1
|
Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, Kollmann CF, Liu Z, Wang C, Hoang HD, Kovalenko E, Chrysopoulou M, Twayana KS, Ottosen RN, Svenningsen EB, Begnini F, Kiib AE, Kromm FEH, Weiss HJ, Di Carlo D, Muscolini M, Higgins M, van der Heijden M, Arulanandam R, Bardoul A, Tong T, Ozsvar A, Hou WH, Schack VR, Holm CK, Zheng Y, Ruzek M, Kalucka J, de la Vega L, Elgaher WAM, Korshoej AR, Lin R, Hiscott J, Poulsen TB, O'Neill LA, Roy DG, Rinschen MM, van Montfoort N, Diallo JS, Farin HF, Alain T, Olagnier D. Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun 2024; 15:4096. [PMID: 38750019 PMCID: PMC11096414 DOI: 10.1038/s41467-024-48422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.
Collapse
Affiliation(s)
- Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Aida Said
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Boaz Wong
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoying Han
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Alena Kress
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | | | - Emilia Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Chen Wang
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Elina Kovalenko
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Fabio Begnini
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders E Kiib
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Hauke J Weiss
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Daniele Di Carlo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Michela Muscolini
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Mirte van der Heijden
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Angelina Bardoul
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Tong Tong
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Attila Ozsvar
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yunan Zheng
- Small Molecule Therapeutics & Platform Technologies, AbbVie Inc., 1 North Waukegon Road, North Chicago, IL, 60064, USA
| | - Melanie Ruzek
- AbbVie, Bioresearch Center, 100 Research Drive, Worcester, MA, 01608, USA
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, E8.1, 66123, Saarbrücken, Germany
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - John Hiscott
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Dominic G Roy
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- III. Department of Medicine and Hamburg Center for Kidney Health, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Simon Diallo
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Hua X, Zhu QW, Zhang YN, Cao L, Wang MD, Gao YS, Chen JY. The prognostic significance of human ovarian aging-related signature in breast cancer after surgery: A multicohort study. Front Immunol 2023; 14:1139797. [PMID: 36960071 PMCID: PMC10027938 DOI: 10.3389/fimmu.2023.1139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Recent studies have shown that ovarian aging is strongly associated with the risk of breast cancer, however, its prognostic impact on breast cancer is not yet fully understood. In this study, we performed a multicohort genetic analysis to explore its prognostic value and biological features in breast cancer. METHODS The gene expression and clinicopathological data of 3366 patients from the The Cancer Genome Atlas (TCGA) cohort, the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort and the GSE86166 cohort were analyzed. A total of 290 ovarian aging-related genes (OARGs) were included in the establishment of the prognostic model. Furthermore, functional mechanisms analysis, drug sensitivity, and immune cell infiltration were investigated using bioinformatic methods. RESULTS An eight OARG-based signature was established and validated using independent cohorts. Two risk subgroups of patients with distinct survival outcomes were identified by the OARG-based signature. A nomogram with good predictive performance was developed by integrating the OARG risk score with clinicopathological factors. Moreover, the OARG-based signature was correlated with DNA damage repair, immune cell signaling pathways, and immunomodulatory functions. The patients in the low-risk subgroup were found to be sensitive to traditional chemotherapeutic, endocrine, and targeted agents (doxorubicin, tamoxifen, lapatinib, etc.) and some novel targeted drugs (sunitinib, pazopanib, etc.). Moreover, patients in the low-risk subgroup may be more susceptible to immune escape and therefore respond less effectively to immunotherapy. CONCLUSIONS In this study, we proposed a comprehensive analytical method for breast cancer assessment based on OARG expression patterns, which could precisely predict clinical outcomes and drug sensitivity of breast cancer patients.
