1
|
Koj S, Niedziela T, Rossowska J, Schmitt J, Lehn J, Nicolau C, Kieda C. Modulation of the Oxygenation State and Intracellular pH of Erythrocytes by Inositol-Trispyrophosphate Investigated by 31P NMR Study of 2,3-DPG. J Cell Mol Med 2025; 29:e70343. [PMID: 39828634 PMCID: PMC11742965 DOI: 10.1111/jcmm.70343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation. Pathologic, tumour angiogenesis maintains hypoxia, impairing treatment outcomes. Vessel normalisation requires physioxia. Oxygen delivery by red blood cell (RBC) carrying haemoglobin (Hb) is enhanced by myo-inositol trispyrophosphate (ITPP), an effector of oxygen transport by RBCs. Altering glycolytic activity, it lowers intracellular pH and increases oxygen release from Hb. 31P NMR tracking of 2,3-diphosphoglycerate (2,3-DPG), allosteric effector of Hb and non-penetrating anion in RBCs, reports on erythrocytes internal environment. 31P resonances of 2,3-DPG are pH-sensitive, their positions indicate the oxygenation state of RBCs and interactions with effectors such as ITPP. Here we show in vitro and in vivo, that modifying Hb activity through band-3 anion transporter, ITPP enhances oxygen release and controls RBC internal pH. Its blood availability validates applicability of ITPP-based strategies.
Collapse
Affiliation(s)
- Sabina Koj
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | | | | | - Claude Nicolau
- NormOxys Inc.BostonMassachusettsUSA
- Friedman School of Nutrition Science and PolicyTufts UniversityBostonMassachusettsUSA
| | - Claudine Kieda
- Centre for Molecular Biophysics, UPR CNRS 4301OrleansFrance
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of Medicine—National Research InstituteWarsawPoland
| |
Collapse
|
2
|
Shu P, You G, Li W, Chen Y, Chu Z, Qin D, Wang Y, Zhou H, Zhao L. Cefmetazole sodium as an allosteric effector that regulates the oxygen supply efficiency of adult hemoglobin. J Biomol Struct Dyn 2024; 42:7442-7456. [PMID: 37555593 DOI: 10.1080/07391102.2023.2245043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Allosteric effectors play an important role in regulating the oxygen supply efficiency of hemoglobin for blood storage and disease treatment. However, allosteric effectors that are approved by the US FDA are limited. In this study, cefmetazole sodium (CS) was found to bind adult hemoglobin (HbA) from FDA library (1338 compounds) using surface plasmon resonance imaging high-throughput screening. Using surface plasmon resonance (SPR), the interaction between CS and HbA was verified. The oxygen dissociation curve of HbA after CS interaction showed a significant increase in P50 and theoretical oxygen-release capacity. Acid-base sensitivity (SI) exhibited a decreasing trend, although not significantly different. An oxygen dissociation assay indicated that CS accelerated HbA deoxygenation. Microfluidic modulated spectroscopy showed that CS changed the ratio of the alpha-helix to the beta-sheet of HbA. Molecular docking suggested CS bound to HbA's β-chains via hydrogen bonds, with key amino acids being N282, K225, H545, K625, K675, and V544.The results of molecular dynamics simulations (MD) revealed a stable orientation of the HbA-CS complex. CS did not significantly affect the P50 of bovine hemoglobin, possibly due to the lack of Valβ1 and Hisβ2, indicating that these were the crucial amino acids involved in HbA's oxygen affinity. Competition between the 2,3-Diphosphoglycerate (2,3-DPG) and CS in the HbA interaction was also determined by SPR, molecular docking and MD. In summary, CS could interact with HbA and regulate the oxygen supply efficiency via forming stable hydrogen bonds with the β-chains of HbA, and showed competition with 2,3-DPG.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Peilin Shu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Weidan Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Yuzhi Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Zongtang Chu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Dong Qin
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| |
Collapse
|
3
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
4
|
Lam KH, Ma S. Noncellular components in the liver cancer stem cell niche: Biology and potential clinical implications. Hepatology 2023; 78:991-1005. [PMID: 35727189 DOI: 10.1002/hep.32629] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are now recognized as one of the major root causes of therapy failure and tumor recurrence in hepatocellular carcinoma (HCC). Early studies in the field focused primarily on the intrinsic regulators of CSC maintenance, but in recent years, mounting evidence has demonstrated the presence and role of extrinsic regulators in the tumor microenvironment (TME) in the control of liver CSCs. In addition to direct interaction with cellular components, noncellular components, including the extracellular matrix, hypoxia, nutrient deprivation, and secreted molecules within the tumor stroma and hepatitis viruses, also play a critical role in shaping the CSC niche. In this review, we highlight how various noncellular components in the TME play a role in regulating CSCs and how CSCs secrete components to interact with the TME to generate their own niche, working hand in hand to drive tumor physiology in HCC. In addition, we describe the potential clinical applications of these findings and propose perspectives on future research of noncellular components in the liver CSC niche.
