorial etiology and complex polygenic genetic architecture. Despite the large number of genetic variants associated with schizophrenia, few causal variants have been established. Gaining insight into the mechanistic influences of these genetic variants may facilitate our ability to apply these findings to prevention and treatment. Though there have been more than 300 studies of gene expression in schizophrenia over the past 15 years, none of the studies have yielded consistent evidence for specific genes that contribute to schizophrenia risk. The aim of this work is to conduct a systematic review and synthesis of case-control studies of genome-wide gene expression in schizophrenia. Comprehensive literature searches were completed in PubMed, EmBase, and Web of Science, and after a systematic review of the studies, data were extracted from those that met the following inclusion criteria: human case-control studies comparing the genome-wide transcriptome of individuals diagnosed with schizophrenia to healthy controls published between January 1, 2000 and June 30, 2020 in the English language. Genes differentially expressed in cases were extracted from these studies, and overlapping genes were compared to previous research findings from the genome-wide association, structural variation, and tissue-expression studies. The transcriptome-wide analysis identified different genes than those previously reported in genome-wide association, exome sequencing, and structural variation studies of schizophrenia. Only one gene, GBP2, was replicated in five studies. Previous work has shown that this gene may play a role in immune function in the etiology of schizophrenia, which in turn could have implications for risk profiling, prevention, and treatment. This review highlights the methodological inconsistencies that impede valid meta-analyses and synthesis across studies. Standardization of the use of covariates, gene nomenclature, and methods for reporting results could enhance our understanding of the potential mechanisms through which genes exert their influence on the etiology of schizophrenia. Although these results are promising, collaborative efforts with harmonization of methodology will facilitate the identification of the role of genes underlying schizophrenia.
Collapse
Affiliation(s)
- Alison K Merikangas
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew Shelly
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA, USA
| | - Alexys Knighton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Kotler
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Varshavi D, Varshavi D, McCarthy N, Veselkov K, Keun HC, Everett JR. Metabonomics study of the effects of single copy mutant KRAS in the presence or absence of WT allele using human HCT116 isogenic cell lines. Metabolomics 2021; 17:104. [PMID: 34822010 PMCID: PMC8616861 DOI: 10.1007/s11306-021-01852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation. OBJECTIVES To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected. METHODS Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRAS G13D/+ HCT116 cell line and its isogenic, derivative cell lines KRAS +/- and KRAS G13D/-. RESULTS Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRASG13D/+ and KRASG13D/- cells have a distinct metabolic profile characterized by dysregulation of TCA cycle, up-regulation of glycolysis and glutathione metabolism pathway as well as increased glutamine uptake and acetate utilization. CONCLUSIONS Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.
Collapse
Affiliation(s)
- Dorna Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Nicola McCarthy
- Horizon Discovery Ltd., Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN, UK
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.
| |
Collapse
|
7
|
Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 2021; 13:319-326. [DOI: 10.1038/s41557-021-00645-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
|
8
|
Benedetti R, Bajardi F, Capozziello S, Carafa V, Conte M, Del Sorbo MR, Nebbioso A, Singh M, Stunnenberg HG, Valadan M, Altucci L, Altucci C. Different Approaches to Unveil Biomolecule Configurations and Their Mutual Interactions. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1716241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- R. Benedetti
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - F. Bajardi
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| | - S. Capozziello
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
- Gran Sasso Science Institute, L’Aquila, Italy
| | - V. Carafa
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. Conte
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. R. Del Sorbo
- Istituto Statale d’Istruzione Superiore “Leonardo da Vinci”, Poggiomarino, NA, Italy
| | - A. Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. Singh
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - H. G. Stunnenberg
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, the Netherlands
| | - M. Valadan
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| | - L. Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - C. Altucci
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| |
Collapse
|
9
|
Bajardi F, Altucci L, Benedetti R, Capozziello S, Sorbo MRD, Franci G, Altucci C. DNA Mutations via Chern-Simons Currents. EUROPEAN PHYSICAL JOURNAL PLUS 2021; 136:1080. [PMID: 34725629 PMCID: PMC8551353 DOI: 10.1140/epjp/s13360-021-01960-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
We test the validity of a possible schematization of DNA structure and dynamics based on the Chern-Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern-Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern-Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.
Collapse
Affiliation(s)
- Francesco Bajardi
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli“Federico II”, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
- Biogem “Istituto di Biologia molecolare e genetica”, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - Salvatore Capozziello
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli“Federico II”, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Maria Rosaria Del Sorbo
- Istituto Statale d’Istruzione Superiore “Leonardo da Vinci”, via F. Turati Poggiomarino, Naples, Italy
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli“Federico II”, Via Claudio n.21, 80125 Napoli, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA Italy
- Sezione Microbiologia Clinica, A.O.U. S. Giovanni di Dio e Ruggi D’Aragona, Largo Città di Ippocrate, 84131 Salerno, Italy
| | - Carlo Altucci
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, via Pansini 5, Napoli, Italy
| |
Collapse
|
10
|
Zeng N, Guo Y, Xiang J. A Pterin-FAM-TAMRA Tri-color Fluorescence Biosensor to Detect the Level of KRAS Point Mutation. ANAL SCI 2020; 36:1529-1533. [PMID: 32830162 DOI: 10.2116/analsci.20p265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monitoring the changes in the level of KRAS point mutation (the concentration fraction of the KRAS point mutated DNA to the total DNA) in clinical treatment progress can guide and greatly improve the personalized therapy and therapeutic evaluation of patients with cancer. In this work, based on FRET fluorescence quenching and apyrimidinic site-induced guanine/pterin specific binding, we developed a pterin-FAM-TAMRA tri-color fluorescence sensing system to assess the level of KRAS point mutation in one step. The responses from TAMRA displayed good and similar linear correlations in the range from 60 nM to 2 μM for all four types of DNA, resulting in a common linear equation related to the T-DNA concentration (NΔFTAMRA = 2.908cT-DNA + 0.364). Meanwhile, the responses from pterin showed excellent selectivity to W-DNA and an excellent linear correlation to the W-DNA in the concentration range from 60 nM to 1 μM (NΔFpterin = -0.364cgDNA-G + 0.034). This biosensor has an effective concentration range for detecting KRAS point mutations. Especially, because the apyrimidinic site-induced guanine/pterin binding is selective for the detection of wild-type DNA, the sensing system can be applied for clinical mutation level detection of all kinds of KRAS point mutations (G → A, G → C and G → T) in blood samples, which is crucial for the personalized therapy and therapeutic evaluation of patients with most KRAS-related cancer types.