Collapse
Affiliation(s)
- Xin Hua
- Department of Radiation Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qi-Wei Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi-Nuan Zhang
- Department of Radiation Oncology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Lu Cao
- Department of Radiation Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Meng-Di Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yun-Sheng Gao
- Department of Radiation Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Jia-Yi Chen
- Department of Radiation Oncology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
3
|
Jia Y, Wang Y, Dunmall LSC, Lemoine NR, Wang P, Wang Y. Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Front Immunol 2023; 14:1126969. [PMID: 36923404 PMCID: PMC10008950 DOI: 10.3389/fimmu.2023.1126969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Lemoine
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pengju Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Effects of pre-existing anti-adenovirus antibodies on transgene expression levels and therapeutic efficacies of arming oncolytic adenovirus. Sci Rep 2022; 12:21560. [PMID: 36513733 PMCID: PMC9747716 DOI: 10.1038/s41598-022-26030-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oncolytic adenoviruses (OAds), most of which are based on species C human adenovirus serotype 5 (Ad5) (OAd5), have recently received much attention as potential anticancer agents. High seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based gene therapy. However, the impacts of anti-Ad5 neutralizing antibodies on OAd5-mediated transgene expression in the tumor and antitumor effects remain to be fully elucidated. In this study, we examined the impact of anti-Ad5 neutralizing antibodies on the OAd5-mediated antitumor effects and OAd5-mediated transgene expression. The luciferase expression of OAd-tAIB-Luc, which contains the cytomegalovirus promoter-driven luciferase gene, was inhibited in human cultured cells in the presence of human serum. Although the inhibitory effects of human serum possessing the low anti-Ad5 neutralizing antibody titers were overcome by long-term infection, the in vitro tumor cell lysis activities of OAd-tAIB-Luc were entirely attenuated by human serum containing the high titers of anti-Ad5 neutralizing antibodies. OAd-tAIB-Luc-mediated luciferase expression in the subcutaneous tumors 3 days after administration and tumor growth suppression levels following intratumoral administration were significantly lower in mice possessing the high titers of anti-Ad5 neutralizing antibodies, compared to those in control mice. These results suggested that pre-existing anti-Ad5 antibodies attenuated both transgene expression and potential antitumor effects of OAd5 following intratumoral administration.
Collapse
|
5
|
Ono R, Takayama K, Sakurai F, Mizuguchi H. Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species B adenovirus serotype 35. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:399-409. [PMID: 33614920 PMCID: PMC7878985 DOI: 10.1016/j.omto.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Oncolytic adenoviruses (OAds) are among the most promising oncolytic viruses. Almost all oncolytic adenoviruses are composed of human adenovirus serotype 5 (Ad5) (OAd5). However, expression of the primary infection receptor for Ad5, coxsackievirus-adenovirus receptor (CAR), often declines on malignant tumor cells, resulting in inefficient infection in CAR-negative tumor cells. In addition, at least 80% of adults have neutralizing antibodies against Ad5. In this study, we developed a novel OAd fully composed of OAd35. OAd35 recognizes CD46, which is ubiquitously expressed on almost all human cells and is often upregulated on malignant tumor cells, as an infection receptor. Moreover, 20% or fewer adults have neutralizing antibodies against Ad35. OAd35 mediated efficient cell lysis activities at levels similar to OAd5 in CAR-positive tumor cells, while OAd35 showed higher levels of cell lysis activities than OAd5 in CAR-negative tumor cells. Anti-Ad5 serum significantly inhibited in vitro tumor cell lysis activities of OAd5, whereas OAd35 exhibited comparable levels of in vitro tumor cell lysis activities in the presence of anti-Ad5 and naive serum. OAd35 significantly suppressed growth of the subcutaneous CAR-positive and CAR-negative tumors following intratumoral administration. These results indicated that OAd35 is a promising alternative oncolytic virus for OAd5.
Collapse
Affiliation(s)
- Ryosuke Ono
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kosuke Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller BA, Ilkow C, Bell JC, Diallo JS. Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med 2019; 10:10/425/eaao1613. [PMID: 29367345 DOI: 10.1126/scitranslmed.aao1613] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Resistance to oncolytic virotherapy is frequently associated with failure of tumor cells to get infected by the virus. Dimethyl fumarate (DMF), a common treatment for psoriasis and multiple sclerosis, also has anticancer properties. We show that DMF and various fumaric and maleic acid esters (FMAEs) enhance viral infection of cancer cell lines as well as human tumor biopsies with several oncolytic viruses (OVs), improving therapeutic outcomes in resistant syngeneic and xenograft tumor models. This results in durable responses, even in models otherwise refractory to OV and drug monotherapies. The ability of DMF to enhance viral spread results from its ability to inhibit type I interferon (IFN) production and response, which is associated with its blockade of nuclear translocation of the transcription factor nuclear factor κB (NF-κB). This study demonstrates that unconventional application of U.S. Food and Drug Administration-approved drugs and biological agents can result in improved anticancer therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammed Selman
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Paula Ou
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher Rousso
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ramya Krishnan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brian A Keller
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Carolina Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
8
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
9
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Kurihara C, Nakade K, Pan J, Huang J, Wasylyk B, Obata Y. An easy method for preparation of Cre-loxP regulated fluorescent adenoviral expression vectors and its application for direct reprogramming into hepatocytes. ACTA ACUST UNITED AC 2017; 12:26-32. [PMID: 28352551 PMCID: PMC5361070 DOI: 10.1016/j.btre.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/31/2023]
Abstract
The recombinant adenoviral gene expression system is a powerful tool for gene delivery. However, it is difficult to obtain high titers of infectious virus, principally due to the toxicity of the expressed gene which affects on virus replication in the host HEK293 cells. To avoid these problems, we generated a Cre-loxP-regulated fluorescent universal vector (termed pAxCALRL). This vector produces recombinant adenoviruses that express the red fluorescent protein (RFP) instead of the inserted gene during proliferation, which limits toxicity and can be used to monitor viral replication. Expression of the gene of interest is induced by co-infection with an adenovirus that expresses Cre-recombinase (AxCANCre). Recombinant adenovirus produced by this system that express Hnf4α and Foxa2 were used to reprogram mouse embryo fibroblast (MEF) into induced-hepatocyte-like cells (iHep) following several rounds of infection, demonstrating the efficacy of this new system.
