1
|
Feghaly C, Challita R, Hadir HB, Mobayed T, Bitar TA, Harbi M, Ghorayeb H, El-Hassan R, Bodgi L. Bladder Cancer Treatments in the Age of Personalized Medicine: A Comprehensive Review of Potential Radiosensitivity Biomarkers. Biomark Insights 2024; 19:11772719241297168. [PMID: 39512649 PMCID: PMC11542137 DOI: 10.1177/11772719241297168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer is one of the most frequently diagnosed cancers in men. While cystectomy remains the primary treatment, advances in radiotherapy and chemotherapy have highlighted the value of bladder-preserving strategies, which can also enhance patients' quality of life. Despise these advances, around 20% of patients may still require salvage cystectomy due to tumor radioresistance. This underscores the need to develop radiosensitivity predictive assays. Radiotherapy acts by inducing DNA damage, primarily through DNA double-strand breaks, which can significantly affect treatment outcomes if left unrepaired. In addition to activating DNA repair pathways, the response to radiation also involves the tumor microenvironment, cell death pathways, immune responses and different types of cell death and proliferation receptors. In recent years, personalized medicine, which tailors treatments to individual patients, has gained increasing attention in cancer care. The development of chemo- and radiosensitivity predictive assays has become a key focus of cancer research. Despite the potential impact of such assays on bladder cancer treatment, there is still no reliable test that can help clinicians and informs patients in choosing the best treatment. This review aims to highlight studies that attempted to characterize bladder cancer radiosensitivity and to discuss the potential biomarkers that could be used to develop bladder cancer radiosensitivity predictive assays.
Collapse
Affiliation(s)
- Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hanine Bou Hadir
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tala Mobayed
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Al Bitar
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Harbi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hala Ghorayeb
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, Inserm, Lyon, France
| |
Collapse
|
2
|
Li Y, Liu Y, Chang M, Mu R, Zhu J. Effect of RNAi-Mediated Survivin and Hypoxia-Inducible Factor 1α Gene Silencing on Proliferation, Invasion, Migration and Apoptosis of Gastric Cancer BGC-823 Cells. Mol Biotechnol 2024; 66:1872-1882. [PMID: 37440157 DOI: 10.1007/s12033-023-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
In order to investigate the effects of RNAi-mediated survivin and hypoxia-inducible factor 1α (HIF-1α) gene silencing on the proliferation and apoptosis of gastric cancer BGC-823 cells, small interfering RNAs (siRNAs) targeting survivin and HIF-1α mRNAs, respectively, as well as scrambled siRNAs (SCRs) were designed and synthesized, namely siRNA-survivin group, siRNA-HIF-1α group, and SCR group. The hypoxia-sensitive gastric cancer BGC-823 cells were identified and transfected in vitro with Hifectin II under hypoxic conditions, and the expression of survivin and HIF-1α was assessed by RT-PCR and Western blotting assays, respectively. The ability of apoptosis, proliferation, invasion, and migration was measured, and the results showed that HIF-1α expression was significantly increased in BGC-823 cells under hypoxic conditions, and survival-targeted siRNA transfection decreased the expression of survivin under hypoxic conditions, while co-transfection of survivin-targeted siRNA and HIF-1α-targeted siRNA down-regulated both survivin and HIF-1α expression. Compared with the blank control group, the co-transfected siRNA group exhibited distinct characteristics, with decreased invasion and migration ability, increased apoptosis, and significantly decreased cell proliferation under hypoxic conditions. It was confirmed that the downregulation of survivin and HIF-1α in BGC-823 cells may induce anticancer effects by enhancing apoptosis and decreasing proliferation, migration, and invasion ability. The novelty lies in the application of RNAi technology to silence the expression of both survivin and HIF-1α genes in gastric cancer BGC-823 cells by single and combined interference in an established gastric cancer cell model and observed the mechanism of its effect on the proliferation and apoptosis of gastric cancer cells. Concerning the success of this highly active antiretroviral therapy of gene disruption therapies, which is the first of its kind in the world, we wonder whether we can find other better gene targets for more kinds of tumor therapy.