Collapse
Affiliation(s)
- Ni Zeng
- College of Chemistry and Chemical Engineering, Central South University
| | - Yaxin Guo
- College of Chemistry and Chemical Engineering, Central South University
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University
| |
Collapse
|
11
|
Lyu N, Rajendran VK, Diefenbach RJ, Charles K, Clarke SJ, Engel A, Rizos H, Molloy MP, Wang Y. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics 2020; 4:224-232. [PMID: 32923312 PMCID: PMC7484630 DOI: 10.7150/ntno.48905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular diagnostic testing of KRAS and BRAF mutations has become critical in the management of colorectal cancer (CRC) patients. Some progress has been made in liquid biopsy detection of mutations in circulating tumor DNA (ctDNA), which is a fraction of circulating cell-free DNA (cfDNA), but slow analysis for DNA sequencing methods has limited rapid diagnostics. Other methods such as quantitative PCR and more recently, droplet digital PCR (ddPCR), have limitations in multiplexed capacity and the need for expensive specialized equipment. Hence, a robust, rapid and facile strategy is needed for detecting multiple ctDNA mutations to improve the management of CRC patients. To address this significant problem, herein, we propose a new application of multiplex PCR/SERS (surface-enhanced Raman scattering) assay for the detection of ctDNA in CRC, in a fast and non-invasive manner to diagnose and stratify patients for effective treatment. Methods: To discriminate ctDNA mutations from wild-type cfDNA, allele-specific primers were designed for the amplification of three clinically important DNA point mutations in CRC including KRAS G12V, KRAS G13D and BRAF V600E. Surface-enhanced Raman scattering (SERS) nanotags were labelled with a short and specific sequence of oligonucleotide, which can hybridize with the corresponding PCR amplicons. The PCR/SERS assay was implemented by firstly amplifying the multiple mutations, followed by binding with multicolor SERS nanotags specific to each mutation, and subsequent enrichment with magnetic beads. The mutation status was evaluated using a portable Raman spectrometer where the fingerprint spectral peaks of the corresponding SERS nanotags indicate the presence of the mutant targets. The method was then applied to detect ctDNA from CRC patients under a blinded test, the results were further validated by ddPCR. Results: The PCR/SERS strategy showed high specificity and sensitivity for genotyping CRC cell lines and plasma ctDNA, where as few as 0.1% mutant alleles could be detected from a background of abundant wild-type cfDNA. The blinded test using 9 samples from advanced CRC patients by PCR/SERS assay was validated with ddPCR and showed good consistency with pathology testing results. Conclusions: With ddPCR-like sensitivity yet at the convenience of standard PCR, the proposed assay shows great potential in sensitive detection of multiple ctDNA mutations for clinical decision-making.
Collapse
Affiliation(s)
- Nana Lyu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Russell J Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melanoma Institute Australia, Sydney, Australia
| | - Kellie Charles
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, Department of Medical Oncology, The University of Sydney, Australia
| | - Alexander Engel
- Royal North Shore Hospital, Colorectal Surgical Unit, The University of Sydney, Australia
| | | | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, Australia
| | - Yuling Wang
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Circulating Tumor DNA in KRAS positive colorectal cancer patients as a prognostic factor - a systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 154:103065. [PMID: 32763752 DOI: 10.1016/j.critrevonc.2020.103065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liquid biopsy is a novel tool in oncology. It provides minimally invasive detection of tumor specific DNA. This review summarizes data on presence of circulating tumor DNA in serum or plasma of CRC patients as a potential negative prognostic factor. MATERIALS AND METHODS The systematic review was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The search was performed using PubMed, Web of Science and Scopus. RESULTS In total 18 articles with a total of 1779 patients met the inclusion criteria. Six out of 8 studies found that presence of ctDNA in plasma/serum was associated with inferior overall survival. All 6 studies found that high concentrations of ctDNA in plasma/serum was associated with inferior overall survival. CONCLUSIONS Presence or high concentrations of KRAS mutation in plasma or serum were associated with inferior prognosis. Establishing cut-off concentrations is warranted for further clinical implementation of liquid biopsy.
