1
|
Yoshida K, Misumi M, Hamasaki K, Kyoizumi S, Satoh Y, Tsuruyama T, Uchimura A, Kusunoki Y. High-dose radiation preferentially induces the clonal expansion of hematopoietic progenitor cells over mature T and B cells in mouse bone marrow. Stem Cell Reports 2025; 20:102423. [PMID: 40020684 PMCID: PMC11960520 DOI: 10.1016/j.stemcr.2025.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
Radiation induces clonal hematopoiesis (CH) involving high-frequency somatic mutations in hematopoietic cells. However, the effects of radiation on clonal expansion of hematopoietic progenitor cells and lymphocytes remain elusive. Here, we investigate CH mutations and T cell receptor (TCR) and B cell receptor (BCR) sequences within the bone marrow cells of mice 18 months after irradiation (3 Gy) and age-matched controls. Two to six CH mutations were identified in the irradiated mice (N = 5), while only one of the four control mice carried a CH mutation. These CH mutations detected in the bone marrow were also identified in the splenic CD11b+ myeloid cell population. Meanwhile, the cumulative size of the ten largest TCR and BCR clones, as well as their clonality, did not differ significantly between irradiated and control mice. Our findings suggest that radiation preferentially induces clonal expansion of hematopoietic progenitor cells over mature lymphocytes in the bone marrow.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasunari Satoh
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tatsuaki Tsuruyama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Arikuni Uchimura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| |
Collapse
|
2
|
Taga M, Yoshida K, Yano S, Takahashi K, Kyoizumi S, Sasatani M, Suzuki K, Ogawa T, Kusunoki Y, Tsuruyama T. Hepatic Stellate Cell-mediated Increase in CCL5 Chemokine Expression after X-ray Irradiation Determined In Vitro and In Vivo. Radiat Res 2024; 202:862-869. [PMID: 39449628 DOI: 10.1667/rade-23-00127.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Radiation exposure causes hepatitis which induces hepatic steatosis and fibrosis. Although hepatic stellate cells (HSCs) have been considered potential pathological modulators for the development of hepatitis due to viral and microbial infections, their involvement in radiation-induced hepatitis is yet to be determined. This study aimed to clarify the relationship between radiation exposure and expressions of inflammatory cytokines and chemokines in HSCs in vitro and in vivo. HSCs were obtained from 1-week-old mice, known to be highly sensitive to radiation-induced hepatocellular carcinoma, using a newly established method combining liver perfusion, cell dissociation, and density gradient centrifugation, followed by magnetic negative selection of hematopoietic and endothelial cells with anti-CD45.2 and CD146 antibodies. The isolated HSCs were confirmed by the expression of desmin and glial fibrillary acidic protein (GFAP). We demonstrated that primary cultured HSCs, exposed to X-ray irradiation (0, 1.9, and 3.8 Gy) and cultured for 3 and 7 days, produced elevated levels of C-C motif chemokine ligand 5 (CCL5, also known as RANTES) inflammatory chemokine in a dose-dependent manner. An in vivo immunofluorescence method confirmed that increased CCL5 signals were observed in GFAP-positive HSCs in mouse livers 7 days after whole-body X-ray irradiation (1.9 and 3.8 Gy). Adequate expression of C-C motif chemokine receptor 5 (Ccr5), a receptor for CCL5, was also detected using real-time PCR in the liver of both irradiated and non-irradiated mice. Taken together, our data suggest that HSCs may drive hepatitis via CCL5/CCR5 axis in the liver under radiation-induced stress. Furthermore, this newly established experimental protocol can help evaluate the expression of other inflammatory cytokines in primary cultures of HSCs isolated from infant mice.