Collapse
Affiliation(s)
- Ka-Hei Lam
- School of Biomedical Sciences , Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong , Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences , Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong , Hong Kong
- The University of Hong Kong , Shenzhen Hospital , Hong Kong , Hong Kong
- State Key Laboratory of Liver Research , The University of Hong Kong , Hong Kong , Hong Kong
| |
Collapse
|
5
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Ali J, Yang Y, Pan G. Oxygen micro-nanobubbles for mitigating eutrophication induced sediment pollution in freshwater bodies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117281. [PMID: 36682273 DOI: 10.1016/j.jenvman.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Sediment hypoxia is a growing problem and has negative ecological impacts on the aquatic ecosystem. Hypoxia can disturb the biodiversity and biogeochemical cycles of both phosphorus (P) and nitrogen (N) in water columns and sediments. Anthropogenic eutrophication and internal nutrient release from lakebed sediment accelerate hypoxia to form a dead zone. Thus, sediment hypoxia mitigation is necessary for ecological restoration and sustainable development. Conventional aeration practices to control sediment hypoxia, are not effective due to high cost, sediment disturbance and less sustainability. Owing to high solubility and stability, micro-nanobubbles (MNBs) offer several advantages over conventional water and wastewater treatment practices. Clay loaded oxygen micro-nanobubbles (OMNBs) can be delivered into deep water sediment by gravity and settling. Nanobubble technology provides a promising route for cost-effective oxygen delivery in large natural water systems. OMNBs also have the immense potential to manipulate biochemical pathways and microbial processes for remediating sediment pollution in natural waters. This review article aims to analyze recent trends employing OMNBs loaded materials to mitigate sediment hypoxia and subsequent pollution. The first part of the review highlights various minerals/materials used for the delivery of OMNBs into benthic sediments of freshwater bodies. Release of OMNBs at hypoxic sediment water interphase (SWI) can provide significant dissolved oxygen (DO) to remediate hypoxia induced sediment pollution Second part of the manuscript unveils the impacts of OMNBs on sediment pollutants (e.g., methylmercury, arsenic, and greenhouse gases) remediation and microbial processes for improved biogeochemical cycles. The review article will facilitate environmental engineers and ecologists to control sediment pollution along with ecological restoration.
Collapse
Affiliation(s)
- Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, United Kingdom; Jiangsu Jiuguan Institute of Environment and Resources, Yixing, China.
| |
Collapse
|
7
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
8
|
Oknińska M, Mackiewicz U, Zajda K, Kieda C, Mączewski M. New potential treatment for cardiovascular disease through modulation of hemoglobin oxygen binding curve: Myo-inositol trispyrophosphate (ITPP), from cancer to cardiovascular disease. Biomed Pharmacother 2022; 154:113544. [PMID: 35988421 DOI: 10.1016/j.biopha.2022.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The human body is a highly aerobic organism, which needs large amount of oxygen, especially in tissues characterized by high metabolic demand, such as the heart. Inadequate oxygen delivery underlies cardiovascular diseases, such as coronary artery disease, heart failure and pulmonary hypertension. Hemoglobin, the oxygen-transport metalloprotein in the red blood cells, gives the blood enormous oxygen carrying capacity; thus oxygen binding to hemoglobin in the lungs and oxygen dissociation in the target tissues are crucial points for oxygen delivery as well as potential targets for intervention. Myo-inositol trispyrophosphate (ITPP) acts as an effector of hemoglobin, shifting the oxygen dissociation curve to the right and increasing oxygen release in the target tissues, especially under hypoxic conditions. ITPP has been successfully used in cancer studies, demonstrating anti-cancer properties due to prevention of tumor hypoxia. Currently it is being tested in phase 2 clinical trials in humans with various tumors. First preclinical evidence also indicates that it can successfully alleviate myocardial hypoxia and prevent adverse left ventricular and right ventricular remodeling in post-myocardial infarction heart failure and pulmonary hypertension. The aim of the article is to summarize the current knowledge on ITTP, as well as to determine the prospects for its potential use in the treatment of many cardiovascular disorders.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland; Center for Molecular Biophysics, UPR 4301 CNRS, Orleans, France
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
9
|
Xiang L, Wang Y, Lan J, Na F, Wu S, Gong Y, Du H, Shao B, Xie G. HIF-1-dependent heme synthesis promotes gemcitabine resistance in human non-small cell lung cancers via enhanced ABCB6 expression. Cell Mol Life Sci 2022; 79:343. [PMID: 35661930 PMCID: PMC11072486 DOI: 10.1007/s00018-022-04360-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Gemcitabine is commonly used to treat various cancer types, including human non-small cell lung cancer (NSCLC). However, even cases that initially respond rapidly commonly develop acquired resistance, limiting our ability to effectively treat advanced NSCLC. To gain insight for developing a strategy to overcome gemcitabine resistance, the present study investigated the mechanism of gemcitabine resistance in NSCLC according to the involvement of ATP-binding cassette subfamily B member 6 (ABCB6) and heme biosynthesis. First, an analysis of ABCB6 expression in human NSCLCs was found to be associated with poor prognosis and gemcitabine resistance in a hypoxia-inducible factor (HIF)-1-dependent manner. Further experiments showed that activation of HIF-1α/ABCB6 signaling led to intracellular heme metabolic reprogramming and a corresponding increase in heme biosynthesis to enhance the activation and accumulation of catalase. Increased catalase levels diminished the effective levels of reactive oxygen species, thereby promoting gemcitabine-based resistance. In a mouse NSCLC model, inhibition of HIF-1α or ABCB6, in combination with gemcitabine, strongly restrained tumor proliferation, increased tumor cell apoptosis, and prolonged animal survival. These results suggest that, in combination with gemcitabine-based chemotherapy, targeting HIF-1α/ABCB6 signaling could result in enhanced tumor chemosensitivity and, thus, may improve outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Lisha Xiang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feifei Na
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Wu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Yuzhu Gong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Hanjian Du
- Department of Neurosurgery, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Renmin south road 3 section, Chengdu, 610041, China.