Collapse
|
13
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
14
|
Arnold L, Alexiadis V, Watanaskul T, Zarrabi V, Poole J, Singh V. Clinical validation of qPCR Target Selector™ assays using highly specific switch-blockers for rare mutation detection. J Clin Pathol 2020; 73:648-655. [PMID: 32132121 DOI: 10.1136/jclinpath-2019-206381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
AIMS The identification of actionable DNA mutations associated with a patient's tumour is critical for devising a targeted, personalised cancer treatment strategy. However, these molecular analyses are typically performed using tissue obtained via biopsy, which involves substantial risk and is often not feasible. In addition, biopsied tissue does not always reflect tumour heterogeneity, and sequential biopsies to track disease progression (eg, emergence of drug resistance mutations) are not well tolerated. To overcome these and other biopsy-associated limitations, we have developed non-invasive 'liquid biopsy' technologies to enable the molecular characterisation of a patient's cancer using peripheral blood samples. METHODS The Target Selector ctDNA platform uses a real-time PCR-based approach, coupled with DNA sequencing, to identify cancer-associated genetic mutations within circulating tumour DNA. This is accomplished via a patented blocking approach suppressing wild-type DNA amplification, while allowing specific amplification of mutant alleles. RESULTS To promote the clinical uptake of liquid biopsy technologies, it is first critical to demonstrate concordance between results obtained via liquid and traditional biopsy procedures. Here, we focused on three genes frequently mutated in cancer: EGFR (Del19, L858, and T790), BRAF (V600) and KRAS (G12/G13). For each Target Selector assay, we demonstrated extremely high accuracy, sensitivity and specificity compared with results obtained from tissue biopsies. Overall, we found between 93% and 96% concordance to blinded tissue samples across 127 clinical assays. CONCLUSIONS The switch-blocker technology reported here offers a highly effective method for non-invasively determining the molecular signatures of patients with cancer.
Collapse
Affiliation(s)
- Lyle Arnold
- Research and Development, Biocept Inc, San Diego, California, USA.,Aegea Biotechnologies, San Diego, California, USA
| | | | - Tim Watanaskul
- Research and Development, Biocept Inc, San Diego, California, USA
| | - Vahid Zarrabi
- Department of Molecular Pathology, UCLA, Los Angeles, California, USA
| | - Jason Poole
- Research and Development, Biocept Inc, San Diego, California, USA
| | - Veena Singh
- Clinical Laboratory, Biocept Inc, San Diego, California, USA
| |
Collapse
|
15
|
Douglas JK, Callahan RE, Hothem ZA, Cousineau CS, Kawak S, Thibodeau BJ, Bergeron S, Li W, Peeples CE, Wasvary HJ. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol Cell Oncol 2020; 7:1716618. [PMID: 32391418 PMCID: PMC7199754 DOI: 10.1080/23723556.2020.1716618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
There is variation in the responsiveness of locally advanced rectal cancer to neoadjuvant chemoradiation, from complete response to total resistance. This study compared genetic variation in rectal cancer patients who had a complete response to chemoradiation versus poor response, using tumor tissue samples sequenced with genomics analysis software. Rectal cancer patients treated with chemoradiation and proctectomy June 2006-March 2017 were grouped based on response to chemoradiation: those with no residual tumor after surgery (CR, complete responders, AJCC-CPR tumor grade 0, n = 8), and those with poor response (PR, AJCC-CPR tumor grade two or three on surgical resection, n = 8). We identified 195 variants in 83 genes in tissue specimens implicated in colorectal cancer biopathways. PR patients showed mutations in four genes not mutated in complete responders: KDM6A, ABL1, DAXX-ZBTB22, and KRAS. Ten genes were mutated only in the CR group, including ARID1A, PMS2, JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65, and KMT2D, with specific discriminating variants noted in DMNT3A, KDM6A, MTOR, APC, and TP53. Although conclusions may be limited by small sample size in this pilot study, we identified multiple genetic variations in tumor DNA from rectal cancer patients who are poor responders to neoadjuvant chemoradiation, compared to complete responders.
Collapse
Affiliation(s)
| | - Rose E. Callahan
- Department of Surgical Research, Beaumont Research Institute, Royal Oak, MI, USA
| | | | | | - Samer Kawak
- Department of Surgery, Beaumont Health, Royal Oak, MI, USA
| | | | | | - Wei Li
- Department of Pathology, Beaumont Health, Royal Oak, MI, USA
| | | | | |
Collapse
|
16
|
Germline Variants Impact Somatic Events during Tumorigenesis. Trends Genet 2019; 35:515-526. [PMID: 31128889 DOI: 10.1016/j.tig.2019.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
Abstract
Cancer is characterized by diverse genetic alterations in both germline and somatic genomes that disrupt normal biology and provide a selective advantage to cells during tumorigenesis. Germline and somatic genomes have been extensively studied independently, leading to numerous biological insights. Analyses integrating data from both genomes have identified genetic variants impacting somatic events in tumors, including hotspot driver mutations. Interactions among specific germline variants and somatic events influence cancer subtypes, treatment response, and clinical outcomes. Investigation of these complex interactions is increasing our understanding of aberrant pathways in tumors that may uncover novel therapeutic targets. Here, we review the literature describing the role of germline genetic variants in promoting the selection and generation of specific mutations during tumorigenesis.