Collapse
Affiliation(s)
- Masataka Taga
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Shiho Yano
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Keiko Takahashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Keiji Suzuki
- Radiation Risk Control Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Ogawa
- Center for the Advancement of Higher Education, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Tatsuaki Tsuruyama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Nakamura N. Reasons why the idea that radiation exposures induce cancer needs to be revisited. Int J Radiat Biol 2024; 100:824-833. [PMID: 38647670 DOI: 10.1080/09553002.2024.2338516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE It has long been thought that the carcinogenic effect of radiation resulted from the induction of oncogenic mutations which then led to an increase in the proportion of cancer-bearing individuals. However, even as early as the 1960s, there were indications that the carcinogenic effect of radiation might result from the induction of an earlier onset of cancer. Recently, the former notion was challenged by its inability to explain time-dependent decline of the relative risk following an exposure to radiation, and a parallel shift of mouse survival curves toward younger ages following an exposure to radiation. The two observations are clearly understood if it is assumed only that a radiation exposure causes an earlier onset of spontaneously occurring cancers. METHOD In the present study, a critical review was conducted which examined papers that showed dose responses which apparently supported the mutation induction theory of radiation carcinogenesis. RESULTS It was found that there were two types of misleading experimental designs: one consisted of studies in which observations were prematurely terminated, and which consequently hid a complete story of radiation carcinogenesis. The other set of papers used age adjustments which were derived from the idea that the life shortening effect of radiation needs to be compensated for since tumor mortality becomes higher among older subjects. This type of adjustment appeared reasonable but was found actually to be a different form of description on an earlier onset of cancer following radiation exposures. CONCLUSION In mouse experiments, radiation exposures did not lead to the induction of a large increase in the proportion of tumor deaths when life-long observations were made. Human epidemiologic data are also in line with the earlier onset hypothesis of radiation action. It should be cautioned, however, that the earlier onset model applies only to malignancies whose mortality increases rapidly with the increase of age and does not apply to diseases of short latency such as childhood leukemia and thyroid cancers.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
4
|
de Sousa DJM, Feitosa de Oliveira KG, Pereira IC, do Nascimento GTM, Barrense CO, Martins JA, Pereira Rêgo BDM, Oliveira da Silva TE, Carneiro da Silva FC, Torres-Leal FL. Dietary restriction and hepatic cancer: Systematic review and meta-analysis of animal studies. Crit Rev Oncol Hematol 2024; 196:104264. [PMID: 38341120 DOI: 10.1016/j.critrevonc.2024.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The effect of calorie restriction, fasting, and ketogenic diets on the treatment of liver cancer remains uncertain. Therefore, we conducted a systematic review to evaluate the effect of restrictive diets on the development and progression of liver cancer in animal models. We did a meta-analysis using the Cochrane Collaboration's Review Manager software, with the random effects model and the inverse variance technique. We examined 19 studies that were conducted between 1983 and 2020. Of these, 63.2% investigated calorie restriction, 21.0% experimented with a ketogenic diet, and 15.8% investigated the effects of fasting. The intervention lasted anything from 48 h to 221 weeks. Results showed that restrictive diets may reduce tumor incidence and progression, with a significant reduction in the risk of liver cancer development. Thereby, our results suggest that putting limits on what you eat may help treat liver cancer in more ways than one.
Collapse
Affiliation(s)
- Dallyla Jennifer Morais de Sousa
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Kynnara Gabriella Feitosa de Oliveira
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Glauto Tuquarre Melo do Nascimento
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Clenio Oliveira Barrense
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Jorddam Almondes Martins
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | - Beatriz de Mello Pereira Rêgo
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil
| | | | | | - Francisco Leonardo Torres-Leal
- Metabolic Diseases Glauto Tuquarre Laboratory, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
5
|
Shang Y, Morioka T, Daino K, Nakayama T, Nishimura M, Kakinuma S. Ionizing radiation promotes, whereas calorie restriction suppresses, NASH and hepatocellular carcinoma in mice. Int J Cancer 2023; 153:1529-1542. [PMID: 37458118 DOI: 10.1002/ijc.34651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
The pathological conditions of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are the major risk factors for hepatocellular carcinoma (HCC). Exposure to DNA-damaging agents such as ionizing radiation is another risk factor for HCC; calorie restriction (CR), however, effectively delays the onset of radiation-induced HCC. We investigated whether NASH is relevant to radiation-induced HCC and the cancer-preventing effect of CR. Eight-day-old male B6C3F1 mice were irradiated with 3.8 Gy of X-rays and then fed a standard diet or 30% CR diet from 49 days of age until necropsy, which was performed from 56 to 600 days with ~100-day intervals to assess both pathological changes and gene expression levels. We found that early-life exposure to radiation accelerated lipid accumulation and NASH-like histopathological changes in the liver, accompanied by accelerated development of HCC. CR ameliorated the changes in lipid metabolism in the liver and reversed the NASH-like pathology, which effectively delayed HCC development. Gene-expression profiling revealed the radiation-related activation and CR-related suppression of the peroxisome proliferator-activated receptor gamma/Cd36 pathway of transmembrane fatty-acid translocation before development of the NASH-like state. Thus, early-life exposure to radiation affects lipid metabolism and induces a steatoinflammatory microenvironment that favors HCC development. Therefore, targeting this pathway by CR (or measures that mimic CR) may be a promising strategy for preventing HCC caused by either radiation or other DNA-damaging agents.