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
10
|
Gómez-Cebrián N, Vázquez Ferreiro P, Carrera Hueso FJ, Poveda Andrés JL, Puchades-Carrasco L, Pineda-Lucena A. Pharmacometabolomics by NMR in Oncology: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14101015. [PMID: 34681239 PMCID: PMC8539252 DOI: 10.3390/ph14101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pharmacometabolomics (PMx) studies aim to predict individual differences in treatment response and in the development of adverse effects associated with specific drug treatments. Overall, these studies inform us about how individuals will respond to a drug treatment based on their metabolic profiles obtained before, during, or after the therapeutic intervention. In the era of precision medicine, metabolic profiles hold great potential to guide patient selection and stratification in clinical trials, with a focus on improving drug efficacy and safety. Metabolomics is closely related to the phenotype as alterations in metabolism reflect changes in the preceding cascade of genomics, transcriptomics, and proteomics changes, thus providing a significant advance over other omics approaches. Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical platforms in metabolomics studies. In fact, since the introduction of PMx studies in 2006, the number of NMR-based PMx studies has been continuously growing and has provided novel insights into the specific metabolic changes associated with different mechanisms of action and/or toxic effects. This review presents an up-to-date summary of NMR-based PMx studies performed over the last 10 years. Our main objective is to discuss the experimental approaches used for the characterization of the metabolic changes associated with specific therapeutic interventions, the most relevant results obtained so far, and some of the remaining challenges in this area.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | | | | | | | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Navarra, Spain
- Correspondence: (L.P.-C.); (A.P.-L.); Tel.: +34-963246713 (L.P.-C.)
| |
Collapse
|
11
|
Grgic I, Tschanz F, Borgeaud N, Gupta A, Clavien PA, Guckenberger M, Graf R, Pruschy M. Tumor Oxygenation by Myo-Inositol Trispyrophosphate Enhances Radiation Response. Int J Radiat Oncol Biol Phys 2021; 110:1222-1233. [PMID: 33587991 DOI: 10.1016/j.ijrobp.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Tumor hypoxia is a major limiting factor for successful radiation therapy outcomes, with hypoxic cells being up to 3-fold more radiation resistant than normoxic cells; tumor hypoxia creates a tumor microenvironment that is hostile to immune response. Thus, pharmaceutical-induced tumor oxygenation before radiation therapy represents an interesting method to enhance the efficacy of radiation therapy. Myo-inositol trispyrophosphate (ITPP) triggers a decrease in the affinity of oxygen to hemoglobin, which leads to an increased release of oxygen upon tissue demand, including in hypoxic tumors. METHODS AND MATERIALS The combined treatment modality of high-dose bolus ITPP with a single high-dose fraction of ionizing radiation (IR) was investigated for its mechanics and efficacy in multiple preclinical animal tumor models in immunocompromised and immunocompetent mice. The dynamics of tumor oxygenation were determined by serial hypoxia-oriented bioimaging. Initial and residual DNA damage and the integrity of the tumor vasculature were quantified on the immunohistochemical level in response to the different treatment combinations. RESULTS ITPP application did not affect tumor growth as a single treatment modality, but it rapidly induced tumor oxygenation, as demonstrated by in vivo imaging, and significantly reduced tumor growth when combined with IR. An immunohistochemical analysis of γH2AX foci demonstrated increased initial and residual IR-induced DNA damage as the primary mechanism for radiosensitization within initially hypoxic but ITPP-oxygenated tumor regions. Scheduling experiments revealed that ITPP increases the efficacy of ionizing radiation only when applied before radiation therapy. Irradiation alone damaged the tumor vasculature and increased tumor hypoxia, which were both prevented by combined treatment with ITPP. Interestingly, the combined treatment modality also promoted increased immune cell infiltration. CONCLUSIONS ITPP-mediated tumor oxygenation and vascular protection triggers immediate and delayed processes to enhance the efficacy of ionizing radiation for successful radiation therapy.
Collapse
Affiliation(s)
- Ivo Grgic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Fabienne Tschanz
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anurag Gupta
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Rolf Graf
- Laboratory of the Swiss-Hepato-Pancreatico-Biliary (HPB) Centre, Department of Visceral Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Schneider MA, Linecker M, Fritsch R, Muehlematter UJ, Stocker D, Pestalozzi B, Samaras P, Jetter A, Kron P, Petrowsky H, Nicolau C, Lehn JM, Humar B, Graf R, Clavien PA, Limani P. Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors. Nat Commun 2021; 12:3807. [PMID: 34155211 PMCID: PMC8217170 DOI: 10.1038/s41467-021-24069-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Hypoxia is prominent in solid tumors and a recognized driver of malignancy. Thus far, targeting tumor hypoxia has remained unsuccessful. Myo-inositol trispyrophosphate (ITPP) is a re-oxygenating compound without apparent toxicity. In preclinical models, ITPP potentiates the efficacy of subsequent chemotherapy through vascular normalization. Here, we report the results of an unrandomized, open-labeled, 3 + 3 dose-escalation phase Ib study (NCT02528526) including 28 patients with advanced primary hepatopancreatobiliary malignancies and liver metastases of colorectal cancer receiving nine 8h-infusions of ITPP over three weeks across eight dose levels (1'866-14'500 mg/m2/dose), followed by standard chemotherapy. Primary objectives are assessment of the safety and tolerability and establishment of the maximum tolerated dose, while secondary objectives include assessment of pharmacokinetics, antitumor activity via radiological evaluation and assessment of circulatory tumor-specific and angiogenic markers. The maximum tolerated dose is 12,390 mg/m2, and ITPP treatment results in 32 treatment-related toxicities (mostly hypercalcemia) that require little or no intervention. 52% of patients have morphological disease stabilization under ITPP monotherapy. Following subsequent chemotherapy, 10% show partial responses while 60% have stable disease. Decreases in angiogenic markers are noted in ∼60% of patients after ITPP and tend to correlate with responses and survival after chemotherapy.