Collapse
|
17
|
Merrick BA, Phadke DP, Bostrom MA, Shah RR, Wright GM, Wang X, Gordon O, Pelch KE, Auerbach SS, Paules RS, DeVito MJ, Waalkes MP, Tokar EJ. Arsenite malignantly transforms human prostate epithelial cells in vitro by gene amplification of mutated KRAS. PLoS One 2019; 14:e0215504. [PMID: 31009485 PMCID: PMC6476498 DOI: 10.1371/journal.pone.0215504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Inorganic arsenic is an environmental human carcinogen of several organs including the urinary tract. RWPE-1 cells are immortalized, non-tumorigenic, human prostate epithelia that become malignantly transformed into the CAsE-PE line after continuous in vitro exposure to 5μM arsenite over a period of months. For insight into in vitro arsenite transformation, we performed RNA-seq for differential gene expression and targeted sequencing of KRAS. We report >7,000 differentially expressed transcripts in CAsE-PE cells compared to RWPE-1 cells at >2-fold change, q<0.05 by RNA-seq. Notably, KRAS expression was highly elevated in CAsE-PE cells, with pathway analysis supporting increased cell proliferation, cell motility, survival and cancer pathways. Targeted DNA sequencing of KRAS revealed a mutant specific allelic imbalance, ‘MASI’, frequently found in primary clinical tumors. We found high expression of a mutated KRAS transcript carrying oncogenic mutations at codons 12 and 59 and many silent mutations, accompanied by lower expression of a wild-type allele. Parallel cultures of RWPE-1 cells retained a wild-type KRAS genotype. Copy number analysis and sequencing showed amplification of the mutant KRAS allele. KRAS is expressed as two splice variants, KRAS4a and KRAS4b, where variant 4b is more prevalent in normal cells compared to greater levels of variant 4a seen in tumor cells. 454 Roche sequencing measured KRAS variants in each cell type. We found KRAS4a as the predominant transcript variant in CAsE-PE cells compared to KRAS4b, the variant expressed primarily in RWPE-1 cells and in normal prostate, early passage, primary epithelial cells. Overall, gene expression data were consistent with KRAS-driven proliferation pathways found in spontaneous tumors and malignantly transformed cell lines. Arsenite is recognized as an important environmental carcinogen, but it is not a direct mutagen. Further investigations into this in vitro transformation model will focus on genomic events that cause arsenite-mediated mutation and overexpression of KRAS in CAsE-PE cells.
Collapse
Affiliation(s)
- B. Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Garron M. Wright
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Xinguo Wang
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Oksana Gordon
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Katherine E. Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael J. DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael P. Waalkes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Erik J. Tokar
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
18
|
Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo E, Maeurer M. Mutant Epitopes in Cancer. Oncoimmunology 2017. [DOI: 10.1007/978-3-319-62431-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
Riffo-Campos ÁL, Castillo J, Vallet-Sánchez A, Ayala G, Cervantes A, López-Rodas G, Franco L. In silico RNA-seq and experimental analyses reveal the differential expression and splicing of EPDR1 and ZNF518B genes in relation to KRAS mutations in colorectal cancer cells. Oncol Rep 2016; 36:3627-3634. [PMID: 27805251 DOI: 10.3892/or.2016.5210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Several drugs used for the treatment of colorectal cancer (CRC) are targeted at the epidermal growth factor receptor, but mutations in genes of the RAS family cause resistance to these drugs. Thus, extensive research is being carried out to counterbalance this resistance. The G13D mutation of KRAS is common in humans, and we previously reported that this mutation results in the epigenetic modification of hnRNP proteins, involved in RNA splicing. As aberrant splicing often results in oncogenicity, the present study aimed to identify the genes which show altered splicing patterns in connection with the G13D KRAS mutation. To accomplish this, we first carried out an in silico analysis of RNA-seq databases and found that the distribution of alternative splicing isoforms of genes RPL13, HSP90B1, ENO1, EPDR1 and ZNF518B was altered in human CRC cell lines carrying the G13D KRAS mutation when compared to cell lines carrying wild-type KRAS. The in silico results were experimentally validated by quantitative real‑time PCR. Expression of the genes EPDR1 and ZNF518B was negligible in the Caco2, RKO and SW48 cell lines, which possess wild-type KRAS, while the HCT116, DLD1 and D-Mut1 cell lines, harbouring the G13D mutation, expressed these genes. Moreover, in both genes, the ratio of isoforms was significantly different between the parental DLD1 (+/G13D) and D-Mut1 cells, in which the wild-type allele had been knocked out. DWT7m cells also expressed both genes. These cells, derived from DLD1, have spontaneously acquired a G12D mutation in their single KRAS allele in 20% of the population. The present data suggest a relationship between KRAS mutations, particularly G13D, and the expression of the EPDR1 and ZNF518B genes and expression of their isoforms and provide enhanced understanding of the molecular mechanisms involved in the resistance of CRC cells to anti‑EGF receptor therapies.
Collapse
Affiliation(s)
- Ángela L Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | - Azahara Vallet-Sánchez
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Guillermo Ayala
- Department of Statistics and Operational Research, University of Valencia, Burjassot, Valencia, Spain
| | | | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
20
|
Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 2016; 384:86-93. [PMID: 27725226 DOI: 10.1016/j.canlet.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023]
Abstract
Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.
Collapse
|
21
|
Wong SQ, Scott R, Fox SB. KRAS mutation testing in colorectal cancer: the model for molecular pathology testing in the future. COLORECTAL CANCER 2016. [DOI: 10.2217/crc-2015-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Somatic mutations in the KRAS gene often occur in colorectal cancer (CRC) and are predictive for poor response to EGFR blockade therapy. Over the past decade, routine detection of KRAS mutations has been employed in many diagnostic centers using a range of methodological approaches including Sanger sequencing, pyrosequencing, high-resolution melt analysis and more recently, next-generation sequencing approaches. This article highlights the clinical relevance of KRAS-mutated CRCs, examines advantages and disadvantages of various detection methods and highlights the considerations that are critical for an accurate, rapid and efficient workflow to detect KRAS and other RAS mutations in CRC presently and in the future.