Collapse
Affiliation(s)
- Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Nakayama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
6
|
Nakayama T, Sunaoshi M, Shang Y, Takahashi M, Saito T, Blyth BJ, Amasaki Y, Daino K, Shimada Y, Tachibana A, Kakinuma S. Calorie restriction alters the mechanisms of radiation-induced mouse thymic lymphomagenesis. PLoS One 2023; 18:e0280560. [PMID: 36662808 PMCID: PMC9858762 DOI: 10.1371/journal.pone.0280560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Calorie restriction (CR) suppresses not only spontaneous but also chemical- and radiation-induced carcinogenesis. Our previous study revealed that the cancer-preventive effect of CR is tissue dependent and that CR does not effectively prevent the development of thymic lymphoma (TL). We investigated the association between CR and the genomic alterations of resulting TLs to clarify the underlying resistance mechanism. TLs were obtained from previous and new experiments, in which B6C3F1 mice were exposed to radiation at 1 week of age and fed with a CR or standard (non-CR) diet from 7 weeks throughout their lifetimes. All available TLs were used for analysis of genomic DNA. In contrast to the TLs of the non-CR group, those of the CR group displayed suppression of copy-neutral loss of heterozygosity (LOH) involving relevant tumor suppressor genes (Cdkn2a, Ikzf1, Trp53, Pten), an event regarded as cell division-associated. However, CR did not affect interstitial deletions of those genes, which were observed in both groups. In addition, CR affected the mechanism of Ikzf1 inactivation in TLs: the non-CR group exhibited copy-neutral LOH with duplicated inactive alleles, whereas the CR group showed expression of dominant-negative isoforms accompanying a point mutation or an intragenic deletion. These results suggest that, even though CR reduces cell division-related genomic rearrangements by suppressing cell proliferation, tumors arise via diverse carcinogenic pathways including inactivation of tumor suppressors via interstitial deletions and other mutations. These findings provide a molecular basis for improved prevention strategies that overcome the CR resistance of lymphomagenesis.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mizuki Takahashi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Takato Saito
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Bradey AL, Fitter S, Duggan J, Wilczek V, Williams CMD, Cheney EA, Noll JE, Tangseefa P, Panagopoulos V, Zannettino ACW. Calorie restriction has no effect on bone marrow tumour burden in a Vk*MYC transplant model of multiple myeloma. Sci Rep 2022; 12:13128. [PMID: 35908046 PMCID: PMC9338941 DOI: 10.1038/s41598-022-17403-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.
Collapse
Affiliation(s)
- Alanah L Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vicki Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Connor M D Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emma Aj Cheney
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pawanrat Tangseefa
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia. .,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia.,Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
8
|
Tachibana H, Daino K, Ishikawa A, Morioka T, Shang Y, Ogawa M, Matsuura A, Shimada Y, Kakinuma S. Genomic profile of radiation-induced early-onset mouse B-cell lymphoma recapitulates features of Philadelphia chromosome-like acute lymphoblastic leukemia in humans. Carcinogenesis 2022; 43:693-703. [PMID: 35395675 DOI: 10.1093/carcin/bgac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies have revealed a radiation-related increase in the risk of developing acute lymphoblastic leukemia (ALL). Our recent study revealed early induction and increased risk of precursor B-cell (pB) lymphomas in mice after radiation exposure. However, the genomic landscape of radiation-induced B-cell lymphomas remains unclear. To identify the relevant genetic alterations in mice, whole-exome sequencing was performed on both early-onset and late-onset B-cell lymphomas that developed spontaneously or after gamma-irradiation. In addition to multiple driver mutations, the data revealed that interstitial deletion of chromosome 4, including Pax5, and missense mutations in Jak3 are unique genomic alterations in radiation-induced, early-onset B-cell lymphomas. RNA sequencing revealed a pB-cell-type gene-expression profile with no involvement of known fusion genes for human ALLs in the early-onset B-cell lymphomas. Activation of Jak3/Stat5 signaling in early-onset B-cell lymphomas was validated using western capillary electrophoresis. Those features were similar to those of Philadelphia chromosome-like ALL. Our data suggest a critical role for Pax5 loss-of-function mutations in initiating B-cell leukemogenesis coupled with activation of Jak3/Stat5 signaling as a basis for the rapid development of radiation-induced pB-ALL. These molecular signatures for radiation-induced cancers will inform both risk assessment and potential targeted therapies for pB-ALL.