Collapse
Affiliation(s)
- Marcel A Schneider
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Michael Linecker
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Ralph Fritsch
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Urs J Muehlematter
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Daniel Stocker
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Bernhard Pestalozzi
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Panagiotis Samaras
- Oncology Center, Hirslanden Hospital Zurich, Witellikerstrasse 40, Zurich, Switzerland
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Philipp Kron
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Henrik Petrowsky
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Claude Nicolau
- Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA, USA
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France
| | - Bostjan Humar
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| |
Collapse
|
13
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
14
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
15
|
Cao‐Pham T, Tran‐Ly‐Binh A, Heyerick A, Fillée C, Joudiou N, Gallez B, Jordan BF. Combined endogenous MR biomarkers to assess changes in tumor oxygenation induced by an allosteric effector of hemoglobin. NMR IN BIOMEDICINE 2020; 33:e4181. [PMID: 31762121 PMCID: PMC7003919 DOI: 10.1002/nbm.4181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is a crucial factor in cancer therapy, determining prognosis and the effectiveness of treatment. Although efforts are being made to develop methods for assessing tumor hypoxia, no markers of hypoxia are currently used in routine clinical practice. Recently, we showed that the combined endogenous MR biomarkers, R1 and R2 *, which are sensitive to [dissolved O2 ] and [dHb], respectively, were able to detect changes in tumor oxygenation induced by a hyperoxic breathing challenge. In this study, we further validated the ability of the combined MR biomarkers to assess the change in tumor oxygenation induced by an allosteric effector of hemoglobin, myo-inositol trispyrophosphate (ITPP), on rat tumor models. ITPP induced an increase in tumor pO2 , as observed using L-band electron paramagnetic resonance oximetry, as well as an increase in both R1 and R2 * MR parameters. The increase in R1 indicated an increase in [O2 ], whereas the increase in R2 * resulted from an increase in O2 release from blood, inducing an increase in [dHb]. The impact of ITPP was then evaluated on factors that can influence tumor oxygenation, including tumor perfusion, saturation rate of hemoglobin, blood pH and oxygen consumption rate (OCR). ITPP decreased blood [HbO2 ] and significantly increased blood acidity, which is also a factor that right-shifts the oxygen dissociation curve. No change in tumor perfusion was observed after ITPP treatment. Interestingly, ITPP decreased OCR in both tumor cell lines. In conclusion, ITPP increased tumor pO2 via a combined mechanism involving a decrease in OCR and an allosteric effect on hemoglobin that was further enhanced by a decrease in blood pH. MR biomarkers could assess the change in tumor oxygenation induced by ITPP. At the intra-tumoral level, a majority of tumor voxels were responsive to ITPP treatment in both of the models studied.
Collapse
Affiliation(s)
- Thanh‐Trang Cao‐Pham
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - An Tran‐Ly‐Binh
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | | | - Catherine Fillée
- Institut de Recherche Expérimentale et Clinique (IREC), UCLouvainUniversite catholique de LouvainBrusselsBelgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
16
|
Interprofessional and interdisciplinary collaboration for early phase oncological clinical trials in academia-Myo-inositoltrispyrophophate as model. Pharmacol Res 2019; 154:104238. [PMID: 31009662 DOI: 10.1016/j.phrs.2019.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022]
|
17
|
Tran LBA, Cao-Pham TT, Jordan BF, Deschoemaeker S, Heyerick A, Gallez B. Impact of myo-inositol trispyrophosphate (ITPP) on tumour oxygenation and response to irradiation in rodent tumour models. J Cell Mol Med 2018; 23:1908-1916. [PMID: 30575283 PMCID: PMC6378184 DOI: 10.1111/jcmm.14092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Tumour hypoxia is a well-established factor of resistance in radiation therapy (RT). Myo-inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen-binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models. The evolution of tumour pO2 upon ITPP administration was monitored on six models using 1.2 GHz Electron Paramagnetic Resonance (EPR) oximetry. The effect of ITPP on tumour perfusion was assessed by Hoechst staining and the oxygen consumption rate (OCR) in vitro was measured using 9.5 GHz EPR. The therapeutic effect of ITPP with and without RT was evaluated on rhabdomyosarcoma and 9L-glioma rat models. ITPP enhanced tumour oxygenation in six models. The administration of 2 g/kg ITPP once daily for 2 days led to a tumour reoxygenation for at least 4 days. ITPP reduced the OCR in six cell lines but had no effect on tumour perfusion when tested on 9L-gliomas. ITPP plus RT did not improve the outcome in rhabdomyosarcomas. In 9L-gliomas, some of tumours receiving the combined treatment were cured while other tumours did not benefit from the treatment. ITPP increased oxygenation in six tumour models. A decrease in OCR could contribute to the decrease in tumour hypoxia. The association of RT with ITPP was beneficial for a few 9L-gliomas but was absent in the rhabdomyosarcomas.
Collapse
Affiliation(s)
- Ly-Binh-An Tran
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thanh-Trang Cao-Pham
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Gebregiworgis T, Bhinderwala F, Purohit V, Chaika NV, Singh PK, Powers R. Insights into gemcitabine resistance and the potential for therapeutic monitoring. Metabolomics 2018; 14:156. [PMID: 30830412 PMCID: PMC6620022 DOI: 10.1007/s11306-018-1452-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes. OBJECTIVE To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or respond to gemcitabine treatment. RESULTS We applied 1D 1H and 2D 1H-13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a "binary switch" in response to gemcitabine treatment and acquired resistance. CONCLUSION Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient's therapeutic response.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
19
|
Patel MP, Siu V, Silva-Garcia A, Xu Q, Li Z, Oksenberg D. Development and validation of an oxygen dissociation assay, a screening platform for discovering, and characterizing hemoglobin-oxygen affinity modifiers. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1599-1607. [PMID: 29910606 PMCID: PMC5989706 DOI: 10.2147/dddt.s157570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction Hemoglobin (Hb) is a critical molecule necessary for all vertebrates to maintain aerobic metabolism. Hb–oxygen (O2) affinity modifiers have been studied to address various diseases including sickle cell disease, hypoxemia, tumor hypoxia, and wound healing. However, drug development of exogenous Hb modifiers has been hindered by the lack of a technique to rapidly screen compounds for their ability to alter Hb–O2 affinity. We have developed a novel screening assay based upon the spectral changes observed during Hb deoxygenation and termed it the oxygen dissociation assay (ODA). Methodology ODA allows for the quantitation of oxygenated Hb at given time points during Hb deoxygenation on a 96-well plate. This assay was validated by comparing the ability of 500 Hb modifiers to alter the Hb–O2 affinity in the ODA vs the oxygen equilibrium curves obtained using the industry standard Hemox Analyzer instrument. Results A correlation (R2) of 0.7 indicated that the ODA has the potential to screen and identify potent exogenous Hb modifiers. In addition, it allows for concurrent comparison of compounds, concentrations, buffers, or pHs on the level of Hb oxygenation. Conclusion With a cost-effective, simple, rapid, and highly adaptable assay, the ODA will allow researchers to rapidly characterize Hb–O2 affinity modifiers.