Collapse
Affiliation(s)
- Chitose Kurihara
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Jianzhi Pan
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd., Hangzhou, Zhejiang, PR China
| | - Jing Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd., Hangzhou, Zhejiang, PR China
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, Rue Laurent Fries, Illkirch Cedex 67404, France
| | - Yuichi Obata
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
11
|
Li X, Wang P, Li H, Du X, Liu M, Huang Q, Wang Y, Wang S. The Efficacy of Oncolytic Adenovirus Is Mediated by T-cell Responses against Virus and Tumor in Syrian Hamster Model. Clin Cancer Res 2016; 23:239-249. [PMID: 27435398 DOI: 10.1158/1078-0432.ccr-16-0477] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic adenoviruses (Ad) represent an innovative approach to cancer therapy. Its efficacy depends on multiple actions, including direct tumor lysis and stimulation of antiviral and antitumor immune responses. In this study, we investigated the roles of T-cell responses in oncolytic adenoviral therapy. EXPERIMENTAL DESIGN An immunocompetent and viral replication-permissive Syrian hamster tumor model was used. The therapeutic mechanisms of oncolytic Ad were investigated by T-cell deletion, immunohistochemical staining, and CTL assay. RESULTS Deletion of T cells with an anti-CD3 antibody completely demolished the antitumor efficacy of oncolytic Ad. Intratumoral injection of Ad induced strong virus- and tumor-specific T-cell responses, as well as antiviral antibody response. Both antiviral and antitumor T-cell responses contributed to the efficacy of oncolytic Ad. Deletion of T cells increased viral replication and extended the persistence of infectious virus within tumors but almost abrogated the antitumor efficacy. Preexisting antiviral immunity promoted the clearance of injected oncolytic Ad from tumors but had no effect on antitumor efficacy. Strikingly, the repeated treatment with oncolytic Ad has strong therapeutic effect on relapsed tumors or tumors insensitive to the primary viral therapy. CONCLUSIONS These results demonstrate that T cell-mediated immune responses outweigh the direct oncolysis in mediating antitumor efficacy of oncolytic Ad. Our data have a high impact on redesigning the regimen of oncolytic Ad for cancer treatment. Clin Cancer Res; 23(1); 239-49. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Hang Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuexiang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qibin Huang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Ghosh AC, Shimell M, Leof ER, Haley MJ, O'Connor MB. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. Sci Rep 2015; 5:13176. [PMID: 26271729 PMCID: PMC4536494 DOI: 10.1038/srep13176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma R Leof
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Macy J Haley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Abstract
Pancreatic cancer is an insidious type of cancer with its symptoms manifested upon extensive disease. The overall 5-year survival rates between 0.4 and 4%. Surgical resection is an option for only 10% of the patients with pancreatic cancer. Local recurrence and hepatic metastases occur within 2 years after surgery. There are currently several molecular pathways investigated and novel targeted treatments are on the market. However; the nature of pancreatic cancer with its ability to spread locally in the primary site and lymph nodes indicates that further experimentation with local interventional therapies could be a future treatment proposal as palliative care or adjunct to gene therapy and chemotherapy/radiotherapy. In the current review, we will summarize the molecular pathways and present the interventional treatment options for pancreatic cancer.
Collapse
|
14
|
First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2014; 23:202-14. [PMID: 25292189 DOI: 10.1038/mt.2014.194] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viral therapy utilizes a tumor-selective replicating virus which preferentially infects and destroys cancer cells and triggers antitumor immunity. The Western Reserve strain of vaccinia virus (VV) is the most virulent strain of VV in animal models and has been engineered for tumor selectivity through two targeted gene deletions (vvDD). We performed the first-in-human phase 1, intratumoral dose escalation clinical trial of vvDD in 16 patients with advanced solid tumors. In addition to safety, we evaluated signs of vvDD replication and spread to distant tumors, pharmacokinetics and pharmacodynamics, clinical and immune responses to vvDD. Dose escalation proceeded without dose-limiting toxicities to a maximum feasible dose of 3 × 10(9) pfu. vvDD replication in tumors was reproducible. vvDD genomes and/or infectious particles were recovered from injected (n = 5 patients) and noninjected (n = 2 patients) tumors. At the two highest doses, vvDD genomes were detected acutely in blood in all patients while delayed re-emergence of vvDD genomes in blood was detected in two patients. Fifteen of 16 patients exhibited late symptoms, consistent with ongoing vvDD replication. In summary, intratumoral injection of the oncolytic vaccinia vvDD was well-tolerated in patients and resulted in selective infection of injected and noninjected tumors and antitumor activity.