Collapse
Affiliation(s)
- Hirotaka Tachibana
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Chief director, Institute for Environmental Sciences; Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| |
Collapse
|
9
|
Mitigation of Iron Irradiation-Induced Genotoxicity and Genomic Instability by Postexposure Dietary Restriction in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2888393. [PMID: 34926683 PMCID: PMC8677402 DOI: 10.1155/2021/2888393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Postexposure onset of dietary restriction (DR) is expected to provide therapeutic nutritional approaches to reduce health risk from exposure to ionizing radiation (IR) due to such as manned space exploration, radiotherapy, or nuclear accidents as IR could alleviate radiocarcinogenesis in animal models. However, the underlying mechanisms remain largely unknown. This study is aimed at investigating the effect from postexposure onset of DR on genotoxicity and genomic instability (GI) induced by total body irradiation (TBI) in mice. Materials and Methods. Mice were exposed to 2.0 Gy of accelerated iron particles with an initial energy of 500 MeV/nucleon and a linear energy transfer (LET) value of about 200 keV/μm. After TBI, mice were either allowed to free access to a standard laboratory chow or treated under DR (25% cut in diet). Using micronucleus frequency (MNF) in bone marrow erythrocytes, induction of acute genotoxicity and GI in the hematopoietic system was, respectively, determined 1 and 2 months after TBI. Results and Conclusions. TBI alone caused a significant increase in MNF while DR alone did not markedly influence the MNF. DR induced a significant decrease in MNF compared to the treatment by TBI alone. Results demonstrated that postexposure onset of DR could relieve the elevated MNF induced by TBI with high-LET iron particles. These findings indicated that reduction in acute genotoxicity and late GI may be at least a part of the mechanisms underlying decreased radiocarcinogenesis by DR.
Collapse
|
10
|
Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. BIOLOGY 2021; 10:biology10121270. [PMID: 34943185 PMCID: PMC8698457 DOI: 10.3390/biology10121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
The intergenerational effects from chronic low-dose exposure are matters of concern. It is thus important to elucidate the radiation-induced effects of germ cell maturation, fertilization and embryonic development. It is well known that DNA methylation levels in CpG sites in gametes are reprogrammed in stages during their maturity. Furthermore, the binding of Izumo on the surface of sperm and Juno on the surface of oocytes is essential for fertilization. Thus, there is a possibility that these genes are useful indicators to evaluate fertility in mice after irradiation exposure. Therefore, in this study, we analyzed global DNA methylation patterns in the testes and gene expression of Izumo1 and Izumo1r (Juno) in the gonads of mice after neonatal acute high-dose ionizing radiation (HDR) and chronic low-dose ionizing radiation (LDR). One-week-old male and female mice were irradiated with a total dose of 4 Gy, with acute HDR at 7 days at a dose rate of 30 Gy/h and LDR continuously at a dose rate of 6 mGy/h from 7 to 35 days. Their gonads were subsequently analyzed. The results of global DNA methylation patterns in the testes showed that methylation level increased with age in the control group, the LDR group maintained its DNA methylation level, and the HDR group showed decreased DNA methylation levels with age. In the control group, the gene expression level of Izumo1 in the testis did not show age-related changes, although there was high expression at 100 days of age. However, in the LDR group, the expression level recovered after the end of irradiation, while it remained low regardless of age in the HDR group. Conversely, gene expression of Izumo1r (Izumo1 receptor) in the ovary decreased with age in the control group. Although the gene expression of Izumo1r decreased with age in the LDR group, it remained low in the HDR group. Our results indicate that LDR can induce different DNA methylation patterns, and both high- and low-dose radiation before sexual maturity might affect gametogenesis and fertility.