Collapse
Affiliation(s)
- Stephen Q Wong
- Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Rodney Scott
- Discipline of Medical Genetics & Centre for Information-Based Medicine, The University of Newcastle & Hunter Medical Research Institute, Newcastle, Australia
- Division of Genetics, Hunter Area Pathology Service, Newcastle, Australia
| | - Stephen B Fox
- Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Significance of EGFR signaling pathway genetic alterations in radically resected non-small cell lung cancers from a Polish cohort. One institutional study. Adv Med Sci 2015; 60:277-86. [PMID: 26118982 DOI: 10.1016/j.advms.2015.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE We evaluated the distribution and clinical impact of EGFR, KRAS and HER2 copy number gains and EGFR, KRAS and BRAF activating mutations in resected non-small cell lung cancers (NSCLCs) from 151 Polish patients. MATERIALS AND METHODS Quantitative PCR and DNA sequencing were used for copy number evaluation and mutational analysis, respectively. RESULTS An increased EGFR CN was found in 21.2% of the tumors, more commonly of the non-squamous histology (P=0.029), larger in size (P=0.004) and those obtained from women (P=0.040). HER2 copy gain was observed in 21.8% of the patients, more frequently with lymph node metastases (P=0.048) and stage IIIA disease (P=0.061). KRAS gain was found in 29.3% of the tumors, and was not associated with patients' clinicopathological features. No BRAF mutations were found. EGFR and KRAS mutation frequency and associations with clinicopathological characteristics did not differ significantly from those previously described for the NSCLC patients of Caucasian ethnicity. Strong associations existed between most of the analyzed alterations. In the multivariate model, EGFR mutations constituted an independent prognostic factor of the disease recurrence in adenocarcinoma patients (HR 7.20; 95%CI 1.31-39.48; P=0.023), while an increased EGFR copy number tended to indicate a shorter overall survival (HR 4.85; 95%CI 0.92-25.58; P=0.062). CONCLUSIONS EGFR pathway genes alterations are frequent in NSCLCs from Polish patients and have a prognostic potential for patients' clinical outcome after a curative tumor resection. Gene CN evaluation by quantitative PCR provides comparable results and enables assay standardization, yet the optimal scoring system needs to be developed.
Collapse
|
23
|
Qu S, Liu L, Gan S, Feng H, Zhao J, Zhao J, Liu Q, Gao S, Chen W, Wang M, Jiang Y, Huang J. Detection of low-level DNA mutation by ARMS-blocker-Tm PCR. Clin Biochem 2015; 49:287-91. [PMID: 26169242 DOI: 10.1016/j.clinbiochem.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Low-level DNA mutations play important roles in cancer prognosis and treatment. However, most existing methods for the detection of low-level DNA mutations are insufficient for clinical applications because of the high background of wild-type DNA. DESIGN AND METHOD In this study, a novel assay based on Tm-dependent inhibition of wild type template amplification was developed. The defining characteristic of this assay is an additional annealing step was introduced into the ARMS-blocker PCR. The temperature of this additional annealing step is equal to the Tm of the blocker. Due to this additional annealing step, the blocker can preferentially and specifically bind the wild-type DNA. Thus, the inhibition of wild type template is realized and the mutant DNA is enriched. RESULTS The sensitivity of this assay was between 10(-4) and 10(-5), which is approximately 5 to 10 times greater than the sensitivity of the assay without the additional annealing step. To evaluate the performance of this assay in detecting K-ras mutation, we analyzed 100 formalin-fixed paraffin-embedded (FFPE) specimens from colorectal cancer patients using this new assay and Sanger sequencing. Of the clinical samples, 27 samples were positive for K-ras mutation by both methods. CONCLUSIONS Our results indicated that this new assay is a highly selective, convenient, and economical method for detecting rare mutations in the presence of higher concentrations of wild-type DNA.
Collapse
Affiliation(s)
- Shoufang Qu
- Division of in Vitro Diagnostic Reagents, National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China
| | - Licheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Dongdajie Road 20, Beijing 100071, China
| | - Shuzhen Gan
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beitucheng West Road 11, Beijing 100029, China
| | - Huahua Feng
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beitucheng West Road 11, Beijing 100029, China
| | - Jingyin Zhao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beitucheng West Road 11, Beijing 100029, China
| | - Jing Zhao
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qi Liu
- Beijing Macro & Micro Test Biotech Company, Beijing 101312, China
| | - Shangxiang Gao
- Division of in Vitro Diagnostic Reagents, National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China
| | - Weijun Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beitucheng West Road 11, Beijing 100029, China
| | - Mengzhao Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Dongdajie Road 20, Beijing 100071, China.
| | - Jie Huang
- Division of in Vitro Diagnostic Reagents, National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China.
| |
Collapse
|
24
|
Roda D, Castillo J, Telechea-Fernández M, Gil A, López-Rodas G, Franco L, González-Rodríguez P, Roselló S, Pérez-Fidalgo JA, García-Trevijano ER, Cervantes A, Zaragozá R. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS One 2015; 10:e0130543. [PMID: 26110767 PMCID: PMC4482484 DOI: 10.1371/journal.pone.0130543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022] Open
Abstract
KRAS mutational status is considered a negative predictive marker of the response to anti-EGFR therapies in colorectal cancer (CRC) patients. However, conflicting data exist regarding the variable response to EGFR-targeted therapy. The effects of oncogenic KRAS on downstream targets were studied in cell lines with different KRAS mutations. Cells harboring a single KRASG13D allele showed the most tumorigenic profile, with constitutive activation of the downstream pathway, rendering them EGF-unresponsive. Conversely, KRASA146T cells showed a full EGF-response in terms of signal transduction pathways, cell proliferation, migration or adhesion. Moreover, the global acetylome of CRC cells was also dependent on KRAS mutational status. Several hnRNP family members were identified within the 36 acetylated-proteins. Acetylation status is known to be involved in the modulation of EGF-response. In agreement with results presented herein, hnRNPA1 and L acetylation was induced in response to EGF in KRASA146T cells, whereas acetyl-hnRNPA1 and L levels remained unchanged after growth factor treatment in KRASG13D unresponsive cells. Our results showed that hnRNPs induced-acetylation is dependent on KRAS mutational status. Nevertheless hnRNPs acetylation might also be the point where different oncogenic pathways converge.