Collapse
|
15
|
Forbes NE, Krishnan R, Diallo JS. Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses. Front Oncol 2014; 4:191. [PMID: 25101247 PMCID: PMC4108035 DOI: 10.3389/fonc.2014.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/07/2014] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
16
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
17
|
Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model. Cancer Gene Ther 2014; 21:228-237. [PMID: 24874842 PMCID: PMC4353496 DOI: 10.1038/cgt.2014.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9, 10-dimethyl-1, 2-benzanthracene (DMBA). These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55K (which are defective in the expression of either E1B-19K alone or both E1B-19K and E1B-55K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intra-tumoral administration of HAdV5 E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers.
Collapse
|
18
|
Dhar D, Toth K, Wold WS. Cycles of transient high-dose cyclophosphamide administration and intratumoral oncolytic adenovirus vector injection for long-term tumor suppression in Syrian hamsters. Cancer Gene Ther 2014; 21:171-8. [PMID: 24722357 PMCID: PMC4013531 DOI: 10.1038/cgt.2014.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/16/2023]
Abstract
Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. With Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide (CP) to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long-term CP treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here, we employed three cycles of transient high-dose CP administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal of CP. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long-term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment.
Collapse
Affiliation(s)
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology Saint Louis University School of Medicine 1100 S. Grand Blvd. Saint Louis, MO 63104 United States
| | - William S.M. Wold
- Department of Molecular Microbiology and Immunology Saint Louis University School of Medicine 1100 S. Grand Blvd. Saint Louis, MO 63104 United States
| |
Collapse
|
19
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
Tagawa M. Ask the Experts: Gene therapy in malignant pleural mesothelioma. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.13.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dr Masatoshi Tagawa graduated with MD from the School of Medicine, Chiba University (Chiba, Japan) and completed the graduated course in Chiba University (awarded PhD) in 1984. He spent a few years in Stanford University (CA, USA) as a postdoctoral fellow and became an assistant professor at Chiba University. He then moved to Chiba Cancer Center Research Institute (Chiba, Japan) as the Head in Division of Pathology and Cell Therapy, and became a professor of Graduate School of Medicine at Chiba University. He is currently a council member of the Japan Society of Gene Therapy and International Society of Cell and Gene Therapy of Cancer. He also serves as an editor of Cancer Gene Therapy. His primary research field is molecular biology and oncology and he is currently working on mesothelioma at preclinical and clinical research levels.
Collapse
Affiliation(s)
- Masatoshi Tagawa
- Division of Pathology & Cell Therapy, Chiba Cancer Center Research Institute & Department of Molecular Biology & Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
21
|
Jiang ZK, Johnson M, Moughon DL, Kuo J, Sato M, Wu L. Rapamycin enhances adenovirus-mediated cancer imaging and therapy in pre-immunized murine hosts. PLoS One 2013; 8:e73650. [PMID: 24023896 PMCID: PMC3759448 DOI: 10.1371/journal.pone.0073650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022] Open
Abstract
Tumor-specific adenoviral vectors comprise a fruitful gene-based diagnostic imaging and therapy research area for advanced stage of cancer, including metastatic disease. However, clinical translation of viral vectors has encountered considerable obstacles, largely due to host immune responses against the virus. Here, we explored the utilization of an immunosuppressant, rapamycin, to circumvent the anti-adenovirus immunity in immunocompetent murine prostate cancer models. Rapamycin diminished adenoviral-induced acute immune response by inhibiting NF-κB activation; it also reduced the scale and delayed the onset of inflammatory cytokine secretion. Further, we found that rapamycin abrogated anti-adenovirus antibody production and retarded the function of myeloid cells and lymphocytes that were activated upon viral administration in pre-immunized hosts. Thus, the co-administration of rapamycin prolonged and enhanced adenovirus-delivered transgene expression in vivo, and thereby augmented the imaging capability of adenoviral vectors in both bioluminescent and positron emission tomography modalities. Furthermore, we showed that despite an excellent response of cancer cells to a cytotoxic gene therapeutic vector in vitro, only minimal therapeutic effects were observed in vivo in pre-immunized mice. However, when we combined gene therapy with transient immunosuppression, complete tumor growth arrest was achieved. Overall, transient immunosuppression by rapamycin was able to boost the diagnostic utility and therapeutic potentials of adenoviral vectors.
Collapse
Affiliation(s)
- Ziyue Karen Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Mai Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Diana L. Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jennifer Kuo
- Department of Molecular, Cellular and Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Makoto Sato
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Institute of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|