Collapse
|
11
|
Sakama S, Kurusu K, Morita M, Oizumi T, Masugata S, Oka S, Yokomizo S, Nishimura M, Morioka T, Kakinuma S, Shimada Y, Nakamura AJ. An Enriched Environment Alters DNA Repair and Inflammatory Responses After Radiation Exposure. Front Immunol 2021; 12:760322. [PMID: 34745135 PMCID: PMC8570081 DOI: 10.3389/fimmu.2021.760322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
After the Fukushima Daiichi Nuclear Power Plant accident, there is growing concern about radiation-induced carcinogenesis. In addition, living in a long-term shelter or temporary housing due to disasters might cause unpleasant stress, which adversely affects physical and mental health. It's been experimentally demonstrated that "eustress", which is rich and comfortable, has beneficial effects for health using mouse models. In a previous study, mice raised in the enriched environment (EE) has shown effects such as suppression of tumor growth and enhancement of drug sensitivity during cancer treatment. However, it's not yet been evaluated whether EE affects radiation-induced carcinogenesis. Therefore, to evaluate whether EE suppresses a radiation-induced carcinogenesis after radiation exposure, in this study, we assessed the serum leptin levels, radiation-induced DNA damage response and inflammatory response using the mouse model. In brief, serum and tissues were collected and analyzed over time in irradiated mice after manipulating the raising environment during the juvenile or adult stage. To assess the radiation-induced DNA damage response, we performed immunostaining for phosphorylated H2AX which is a marker of DNA double-strand break. Focusing on the polarization of macrophages in the inflammatory reaction that has an important role in carcinogenesis, we performed analysis using tissue immunofluorescence staining and RT-qPCR. Our data confirmed that EE breeding before radiation exposure improved the responsiveness to radiation-induced DNA damage and basal immunity, further suppressing the chronic inflammatory response, and that might lead to a reduction of the risk of radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Sae Sakama
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Keisuke Kurusu
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Mayu Morita
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Takashi Oizumi
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shinya Masugata
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shohei Oka
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| | - Shinya Yokomizo
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiya Shimada
- Executive Director, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Asako J. Nakamura
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| |
Collapse
|
12
|
Wang B, Tanaka K, Katsube T, Maruyama K, Ninomiya Y, Varès G, Liu C, Hirakawa H, Murakami M, Fardous Z, Sultana N, Fujita K, Fujimori A, Nakajima T, Nenoi M. Reduced High-Dose Radiation-Induced Residual Genotoxic Damage by Induction of Radioadaptive Response and Prophylactic Mild Dietary Restriction in Mice. Dose Response 2021; 19:1559325820982166. [PMID: 33628149 PMCID: PMC7883164 DOI: 10.1177/1559325820982166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Hirakawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Nahida Sultana
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Kazuko Fujita
- Department of Pathology, School of Medicine, Toho University, Tokyo, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
13
|
Tachibana H, Morioka T, Daino K, Shang Y, Ogawa M, Fujita M, Matsuura A, Nogawa H, Shimada Y, Kakinuma S. Early induction and increased risk of precursor B-cell neoplasms after exposure of infant or young-adult mice to ionizing radiation. JOURNAL OF RADIATION RESEARCH 2020; 61:648-656. [PMID: 32808021 PMCID: PMC7482158 DOI: 10.1093/jrr/rraa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies of atomic-bomb survivors have revealed an increased risk of lymphoid neoplasm (i.e. acute lymphoblastic leukemia) associated with radiation exposure. In particular, children are more susceptible to radiation-induced precursor lymphoid neoplasm than adults. Although ~75% of human lymphoid tumors are B-cell neoplasms, the carcinogenic risk associated with each stage of differentiation of B-cells after radiation exposure is poorly understood. Therefore, we irradiated mice at infancy or in young adulthood to investigate the effect of age at exposure on the risk of developing B-cell neoplasms. Histopathology was used to confirm the presence of lymphoid neoplasms, and the population of B-cell neoplasms was classified into the precursor B-cell (pro-B and pre-B cell) type and mature B-cell type, according to immunophenotype. The data revealed that precursor B-cell neoplasms were induced soon after radiation exposure in infancy or young adulthood, resulting in a greater risk of developing the neoplasms. This was particularly the case for the pro-B cell type after young adult exposure. Our findings suggest that exposure to radiation at young age increases the risk of developing precursor B-cell neoplasms in humans.