Collapse
Affiliation(s)
- Mira P Patel
- Biology Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Vincent Siu
- Biology Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Abel Silva-Garcia
- Biology Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Qing Xu
- Chemistry Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Zhe Li
- Chemistry Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Donna Oksenberg
- Biology Department, Global Blood Therapeutics Inc., South San Francisco, CA, USA
| |
Collapse
|
20
|
Abstract
OBJECTIVE To test the effects of enhanced intracellular oxygen contents on the metastatic potential of colon cancer. BACKGROUND Colorectal cancer is the commonest gastrointestinal carcinoma. Distant metastases occur in half of patients and are responsible for most cancer-related deaths. Tumor hypoxia is central to the pathogenesis of metastases. Myo-Inositoltrispyrophosphate (ITPP), a nontoxic, antihypoxic compound, has recently shown significant benefits in experimental cancer, particularly when combined with standard chemotherapy. Whether ITPP protects from distant metastases in primary colon cancer is unknown. METHODS ITPP alone or combined with FOLFOX was tested in a mouse model with cecal implantation of green fluorescent protein-labeled syngeneic colorectal cancer cells. Tumor development was monitored through longitudinal magnetic resonance imaging-based morphometric analysis and survival. Established serum markers of tumor spread were measured serially and circulating tumor cells were detected via fluorescence measurements. RESULTS ITPP significantly reduced the occurrence of metastases as well as other indicators of tumor aggressiveness. Less circulating tumor cells along with reduction in malignant serum markers (osteopontin, Cxcl12) were noted. The ITPP benefits also affected the primary cancer site. Importantly, animals treated with ITPP had a significant survival benefit compared with respective controls, while a combination of FOLFOX with ITPP conferred the maximum benefits, including dramatic improvements in survival (mean 86 vs 188 d). CONCLUSIONS Restoring oxygen in metastatic colon cancer through ITPP inhibits tumor spread and markedly improves animal survival; an effect that is enhanced through the application of subsequent chemotherapy. These promising novel findings call for a clinical trial on ITPP in patients with colorectal cancer, which is under way.
Collapse
|
21
|
Synthesis and preliminary in vivo evaluation of new [ 18F]fluoro-inositols as Positron Emission Tomography radiotracers. Bioorg Med Chem 2017; 25:5603-5612. [PMID: 28893600 DOI: 10.1016/j.bmc.2017.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the synthesis and radiosynthesis of eight new [18F]fluoro-inositol-based radiotracers in myo- and scyllo-inositol configuration. These radiotracers are equipped with a propyl linker bearing fluorine-18. This fluorinated arm is either on a hydroxyl group, i.e. O-alkylated inositols, or on the cyclohexyl backbone, i.e. C-branched derivatives. To modulate lipophilicity, inositols were synthesized in acetylated or hydroxylated form. Automated radiosynthesis was performed on the AllInOne module and the radiotracers were produced in good radiochemical yields (15-31.5% dc). Preliminary in vivo preclinical evaluation of these eight [18F]fluoro-inositols as Positron Emission Tomography (PET) imaging agents in a breast tumour-bearing mouse model was performed and compared with [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG). Amongst the different inositols, [18F]myo-2 showed the highest tumour uptake 2.34±0.39%ID/g, revealing the potential of this tracer for monitoring breast cancer.
Collapse
|
22
|
Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, Meuth SG, Prevarskaya N, Schwab A. TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch 2017; 469:1567-1577. [PMID: 28849300 DOI: 10.1007/s00424-017-2057-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.
Collapse
Affiliation(s)
- Nikolaj Nielsen
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Tobias Ruck
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Benedikt Hild
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Ilya Kovalenko
- Bayer-Pharma AG, Müllerstr. 178, 13353, Berlin, Germany.,Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48104, USA
| | - Sandra Schimmelpfennig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Jana Welzig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Sarah Sargin
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Otto Lindemann
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | | | - Sven G Meuth
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
23
|
Investigation of discriminant metabolites in tamoxifen-resistant and choline kinase-alpha-downregulated breast cancer cells using 1H-nuclear magnetic resonance spectroscopy. PLoS One 2017. [PMID: 28644842 PMCID: PMC5482454 DOI: 10.1371/journal.pone.0179773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of breast cancer cells (BCCs) and was also promoted by CK-α knockdown, resulting in the survival of TAM-resistant BCCs. There is no comparative study yet about the metabolites resulting from BCCs with TAM-resistance and CK-α knockdown. Therefore, the aim of this study was to explore the discriminant metabolic biomarkers responsible for TAM resistance as well as CK-α expression, which might be linked with autophagy through a protective role. A total of 33 intracellular metabolites, including a range of amino acids, energy metabolism-related molecules and others from cell extracts of the parental cells (MCF-7), TAM-resistant cells (MCF-7/TAM) and CK-α knockdown cells (MCF-7/shCK-α, MCF-7/TAM/shCK-α) were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMRS). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) revealed the existence of differences in the intracellular metabolites to separate the 4 groups: MCF-7 cells, MCF-7/TAM cells, MCF-7-shCK-α cells, and MCF-7/TAM/shCK-α cells. The metabolites with VIP>1 contributed most to the differentiation of the cell groups, and they included fumarate, UA (unknown A), lactate, myo-inositol, glycine, phosphocholine, UE (unknown E), glutamine, formate, and AXP (AMP/ADP/ATP). Our results suggest that these altered metabolites would be promising metabolic biomarkers for a targeted therapeutic strategy in BCCs that exhibit TAM-resistance and aberrant CK-α expression, which triggers a survival and drug resistance mechanism.