Collapse
Affiliation(s)
- Desamparados Roda
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Josefa Castillo
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Marcelino Telechea-Fernández
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Anabel Gil
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Luís Franco
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Patricia González-Rodríguez
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Susana Roselló
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - J. Alejandro Pérez-Fidalgo
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
- * E-mail:
| | - Rosa Zaragozá
- Department of Haematology and Medical Oncology, INCLIVA Biomedical Research Institute / University of Valencia, Valencia, Spain
| |
Collapse
|
25
|
Malapelle U, Sgariglia R, De Stefano A, Bellevicine C, Vigliar E, de Biase D, Sepe R, Pallante P, Carlomagno C, Tallini G, Troncone G. KRAS mutant allele-specific imbalance (MASI) assessment in routine samples of patients with metastatic colorectal cancer. J Clin Pathol 2015; 68:265-269. [PMID: 25609577 DOI: 10.1136/jclinpath-2014-202761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Patients with colorectal cancer harbouring KRAS mutations do not respond to antiepidermal growth factor receptor (anti-EGFR) therapy. Community screening for KRAS mutation selects patients for treatment. When a KRAS mutation is identified by direct sequencing, mutant and wild type alleles are seen on the sequencing electropherograms. KRAS mutant allele-specific imbalance (MASI) occurs when the mutant allele peak is higher than the wild type one. The aims of this study were to verify the rate and tissue distribution of KRAS MASI as well as its clinical relevance. METHODS A total of 437 sequencing electropherograms showing KRAS exon 2 mutation was reviewed and in 30 cases next generation sequencing (NGS) was also carried out. Five primary tumours were extensively laser capture microdissected to investigated KRAS MASI tissue spatial distribution. KRAS MASI influence on the overall survival was evaluated in 58 patients. In vitro response to anti-EGFR therapy in relation to different G13D KRAS MASI status was also evaluated. RESULTS On the overall, KRAS MASI occurred in 58/436 cases (12.8%), being more frequently associated with G13D mutation (p=0.05) and having a heterogeneous tissue distribution. KRAS MASI detection by Sanger Sequencing and NGS showed 94% (28/30) concordance. The longer overall survival of KRAS MASI negative patients did not reach statistical significance (p=0.08). In cell line model G13D KRAS MASI conferred resistance to cetuximab treatment. CONCLUSIONS KRAS MASI is a significant event in colorectal cancer, specifically associated with G13D mutation, and featuring a heterogeneous spatial distribution, that may have a role to predict the response to EGFR inhibitors. The foreseen implementation of NGS in community KRAS testing may help to define KRAS MASI prognostic and predictive significance.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alfonso De Stefano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoles, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Dario de Biase
- Department of Medicine (DIMES)-Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Romina Sepe
- CNR/IEOS, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy
| | - Pierlorenzo Pallante
- CNR/IEOS, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoles, Italy
| | - Giovanni Tallini
- Department of Medicine (DIMES)-Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Perkins G, Pilati C, Blons H, Laurent-Puig P. Beyond KRAS status and response to anti-EGFR therapy in metastatic colorectal cancer. Pharmacogenomics 2015; 15:1043-52. [PMID: 24956256 DOI: 10.2217/pgs.14.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In patients with metastatic colorectal cancer, overall survival has improved over the last decade mainly due to the use of effective targeted therapies such as anti-EGFR. However, survival improvement is linked to proper selection of patients expected to benefit from these treatments. KRAS codons 12 and 13 mutation status was the first validated molecular biomarker for anti-EGFR antibodies. Today, rare KRAS alterations and NRAS mutations were implemented, defining the 'RAS' status as the new validated marker of response to anti-EGFR antibodies. Moreover, other biomarkers are under investigation to screen for other targets and help with patients selection. Here, we reviewed these promising biomarkers: mutations in the RAS-MAPK and PI3K-AKT pathways genes, MET activation, HER/ErbB receptors activation (EGFR, HER2 and HER3), EGFR ligands, antibody-dependent cell-mediated cytotoxicity) and miRNAs. Further data are needed to define their impact for the treatment of patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Geraldine Perkins
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1147, Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, University Paris Descartes, 45 rue des Saints Pères, Paris 75006, France
| | | | | | | |
Collapse
|
27
|
Ho TH, Dang KX, Lintula S, Hotakainen K, Feng L, Olkkonen VM, Verschuren EW, Tenkanen T, Haglund C, Kolho KL, Stenman UH, Stenman J. Extendable blocking probe in reverse transcription for analysis of RNA variants with superior selectivity. Nucleic Acids Res 2015; 43:e4. [PMID: 25378315 PMCID: PMC4288146 DOI: 10.1093/nar/gku1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
Here we provide the first strategy to use a competitive Extendable Blocking Probe (ExBP) for allele-specific priming with superior selectivity at the stage of reverse transcription. In order to analyze highly similar RNA variants, a reverse-transcriptase primer whose sequence matches a specific variant selectively primes only that variant, whereas mismatch priming to the alternative variant is suppressed by virtue of hybridization and subsequent extension of the perfectly matched ExBP on that alternative variant template to form a cDNA-RNA hybrid. This hybrid will render the alternative RNA template unavailable for mismatch priming initiated by the specific primer in a hot-start protocol of reverse transcription when the temperature decreases to a level where such mismatch priming could occur. The ExBP-based reverse transcription assay detected BRAF and KRAS mutations in at least 1000-fold excess of wild-type RNA and detection was linear over a 4-log dynamic range. This novel strategy not only reveals the presence or absence of rare mutations with an exceptionally high selectivity, but also provides a convenient tool for accurate determination of RNA variants in different settings, such as quantification of allele-specific expression.