Collapse
Affiliation(s)
- Hirotaka Tachibana
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Misuzu Fujita
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroyuki Nogawa
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | | | - Shizuko Kakinuma
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan. Tel: +81-43-206-3200; Fax: +81-43-206-4138;
| |
Collapse
|
14
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
15
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
16
|
Kakomi S, Nakayama T, Shang Y, Tsuruoka C, Sunaoshi M, Morioka T, Shimada Y, Kakinuma S, Tachibana A. The effects of short-term calorie restriction on mutations in the spleen cells of infant-irradiated mice. JOURNAL OF RADIATION RESEARCH 2020; 61:187-196. [PMID: 31909805 PMCID: PMC7246060 DOI: 10.1093/jrr/rrz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The risk of cancer due to exposure to ionizing radiation is higher in infants than in adults. In a previous study, the effect of adult-onset calorie restriction (CR) on carcinogenesis in mice after early-life exposure to X-rays was examined (Shang, Y, Kakinuma, S, Yamauchi, K, et al. Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int J Cancer. 2014; 135: 1038-47). The results showed that the tumor frequency was reduced in the CR group. However, the mechanism of tumor suppression by CR is not yet clear. In this study, we examined the effects of CR on radiation-induced mutations using gpt delta mice, which are useful to analyze mutations in various tissues throughout the whole body. Infant male mice (1-week old) were exposed to 3.8 Gy X-rays and fed a control (95 kcal/week/mouse) or CR (65 kcal/week/mouse) diet from adult stage (7-weeks old). Mice were sacrificed at the age of 7 weeks, 8 weeks and 100 days, and organs (spleen, liver, lung, thymus) were harvested. Mutations at the gpt gene in the DNA from the spleen were analyzed by using a gpt assay protocol that detects primarily point mutations in the gpt gene. The results showed that mutation frequencies were decreased in CR groups compared with non-CR groups. Sequence analysis of the gpt gene in mutants revealed a reduction in the G:C to T:A transversion in CR groups. Since it is known that 8-oxoguanine could result in this base substitution and that CR has an effect of reducing oxidative stress, these results indicate that the suppression of oxidative stress by CR is the cause of the reduction of this transversion.
Collapse
Affiliation(s)
- Saori Kakomi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takafumi Nakayama
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yi Shang
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masaaki Sunaoshi
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
17
|
Yamauchi K, Ono T, Ayabe Y, Hisamatsu S, Yoneya M, Tsutsumi Y, Komura JI. Life-Shortening Effect of Chronic Low-Dose-Rate Irradiation in Calorie-Restricted Mice. Radiat Res 2019; 192:451-455. [PMID: 31390311 DOI: 10.1667/rr15385.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Calorie restriction is known to influence several physiological processes and to alleviate the late effects of radiation exposure such as neoplasm induction and life shortening. However, earlier related studies were limited to acute radiation exposure. Therefore, in this study we examined the influence of chronic low-dose-rate irradiation on lifespan. Young male B6C3F1/Jcl mice were divided randomly into two groups, which were fed either a low-calorie (65 kcal/ week) or high-calorie (95 kcal/week) diet. The latter is comparable to ad libitum feeding. The animals in the irradiated group were continuously exposed to gamma rays for 400 days at 20 mGy/day, resulting in a total dose of 8 Gy. Exposure and calorie restriction were initiated at 8 weeks of age and the diets were maintained for life. The life-shortening effects from chronic whole-body irradiation were compared between the groups. Body weights were reduced in calorie-restricted mice irrespective of radiation treatment. Radiation induced a shortened median lifespan in both groups, but to a greater extent in the calorie-restricted mice. These results suggest that calorie restriction may sensitize mice to chronic low-dose-rate radiation exposure to produce a life-shortening effect rather than alleviating the effects of radiation.
Collapse
Affiliation(s)
| | | | - Yoshiko Ayabe
- Departments of Radioecology, Institute for Environmental Sciences, Rokkasho, Kamikita, Aomori, Japan
| | - Shun'ichi Hisamatsu
- Departments of Radioecology, Institute for Environmental Sciences, Rokkasho, Kamikita, Aomori, Japan
| | | | - Yuki Tsutsumi
- Departments of Tohoku Environmental Science Service Corporation, 330-2, Noduki, Obuchi, Rokkasho, Kamikita, Aomori, Japan
| | | |
Collapse
|
18
|
Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci 2018; 19:ijms19123855. [PMID: 30513990 PMCID: PMC6321068 DOI: 10.3390/ijms19123855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Radiation has a wide variety of effects on the liver. Fibrosis is a concern in medical fields as one of the acute effects of high-dose irradiation, such as with cancer radiotherapies. Cancer is also an important concern following exposure to radiation. The liver has an active metabolism and reacts to radiations. In addition, effects are modulated by many environmental factors, such as high-calorie foods or alcohol beverages. Adaptations to other environmental conditions could also influence the effects of radiation. Reactions to radiation may not be optimally regulated under conditions modulated by the environment, possibly leading to dysregulation, disease or cancer. Here, we introduce some reactions to ionizing radiation in the liver, as demonstrated primarily in animal experiments. In addition, modulation of radiation-induced effects in the liver due to factors such as obesity, alcohol drinking, or supplements derived from foods are reviewed. Perspectives on medical applications by modulations of radiation effects are also discussed.