Collapse
|
24
|
Srinivasan AJ, Morkane C, Martin DS, Welsby IJ. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol 2017; 10:449-458. [PMID: 28402148 DOI: 10.1080/17474086.2017.1313699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Collapse
Affiliation(s)
| | - Clare Morkane
- b Department of Anesthesia , Royal Free Hospital , London , UK
| | - Daniel S Martin
- b Department of Anesthesia , Royal Free Hospital , London , UK.,c University College London Centre for Altitude Space and Extreme Environment Medicine , London , UK
| | - Ian J Welsby
- d Department of Anesthesiology and Critical Care , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
25
|
Schadde E, Tsatsaris C, Swiderska-Syn M, Breitenstein S, Urner M, Schimmer R, Booy C, Z'graggen BR, Wenger RH, Spahn DR, Hertl M, Knechtle S, Diehl AM, Schläpfer M, Beck-Schimmer B. Hypoxia of the growing liver accelerates regeneration. Surgery 2017; 161:666-679. [PMID: 27436690 DOI: 10.1016/j.surg.2016.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. METHODS A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1α staining. RESULTS The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. CONCLUSION This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.
Collapse
Affiliation(s)
- Erik Schadde
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL; Department of Surgery, Cantonal Hospital Winterthur, Zürich, Switzerland.
| | - Christopher Tsatsaris
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | - Martin Urner
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Roman Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Christa Booy
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Birgit Roth Z'graggen
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Donat R Spahn
- Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Hertl
- Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Stuart Knechtle
- Division of Transplantation, Department of Surgery, Duke University, Durham, NC
| | - Ann Mae Diehl
- Division of Hepatology, Department of Gastroenterology, Duke University, Durham, NC
| | - Martin Schläpfer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland; Department of Anesthesiology, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
26
|
Kron P, Linecker M, Limani P, Schlegel A, Kambakamba P, Lehn JM, Nicolau C, Graf R, Humar B, Clavien PA. Hypoxia-driven Hif2a coordinates mouse liver regeneration by coupling parenchymal growth to vascular expansion. Hepatology 2016; 64:2198-2209. [PMID: 27628483 DOI: 10.1002/hep.28809] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Interaction between sinusoidal endothelial cells and hepatocytes is a prerequisite for liver function. Upon tissue loss, both liver cell populations need to be regenerated. Repopulation occurs in a coordinated pattern, first through the regeneration of parenchyme (hepatocytes), which then produces vascular endothelial growth factor (VEGF) to enable the subsequent angiogenic phase. The signals that instruct hepatocytes to induce timely VEGF remain unidentified. Given that liver is highly vascularized, we reasoned that fluctuations in oxygenation after tissue loss may contribute to the coordination between hepatocyte and sinusoidal endothelial cell proliferation. To prevent drops in oxygen after hepatectomy, mice were pretreated with inositol trispyrophosphate (ITPP), an allosteric effector of hemoglobin causing increased O2 release from heme under hypoxic conditions. ITPP treatment delayed liver weight gain after hepatectomy. Comparison with controls revealed the presence of a hypoxic period around the peak of hepatocyte mitosis. Inhibition of hypoxia led to deficient hepatocyte mitosis, suppressed the regenerative Vegf wave, and abrogated the subsequent reconstruction of the sinusoidal network. These ITPP effects were ongoing with the reduction in hepatocellular hypoxia inducible factor 2a (Hif2a). In contrast, Hif1a was unaffected by ITPP. Hif2a knockdown phenocopied all effects of ITPP, including the mitotic deficiencies, Vegf suppression, and angiogenic failure. CONCLUSIONS Oxygen is a key regulator of liver regeneration. Hypoxia-inherent to the expansion of parenchyme-activates Hif2a to couple hepatocyte mitosis with the angiogenic phase. Hif2a acts as a safeguard to initiate sinusoidal reconstruction only upon successful hepatocyte mitosis, thereby enforcing a timely order onto cell type-specific regeneration patterns. These findings portray the hypoxia-driven Hif2a-Vegf axis as a prime node in coordinating sinusoidal endothelial cell-hepatocyte crosstalk during liver regeneration. (Hepatology 2016;64:2198-2209).
Collapse
Affiliation(s)
- Philipp Kron
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Linecker
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Perparim Limani
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Patryk Kambakamba
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, Strasbourg, France
| | - Claude Nicolau
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Rolf Graf
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Bostjan Humar
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Tampellini M, La Salvia A, Scagliotti GV. Novel investigational therapies for treating biliary tract carcinoma. Expert Opin Investig Drugs 2016; 25:1423-1436. [PMID: 27771967 DOI: 10.1080/13543784.2016.1252330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an epithelial cell malignancy arising from bile ducts and/or peribiliary glands. Even though it is considered as a rare neoplasm, its incidence is raising, particularly in developed countries. Prognosis is generally poor with few patients who present the inclusion criteria for surgery (the mainstay treatment for this tumour). Several genetic alterations potentially driving tumour progression have been described, representing a possible target for new compounds. Areas covered: A clinical trial search in Clinicaltrials.gov encompassing a literature search in PubMed and ASCO/ESMO Websites was undertaken in March 2016. Expert opinion: Notwithstanding a large number of drug tested, results are still disappointing. The main reasons could be the low number of patients enrolled in trials, and the lack of a patient selection based on the biological profile of the tumours. Potential active drugs could have been discharged simply because beneficial in a particular subgroup of patients and not in un unselected population. The future direction of the research should consider biomarker evaluation in order to describe the genetic alteration/s that drive tumour progression and aggressiveness and the mechanisms of drug resistance. Finally, it will be of great interest to consider the results of immunotherapy whenever available.