Collapse
Affiliation(s)
- Yupeng Li
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Yongchao Liu
- Basic Medical College, Beihua University, Jilin, Jilin, China
- Medical Laboratory Technology College, Beihua University, Jilin, Jilin, China
| | - Mingzhu Chang
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Runhong Mu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| | - Jianyu Zhu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| |
Collapse
|
3
|
Peng L, Wang Y, Luo J, Liu Y, Wang F. miR-128-3p increases the radiosensitivity in nasopharyngeal carcinoma via regulating vascular endothelial growth factor C. Pathol Res Pract 2023; 249:154768. [PMID: 37639953 DOI: 10.1016/j.prp.2023.154768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE This study aims to investigate the role of miR-128-3p in the radiosensitivity of nasopharyngeal carcinoma (NPC) and its underlying mechanism. METHODS 6-10B cells were transfected with miR-128-3p mimic, pcDNA-VEGFC, and the corresponding negative control. C666-1 cells were transfected with miR-128-3p inhibitor, sh-VEGFC, and the corresponding negative control. RT-qPCR was used to determine the miR-128-3p and VEGFC mRNA expression level. Dual-luciferase assay was used to investigate the relationship between miR-128-3p and VEGFC. The protein levels of VEGFC, H2AX, γ-H2AX, p-P50, p-P65, p-IκB, and the apoptosis markers Bcl-2, caspase3, caspase9, and Bax were detected by Western blot. The proliferation activity was detected by CCK-8, and cell DNA damage was assessed by comet assay. The apoptosis rate was detected by flow cytometry. The growth of NPC in vivo was observed in mice through xenotransplantation. TUNEL staining was used to detect cell apoptosis in tumor tissues. RESULTS miR-128-3p was targeted and was negatively regulated with VEGFC. Overexpression of miR-128-3p or knockdown VEGFC significantly inhibited the proliferation of 6-10B and C666-1 cells, induced DNA damage and apoptosis and promoted the radiosensitivity of cells. Knocking down miR-128-3p or up-regulated VEGFC promoted the proliferation of C666-1 and 6-10B cells, reduced cell DNA damage and apoptosis, and enhanced cell resistance to radiotherapy. Overexpression of miR-128-3p reversed the effect of VEGFC on 6-10B cells and inhibited P50/P65/IKB signal pathway. In vivo, experiments in mice confirmed that miR-128-3p significantly inhibited NPC proliferation and promoted DNA damage and apoptosis by targeting VEGFC. CONCLUSION The miR-128-3p pathway is a novel therapy target to overcome radiation resistance in NPC.
Collapse
Affiliation(s)
- Lisha Peng
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong Wang
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jie Luo
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yan Liu
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Feng Wang
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
4
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
5
|
Fernández-Palanca P, Payo-Serafín T, Méndez-Blanco C, San-Miguel B, Tuñón MJ, González-Gallego J, Mauriz JL. Neuropilins as potential biomarkers in hepatocellular carcinoma: a systematic review of basic and clinical implications. Clin Mol Hepatol 2023; 29:293-319. [PMID: 36726054 PMCID: PMC10121286 DOI: 10.3350/cmh.2022.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
7
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Sauerbrei W, Haeussler T, Balmford J, Huebner M. Structured reporting to improve transparency of analyses in prognostic marker studies. BMC Med 2022; 20:184. [PMID: 35546237 PMCID: PMC9095054 DOI: 10.1186/s12916-022-02304-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Factors contributing to the lack of understanding of research studies include poor reporting practices, such as selective reporting of statistically significant findings or insufficient methodological details. Systematic reviews have shown that prognostic factor studies continue to be poorly reported, even for important aspects, such as the effective sample size. The REMARK reporting guidelines support researchers in reporting key aspects of tumor marker prognostic studies. The REMARK profile was proposed to augment these guidelines to aid in structured reporting with an emphasis on including all aspects of analyses conducted. METHODS A systematic search of prognostic factor studies was conducted, and fifteen studies published in 2015 were selected, three from each of five oncology journals. A paper was eligible for selection if it included survival outcomes and multivariable models were used in the statistical analyses. For each study, we summarized the key information in a REMARK profile consisting of details about the patient population with available variables and follow-up data, and a list of all analyses conducted. RESULTS Structured profiles allow an easy assessment if reporting of a study only has weaknesses or if it is poor because many relevant details are missing. Studies had incomplete reporting of exclusion of patients, missing information about the number of events, or lacked details about statistical analyses, e.g., subgroup analyses in small populations without any information about the number of events. Profiles exhibit severe weaknesses in the reporting of more than 50% of the studies. The quality of analyses was not assessed, but some profiles exhibit several deficits at a glance. CONCLUSIONS A substantial part of prognostic factor studies is poorly reported and analyzed, with severe consequences for related systematic reviews and meta-analyses. We consider inadequate reporting of single studies as one of the most important reasons that the clinical relevance of most markers is still unclear after years of research and dozens of publications. We conclude that structured reporting is an important step to improve the quality of prognostic marker research and discuss its role in the context of selective reporting, meta-analysis, study registration, predefined statistical analysis plans, and improvement of marker research.