Collapse
|
19
|
Zhan C, Dai X, Shen G, Lu X, Wang X, Lu L, Qian X, Rao J. Preoperative short-term fasting protects liver injury in patients undergoing hepatectomy. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:449. [PMID: 30603637 DOI: 10.21037/atm.2018.10.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Our previous study demonstrated that preoperative short-term fasting attenuates mice hepatic ischemia/reperfusion injury (IRI), which greatly piqued our interest in verifying if fasting produces similar protective effects in patients undergoing hepatectomy. Methods Eighty patients with liver tumors were randomized into control (Ctrl, n=40, preoperative fasting for 6 h) or fasting group (Fasting, n=40, preoperative fasting for 24 h). Serum was collected at pre-operation (Pre-Op), post-operation 1 day (POD-1), post-operation 3 days (POD-3), and post-operation 7 days (POD-7). Liver tissue was removed from the resected specimen. Results Sixty-three patients were eventually enrolled, with 33 in Ctrl and 30 in Fasting group. Our data showed that 24 h fasting effectively attenuated elevated sALT and sAST levels after operation (P<0.05), but serum total bilirubin was significantly lower at only POD-3 (P<0.05); and serum albumin was not markedly different in either of the groups. Interestingly, 24 h fasting partially attenuates expression of pro-inflammatory cytokine (TNF-α) and improves oxidative stress (MDA and SOD). Our data further showed short-term fasting triggered Nrf2 signaling pathway. Conclusions This study demonstrates preoperative short-term fasting effectively improves clinical outcomes and markedly attenuates inflammatory responses and oxidative stress in patients undergoing hepatectomy, and Nrf2 signaling pathway may play a key role in fasting against inflammatory responses and oxidant stress.
Collapse
Affiliation(s)
- Chuanfei Zhan
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xinzheng Dai
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Gefengqiang Shen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xu Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ling Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiaofeng Qian
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jianhua Rao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
22
|
Braga-Tanaka I, Tanaka S, Kohda A, Takai D, Nakamura S, Ono T, Tanaka K, Komura JI. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: overview of the studies at the Institute for Environmental Sciences. Int J Radiat Biol 2018. [PMID: 29533133 DOI: 10.1080/09553002.2018.1451048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the results of experiments conducted in the Institute for Environmental Sciences for the past 21 years, focusing on the biological effects of long-term low dose-rate radiation exposure on mice. Mice were chronically exposed to gamma rays at dose-rates of 0.05, 1 or 20 mGy/day for 400 days to total doses of 20, 400 or 8000 mGy, respectively. The dose rate 0.05 mGy/day is comparable to the dose limit for radiation workers. The parameters examined were lifespan, neoplasm incidence, antineoplasm immunity, body weight, chromosome aberration(s), gene mutation(s), alterations in mRNA and protein levels and trans-generational effects. At 20 mGy/day, all biological endpoints were significantly altered except neoplasm incidence in the offspring of exposed males. Slight but statistically significant changes in lifespan, neoplasm incidences, chromosome abnormalities and gene expressions were observed at 1 mGy/day. Except for transient alterations in the mRNA levels of some genes and increased liver neoplasm incidence attributed to radiation exposure, the remaining biological endpoints were not influenced after exposure to 0.05 mGy/day. Results suggest that chronic low dose-rate exposure may induce small biological effects.