Collapse
Affiliation(s)
- M Tampellini
- a Department of Oncology, AOU San Luigi di Orbassano , University of Turin , Torino , Italy
| | - A La Salvia
- a Department of Oncology, AOU San Luigi di Orbassano , University of Turin , Torino , Italy
| | - G V Scagliotti
- a Department of Oncology, AOU San Luigi di Orbassano , University of Turin , Torino , Italy
| |
Collapse
|
28
|
Limani P, Linecker M, Kron P, Samaras P, Pestalozzi B, Stupp R, Jetter A, Dutkowski P, Müllhaupt B, Schlegel A, Nicolau C, Lehn JM, Petrowsky H, Humar B, Graf R, Clavien PA. Development of OXY111A, a novel hypoxia-modifier as a potential antitumor agent in patients with hepato-pancreato-biliary neoplasms - Protocol of a first Ib/IIa clinical trial. BMC Cancer 2016; 16:812. [PMID: 27756258 PMCID: PMC5070093 DOI: 10.1186/s12885-016-2855-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
Background Solid tumors, such as hepato-pancreato-biliary cancer, develop tumor hypoxia with tumor growth. Despite advances in surgery, a majority of these patients are in an unresectable condition. At this stage standard cytotoxic chemotherapy regimens are applied with limited success. Novel biological treatment options based on an antiangiogenic mechanism of action neglect other hypoxia mediated mechanisms (e.g. epithelial-mesenchymal transition, Warburg effect, and immunological response) leading to an increased invasiveness with a poor outcome. The novel antihypoxic molecule myo-inositoltrispyrophosphate (ITPP, OXY111A) acts as an allosteric effector of hemoglobin and promotes normoxia in hypoxic tumors. In preclinical studies, tumor growth was reduced and survival prolonged. Additionally, a beneficial side effect profile was observed. Methods In this first Ib/IIa clinical trial we will assess safety and tolerability of OXY111A as well as a proof of concept regarding efficacy in patients with non-resectable primary and secondary tumors of the liver, pancreas, and biliary tract. The study design is exploratory, prospective, open-labelled and mono-centric. The study is divided in a dose escalation part with a maximum of 48 subjects and an extension part, in which 21 subjects will be included. Discussion The novel antihypoxic compound OXY111A has been tested in several cancer animal models showing beneficial effects for both survival and low side effect profiles. This first in patient application of OXY111A will reveal potential beneficial outcomes if anti-hypoxic therapy is added to standard cytotoxic treatment in patients with primary and secondary hepatopancreatobiliary tumors. Trial registration Institution Ethical Board Approval ID: KEK-ZH-Nr. 2014-0374; Swiss regulatory authority Swissmedic (2015DR1009); ClinicalTrials.gov Identifier: NCT02528526, prospectively registered on November 11th, 2014.
Collapse
Affiliation(s)
- Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Michael Linecker
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Philipp Kron
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Panagiotis Samaras
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Bernhard Pestalozzi
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Roger Stupp
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Oncology, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Philipp Dutkowski
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Andrea Schlegel
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Claude Nicolau
- Friedman School of Nutrition Science and Policy, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| | - Henrik Petrowsky
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Bostjan Humar
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland. .,Department of Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| |
Collapse
|
29
|
Ignat M, Akladios CY, Lindner V, Khetchoumian K, Teletin M, Muttter D, Aprahamian PM, Marescaux J. Development of a methodology for in vivo follow-up of hepatocellular carcinoma in hepatocyte specific Trim24-null mice treated with myo-inositol trispyrophosphate. J Exp Clin Cancer Res 2016; 35:155. [PMID: 27686696 PMCID: PMC5041534 DOI: 10.1186/s13046-016-0434-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genetically induced hepatocellular carcinoma (HCC) models are generally used to investigate carcinogenesis pathways, but very few attempts were made to valorize them for pharmacological testing. This study describes a micro-computed tomography (micro-CT) - based methodology for the diagnostic and lifelong follow-up of HCC in the hepatocyte-specific Trim24-null mouse line. Myo-inositol trispyrophosphate (ITPP) was tested as anti-cancer drug. METHODS Partial hepatectomy was performed in 2 months-old Trim24-null mice, in order to accelerate the carcinogenesis process. HCC diagnosis was obtained by micro-CT scan with double contrast agent: 10 μl/g Fenestra™ LC was injected intraperitoneally 6 h prior to imaging and 10 μl/g Fenestra™ VC was injected intravenously 15 min prior to imaging. Twenty three hepatocyte-specific Trim24-null mice were considered for ITPP testing (3 mg/g/week intraperitoneally during 10 months in 12 mice, versus 11 controls). Lifelong follow-up was performed using micro-CT. Comparative analysis was performed using unpaired t test with Welch correction and survival curves were compared by log-rank test. Gene expression analysis was performed using the RT q-PCR technique. RESULTS Double contrast micro-CT scan allowed HCC diagnosis as hypodense, isodense or hyperdense nodules. Positive predictive value was 81.3 %. Negative predictive value was 83.3 %. Tumor growth could be objectified by micro-CT scan before the ITPP treatment was started, and at 3 and 9 months follow-up. Significant progression of tumor volume was demonstrated in the both groups, with no difference between groups (p > 0.05). In the ITPP group, a mild decrease in tumor doubling time was first observed (31.9 +/- 12 days, p > 0.05) followed by a significant increase (59.8 +/- 18.3 days, p = 0.008). However, tumor doubling time was not different between groups (p > 0.05). Median survival after treatment initiation was 223 days (controls) versus 296 days (ITPP group, p = 0.0027). HIF1α, VEGF, glutamine synthase, osteopontin expression levels were not significantly modified at the end of follow-up. In the ITPP group, the p53 expression profile was inversed as compared to the control group, higher in non-tumor livers than in tumors. CONCLUSION ITPP treatment allowed for a two-month survival improvement, with better tolerance of tumor burden and apoptosis increase in non-tumor, pathological livers.