Collapse
Affiliation(s)
- Tho H Ho
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Kien X Dang
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Susanna Lintula
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kristina Hotakainen
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland Helsinki University Central Hospital, HUSLAB, Helsinki, 00029 HUS, Finland
| | - Lin Feng
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, FI-00014, Finland
| | | | - Caj Haglund
- Department of Surgery, Helsinki University Central Hospital, Helsinki, 00029 HUS, Finland Research Program Unit, Translational Cancer Biology, University of Helsinki, Helsinki, FI-00014, Finland Haartman Institute, Department of Pathology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Kaija-Leena Kolho
- Children's Hospital, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ulf-Hakan Stenman
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, FI-00014, Finland Department of Women's and Children's Health, Karolinska Institutet, Stockholm, SE-17176, Sweden
| |
Collapse
|
28
|
Chen G, Dudley J, Tseng LH, Smith K, Gurda GT, Gocke CD, Eshleman JR, Lin MT. Lymph node metastases of melanoma: challenges for BRAF mutation detection. Hum Pathol 2014; 46:113-9. [PMID: 25456393 DOI: 10.1016/j.humpath.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
Detection of B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations is required to predict response to BRAF or mitogen-activated protein kinase kinase 1 and 2 inhibitors in metastatic melanoma. Lymph node (LN) specimens carrying melanoma cells intermingled with abundant lymphocytes often contain low tumor cellularity. This study is aimed to examine challenges in the clinical detection of BRAF mutations in LN specimens with metastatic melanoma and to illustrate characteristic features of p.V600E and non-p.V600E mutations. In this retrospective study for quality assessment of the pyrosequencing assay, we compared characteristics of 53 LN and 135 non-LN formalin-fixed, paraffin-embedded specimens with metastatic melanoma submitted for BRAF mutation detection over a 40-month period. LN specimens showed a significantly higher incidence of p.V600E mutations than non-LN specimens (49% versus 22%, P < .01) but a significantly lower tumor cellularity, particularly in the case of subcapsular or infiltrative metastases. Mutant allele-specific imbalance of the p.V600E mutation was predominantly present in specimens with distant organ metastases (79% versus 27% in LN metastases versus 13% in primary cutaneous tumors or adjacent soft tissue, P < .001). p.V600K was detected in 23% of men older than 60 years old, compared with 6% in women older than 60 years old and 2% in both men and women younger than 60 years old (P < .001). LN specimens with low tumor cellularity due to numerous adjacent lymphocytes may pose a challenge to clinical detection of BRAF mutations of melanoma. The higher incidence of p.V600E mutations in LNs may prompt further studies to elucidate if the p.V600E mutation in primary tumors is associated with a higher risk of LN metastasis.
Collapse
Affiliation(s)
- Guoli Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA; Department of Pathology, Penn State Hershey Medical Center, Hershey, PA, 17033 USA
| | - Jonathan Dudley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA; Departments of Pathology, Massachusetts General Hospital, Boston, MA, 02114 USA
| | - Li-Hui Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA; Department of Medical Genetics, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Kirstin Smith
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Grzegorz T Gurda
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA.
| |
Collapse
|
29
|
[Clinical relevance of the K-ras oncogene in colorectal cancer: experience in a Mexican population]. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014; 79:166-70. [PMID: 25216999 DOI: 10.1016/j.rgmx.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/17/2014] [Accepted: 07/04/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Colorectal cancer is frequent in the developed countries, with a cancer-specific mortality rate of 33%. Different biomarkers are associated with overall survival and the prediction of monoclonal treatment effectiveness. The presence of mutations in the K-ras oncogene alters the response to target therapy with cetuximab and could be an independent prognostic factor. AIMS To analyze the difference in survival between patients with mutated K-ras and those with K-ras wild-type status. METHODS Thirty-one clinical records were retrospectively analyzed of patients presenting with colorectal cancer that underwent K-ras sequencing through real-time polymerase chain reaction within the time frame of 2009 to 2012 at the Hospital de Alta Especialidad de Veracruz of the Instituto para la Salud y Seguridad Social de los Trabajadores del Estado (HAEV-ISSSTE). Survival analysis for patients with and without K-ras mutation was performed using the Kaplan Meier method. Contrast of covariates was performed using logarithmic transformations. RESULTS No statistically significant difference was found in relation to survival in the patients with mutated K-ras vs. those with K-ras wild-type (P=.416), nor were significant differences found when analyzing the covariants and survival in the patients with mutated K-ras: ECOG scale (P=.221); age (less than, equal to or greater than 65years, P=.441); clinical stage according to the AJCC (P=.057), and primary lesion site (P=.614). CONCLUSIONS No relation was found between the K-ras oncogene mutation and reduced survival, in contrast to what has been established in the international medical literature. Further studies that include both a larger number of patients and those receiving monoclonal treatment, need to be conducted. There were only 5 patients in the present study that received cetuximab, resulting in a misleading analysis.
Collapse
|
30
|
Cabrera-Mendoza F, Gainza-Lagunes S, Castañeda-Andrade I, Castro-Zárate A. Clinical relevance of the K-ras oncogene in colorectal cancer: Experience in a Mexican population. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2014. [DOI: 10.1016/j.rgmxen.2014.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Anti-EGFR MoAb treatment in colorectal cancer: limitations, controversies, and contradictories. Cancer Chemother Pharmacol 2014; 74:1-13. [PMID: 24916545 DOI: 10.1007/s00280-014-2489-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Anti-epidermal growth-factor receptor (EGFR) monoclonal antibody (MoAb) treatment for chemotherapy refractory or metastatic colorectal cancer has obtained great achievement. However, not every colorectal patient responds to such molecular-targeted agent well. Biomarkers associated with anti-EGFR resistance are not limited to KRAS mutation up to now. It was recently reported that cross-talking molecular effectors interacted with EGFR-related pathway were also negative predictor for anti-EGFR treatment. However, the limited data, controversial results, and contradictories between in vitro and clinical studies restrict the clinical application of these new biomarkers. Although the current theory of tumor microenvironment supported the application of multi-target treatment, the results from the clinical studies were less than expected. Moreover, WHO or RECIST guideline for response assessment in anti-EGFR MoAb treatment was also queried by recent AIO KRK-0306 trial. This review focuses on these controversies, contradictories, and limitations, in order to uncover the unmet needs in current status of anti-EGFR MoAb treatment in colorectal cancer.