Collapse
Affiliation(s)
- Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Atsushi Kohda
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Daisaku Takai
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Shingo Nakamura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Tetsuya Ono
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Kimio Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| |
Collapse
|
23
|
Shang Y, Sawa Y, Blyth BJ, Tsuruoka C, Nogawa H, Shimada Y, Kakinuma S. Radiation Exposure Enhances Hepatocyte Proliferation in Neonatal Mice but not in Adult Mice. Radiat Res 2017; 188:235-241. [DOI: 10.1667/rr14563.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yurika Sawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiroyuki Nogawa
- Department of Biology, Graduate School of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
24
|
Wang B, Katsube T, Begum N, Nenoi M. Revisiting the health effects of psychological stress-its influence on susceptibility to ionizing radiation: a mini-review. JOURNAL OF RADIATION RESEARCH 2016; 57:325-35. [PMID: 27242342 PMCID: PMC4973650 DOI: 10.1093/jrr/rrw035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 05/03/2023]
Abstract
Both psychological stress (PS) and ionizing radiation (IR) cause varied detrimental effects on humans. There has been no direct evidence so far showing PS alone could cause cancer; however, long-lasting PS may affect our overall health and ability to cope with cancer. Due to their living conditions and occupations, some people may encounter concurrent exposure to both PS and IR to a high extent. In addition to possible health effects resulting directly from exposure to IR on these people, fear of IR exposure is also a cause of PS. The question of whether PS would influence susceptibility to IR, radiocarcinogenesis in particular, is of great concern by both the academic world and the public. Recently, investigations using animal PS models demonstrated that PS could modulate susceptibility to IR, causing increased susceptibility to radiocarcinogenesis in Trp53-heterozygous mice, hematological toxicity in peripheral blood and elevated chromosome aberration (dicentrics) frequency in splenocytes of Trp53-wild-type mice. To actively reduce health risk from exposure to IR, further studies are needed to cumulate more evidence and provide insights into the mechanisms underlying the alterations in susceptibility due to PS modulation. This mini-review gives a general overview of the significance of PS effects on humans and experimental animals, with a special focus on summarizing the latest weight-of-evidence approaches to radiobiological studies on PS-induced alterations in susceptibility in experimental animal models. The susceptibility being investigated is mainly in the context of the impact of the modulatory effect of PS on radiocarcinogenesis; we seek to improve understanding of the combined effects of exposure to both PS and IR in order to facilitate, via active intervention, strategies for radiation risk reduction.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takanori Katsube
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Nasrin Begum
- Center for Nuclear Medicine and Ultrasound, Rajshahi Medical College Hospital Campus, G.P.O. Box No. 35, Rajshahi, Bangladesh
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
25
|
Tani S, Blyth BJ, Shang Y, Morioka T, Kakinuma S, Shimada Y. A Multi-stage Carcinogenesis Model to Investigate Caloric Restriction as a Potential Tool for Post-irradiation Mitigation of Cancer Risk. J Cancer Prev 2016; 21:115-20. [PMID: 27390741 PMCID: PMC4933436 DOI: 10.15430/jcp.2016.21.2.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/29/2023] Open
Abstract
The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy.
Collapse
Affiliation(s)
- Shusuke Tani
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| | - Benjamin John Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba,
Japan
| |
Collapse
|
26
|
Imaoka T, Ishii N, Kawaguchi I, Homma-Takeda S, Doi K, Daino K, Nakanishi I, Tagami K, Kokubo T, Morioka T, Hosoki A, Takabatake M, Yoshinaga S. Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. Int J Radiat Biol 2016; 92:289-301. [DOI: 10.3109/09553002.2016.1152413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tatsuhiko Imaoka
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Nobuyoshi Ishii
- Waste Management Research Team, Research Center for Radiation Protection, Chiba, Japan
| | - Isao Kawaguchi
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Shino Homma-Takeda
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Kazutaka Doi
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Project for Human Health, Fukushima Projects Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Kazuhiro Daino
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Ikuo Nakanishi
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Keiko Tagami
- Waste Management Research Team, Research Center for Radiation Protection, Chiba, Japan
| | - Toshiaki Kokubo
- Department of Technical Support and Development, Research Development and Support Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takamitsu Morioka
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Ayaka Hosoki
- Radiation Effect Accumulation and Prevention Project, Fukushima Projects Headquarters, Chiba, Japan
| | - Masaru Takabatake
- National Institute of Radiological Sciences, Radiobiology for Children's Health Program, Research Center for Radiation Protection, Chiba, Japan
| | - Shinji Yoshinaga
- Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- Project for Human Health, Fukushima Projects Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
27
|
Nakajima T, Vares G, Wang B, Nenoi M. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver. PLoS One 2016; 11:e0146730. [PMID: 26752639 PMCID: PMC4713437 DOI: 10.1371/journal.pone.0146730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/20/2015] [Indexed: 12/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu) was administered daily to female mice (C3H/He) for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day) for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v) ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH) metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Guillaume Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|