Collapse
Affiliation(s)
- Mihaela Ignat
- IRCAD, 1 place de l’hôpital, 67091 Strasbourg, France
- Department of Digestive and Endocrine Surgery, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg, France
| | - Cherif Youssef Akladios
- Department of Digestive and Endocrine Surgery, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg, France
| | - Véronique Lindner
- Department of Digestive and Endocrine Surgery, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg, France
| | - Konstantin Khetchoumian
- Institute of Genetics and Molecular and Cellular Biology, F-67404 Illkirch, France
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7 Canada
| | - Marius Teletin
- Department of Digestive and Endocrine Surgery, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg, France
- Institute of Genetics and Molecular and Cellular Biology, F-67404 Illkirch, France
| | - Didier Muttter
- IRCAD, 1 place de l’hôpital, 67091 Strasbourg, France
- Department of Digestive and Endocrine Surgery, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg, France
| | | | | |
Collapse
|
30
|
Limani P, Linecker M, Kachaylo E, Tschuor C, Kron P, Schlegel A, Ungethuem U, Jang JH, Georgiopoulou S, Nicolau C, Lehn JM, Graf R, Humar B, Clavien PA. Antihypoxic Potentiation of Standard Therapy for Experimental Colorectal Liver Metastasis through Myo-Inositol Trispyrophosphate. Clin Cancer Res 2016; 22:5887-5897. [DOI: 10.1158/1078-0432.ccr-15-3112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 11/16/2022]
|
31
|
Bijlsma MF, van Laarhoven HWM. The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal. Cancer Metastasis Rev 2016; 34:97-114. [PMID: 25566685 DOI: 10.1007/s10555-014-9541-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A nearly universal feature of pancreatic ductal adenocarcinoma (PDAC) is an extensive presence of activated stroma. This stroma is thought to aid in various tumor-promoting processes and hampers response to therapy. Here, we aim to evaluate the evidence that supports this role of the stroma in PDAC with functional experiments in relevant models, discuss the clinical trials that have aimed to target the stroma in this disease, and examine recent work that explains why these clinical trials based on stroma-targeting strategies have thus far not achieved the expected success. We systematically searched PubMed through August 2014 with no restrictions to identify published peer-reviewed research articles assessing the effect of targeting the stroma on tumor growth or metastases in preclinical animal models. Five hundred and thirty articles were extracted of which 31 were included in the analysis. Unfortunately, due to the large variety in models and outcome measures, we could not perform a meta-analysis of our data. We find that despite an abundance of positive outcomes reported in previous studies on stroma targeting, a strong discrepancy exists with the outcomes of clinical trials and the more recent preclinical work that is in line with these trials. We explain the incongruities by the duration of stroma targeting and propose that chronic stroma targeting treatment is possibly detrimental in the treatment of this disease.
Collapse
Affiliation(s)
- Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Kramer RM, Russell J, Humm JL. Distribution of Gemcitabine Is Nearly Homogenous in Two Orthotopic Murine Models of Pancreatic Cancer. Cancer Biother Radiopharm 2015; 30:299-304. [PMID: 26203552 PMCID: PMC4696432 DOI: 10.1089/cbr.2015.1869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer-related death in the United States. Gemcitabine is a common treatment, but response rates are low, perhaps due in part to tumor hypoxia. We utilized (14)C-labeled gemcitabine to map distribution of the drug with respect to perfused and hypoxic regions of the tumor microenvironment in two orthotopic xenograft models of pancreatic cancer. There was only a slight reduction in gemcitabine in hypoxic areas, with ∼78% of the drug present in hypoxic compared to perfused areas. In addition, only a 4% reduction in gemcitabine was measured at >100 μm from perfused blood vessels. Thus, despite significant areas of hypoxia in these tumors, gemcitabine distribution is relatively homogenous. Ours is the first study to directly measure gemcitabine distribution within tumor tissue, demonstrating that in these models, tumor tissue does not represent a barrier to gemcitabine penetration.
Collapse
Affiliation(s)
- Robin M. Kramer
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, The Rockefeller University, New York, New York
| | - James Russell
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L. Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
33
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-6145. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
34
|
Lehn JM. Perspectives in chemistry--aspects of adaptive chemistry and materials. Angew Chem Int Ed Engl 2015; 54:3276-89. [PMID: 25582911 DOI: 10.1002/anie.201409399] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 12/11/2022]
Abstract
Chemistry, pure and applied, is a science and an industry. By its power over the expressions of matter, it also displays the creativity of art. It has expanded from molecular to supramolecular chemistry and then, by way of constitutional dynamic chemistry, towards adaptive chemistry. Constitutional dynamics allow for adaptation, through component exchange and selection in response to physical stimuli (e.g. light, photoselection), to chemical effectors (e.g. metal ions, metalloselection) or to environmental effects (e.g. phase change) in equilibrium or out-of-equilibrium conditions, towards the generation of the best-adapted/fittest constituent(s) in a dynamic set. Such dynamic systems can be represented by two-dimensional or three-dimensional dynamic networks that define the agonistic and antagonistic relationships between the different constituents linked through component exchange. The introduction of constitutional dynamics into materials science opens perspectives towards adaptive materials and technologies, presenting attractive behavioral features (such as self-healing). In particular, dynamic polymers may undergo modification of their properties (mechanical, optical, etc.) through component exchange and recombination in response to physical or chemical agents. Constitutional adaptive materials open towards a systems materials science and offer numerous opportunities for soft-matter technologies.
Collapse
Affiliation(s)
- Jean-Marie Lehn
- ISIS, Institut de Science et d'Ingénierie Supramoléculaires, 8, allée Gaspard Monge 67000 Strasbourg (France).
| |
Collapse
|
35
|
Lehn JM. Perspektiven der Chemie - Aspekte adaptiver Chemie und adaptiver Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409399] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014; 2:18. [PMID: 25228990 PMCID: PMC4165433 DOI: 10.1186/2049-3002-2-18] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
Background Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. Results We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Conclusions Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Vinee Purohit
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iraklis I Pipinos
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA ; Department of Genetic Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|