Collapse
|
32
|
Woo J, Leighton JC. Reply to colorectal carcinomas, KRAS p.G13D mutant allele-specific imbalance, and anti-epidermal growth factor receptor therapy. Cancer 2013; 119:4366-7. [DOI: 10.1002/cncr.28370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Janghee Woo
- Department of Medicine; Albert Einstein Medical Center; Philadelphia Pennsylvania
| | - John C. Leighton
- Department of Medicine; Albert Einstein Medical Center; Philadelphia Pennsylvania
- Braemer Cancer Center; Albert Einstein Medical Center; Philadelphia Pennsylvania
| |
Collapse
|
33
|
KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas. Mod Pathol 2013; 26:1346-54. [PMID: 23599154 PMCID: PMC4128625 DOI: 10.1038/modpathol.2013.71] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022]
Abstract
KRAS codon 12 mutations are present in about 90% of ductal adenocarcinomas and in undifferentiated carcinomas of the pancreas. The role of KRAS copy number changes and resulting KRAS mutant allele-specific imbalance (MASI) in ductal adenocarcinoma (n=94), and its progression into undifferentiated carcinoma of the pancreas (n=25) was studied by direct sequencing and KRAS fluorescence in situ hybridization (FISH). Semi-quantitative evaluation of sequencing electropherograms showed KRAS MASI (ie, mutant allele peak higher than or equal to the wild-type allele peak) in 22 (18.4%) cases. KRAS FISH (performed on 45 cases) revealed a trend for more frequent KRAS amplification among cases with KRAS MASI (7/20, 35% vs 3/25, 12%, P=0.08). KRAS amplification by FISH was seen only in undifferentiated carcinomas (10/24, 42% vs 0/21 pancreatic ductal adenocarcinoma, 0%, P=0.0007). In 6 of 11 cases with both undifferentiated and well-differentiated components, transition to undifferentiated carcinoma was associated with an increase in KRAS copy number, due to amplification and/or chromosome 12 hyperploidy. Pancreatic carcinomas with KRAS MASI (compared to those without MASI) were predominantly undifferentiated (16/22, 73% vs 9/97, 9%, P<0.001), more likely to present at clinical stage IV (5/22, 23% vs 7/97, 7%, P=0.009), and were associated with shorter overall survival (9 months, 95% confidence interval, 5-13, vs 22 months, 95% confidence interval, 17-27; P=0.015) and shorter disease-free survival (5 months, 95% confidence interval, 2-8 vs 13 months, 95% confidence interval, 10-16; P=0.02). Our findings suggest that in a subset of ductal adenocarcinomas, KRAS MASI correlates with the progression to undifferentiated carcinoma of the pancreas.
Collapse
|
34
|
Hartman DJ, Chiosea SI. Colorectal carcinomas, KRAS p.G13D mutant allele-specific imbalance, and anti-epidermal growth factor receptor therapy. Cancer 2013; 119:4366. [DOI: 10.1002/cncr.28371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/20/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Douglas J. Hartman
- Department of Pathology; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - Simion I. Chiosea
- Department of Pathology; University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| |
Collapse
|
35
|
Malapelle U, Carlomagno C, de Luca C, Bellevicine C, Troncone G. KRAS testing in metastatic colorectal carcinoma: challenges, controversies, breakthroughs and beyond. J Clin Pathol 2013; 67:1-9. [DOI: 10.1136/jclinpath-2013-201835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Villaruz LC, Socinski MA, Cunningham DE, Chiosea SI, Burns TF, Siegfried JM, Dacic S. The prognostic and predictive value of KRAS oncogene substitutions in lung adenocarcinoma. Cancer 2013; 119:2268-74. [PMID: 23526491 DOI: 10.1002/cncr.28039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The prognostic and therapeutic implications of the spectrum of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions in lung cancer remain poorly understood. The objective of this study was to determine whether KRAS oncogene substitutions differed with regard to prognosis or predictive value in lung adenocarcinoma. METHODS KRAS oncogene substitutions and mutant allele-specific imbalance (MASI) were determined in patients with lung adenocarcinoma, and the associations with overall survival (OS), recurrence-free survival (RFS), and chemotherapy interactions were assessed. RESULTS KRAS mutational analysis was performed on 988 lung adenocarcinomas, and 318 KRAS mutations were identified. In this predominantly early stage cohort (78.6% of patients had stage I-III disease), OS and RFS did not differ according to the type of KRAS substitution (OS, P = .612; RFS, P = .089). There was a trend toward better OS in the subset of patients with KRAS codon 13 mutations (P = .052), but that trend was not significant in multivariate analysis (P = .076). RFS did not differ according to codon type in univariate analysis (P = .322). There was a marked difference in RFS based on the presence of MASI in univariate analysis (P = .004) and multivariate analysis (P = .009). A test for interaction was performed to determine whether the effect of chemotherapy on OS and RFS differed based on KRAS substitution type, codon type, or the presence of MASI. That test indicated that there were no differences in the effects of chemotherapy for any of variables examined. CONCLUSIONS KRAS codon 13 mutations and MASI were identified as candidate biomarkers for prognosis, and it may be useful to incorporate them into prospective studies evaluating novel therapies in KRAS-mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Liza C Villaruz
- University of Pittsburgh Cancer Institute, School of Medicine/Hematology-Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|