Collapse
Affiliation(s)
- Willi Sauerbrei
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
| | - Tim Haeussler
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - James Balmford
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Zhang Q, Liu Y, Chen P, Shi X, Liu Y, Shi L, Cong P, Mao S, Tong C, Du C, Hou M. Solute carrier family 12 member 8 (SLC12A8) is a potential biomarker and related to tumor immune cell infiltration in bladder cancer. Bioengineered 2021; 12:4946-4961. [PMID: 34365894 PMCID: PMC8806707 DOI: 10.1080/21655979.2021.1962485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The solute carrier family has been reported to play critical roles in the progression of several cancers; however, the relationship between solute carrier family 12 member 8 (SLC12A8) and bladder cancer (BC) has not been clearly confirmed. This study explores the prognostic value of SLC12A8 for BC and its correlation with immune cell infiltration. We found that the expression of SLC12A8 mRNA was significantly overexpressed in BC tissues compared with noncancerous tissues in multiple public databases, and the result was validated using real-time PCR and immunohistochemistry (IHC). The Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of SLC12A8 for BC. The high expression of SLC12A8 led to a shorter overall survival time and was an unfavorable prognostic biomarker for BC. The mechanisms of SLC12A8 promoting tumorigenesis were investigated by Gene Set Enrichment Analysis (GSEA). Moreover, the correlations of SLC12A8 expression with the tumor-infiltrating immune cells (TICs) in BC were explored using TIMER 2.0 and CIBERSORT. SLC12A8 was associated with CD4+ T cells, dendritic cells, neutrophils, and macrophages infiltration. The expression of SLC12A8 was positively correlated with crucial immune checkpoint molecules. In conclusion, SLC12A8 might be an unfavorable prognostic biomarker in BC related to tumor immune cell infiltration.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R. China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Peng Chen
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, P.R. China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Peifang Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Cangci Tong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning, P.R. China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R. China
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| |
Collapse
|
10
|
Neuropilin-2 and Its Transcript Variants Correlate with Clinical Outcome in Bladder Cancer. Genes (Basel) 2021; 12:genes12040550. [PMID: 33918816 PMCID: PMC8070368 DOI: 10.3390/genes12040550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Urothelial bladder cancer ranks among the 10 most frequently diagnosed cancers worldwide. In our previous study, the transmembrane protein neuropilin-2 (NRP2) emerged as a predictive marker in patients with bladder cancer. NRP2 consists of several splice variants; the most abundant of these, NRP2a and NRP2b, are reported to have different biological functions in lung cancer progression. For other cancer types, there are no published data on the role of these transcript variants in cancer progression and the clinical outcome. Here, we correlate NRP2 and its two most abundant transcript variants, NRP2A and NRP2B, with the clinical outcome using available genomic data with subsequent validation in our own cohort of patients with muscle-invasive bladder cancer. In addition to NRP2, NRP1 and the NRP ligands PDGFC and PDGFD were studied. Only NRP2A emerged as an independent prognostic marker for shorter cancer-specific survival in muscle-invasive bladder cancer in our cohort of 102 patients who underwent radical cystectomy between 2008 and 2014 with a median follow-up time of 82 months. Additionally, we demonstrate that high messenger expression of NRP2, NRP1, PDGFC and PDGFD associates with a more aggressive disease (i.e., a high T stage, positive lymph node status and reduced survival).
Collapse
|
11
|
Zhao L, Chen H, Lu L, Wang L, Zhang X, Guo X. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target 2020; 29:155-167. [PMID: 32838575 DOI: 10.1080/1061186x.2020.1815210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Local tumour sites lead to pathological angiogenesis and lymphangiogenesis due to malignant conditions such as hypoxia. Although VEGF and VEGFR are considered to be the main anti-tumour treatment targets, the problems of limited efficacy and observable side effects of some drugs relevant to this target still remain to be solved. Therefore, it is necessary to identify new therapeutic targets for angiogenesis or lymphangiogenesis. The neuropilin family is a class of single transmembrane glycoprotein receptors, including neuropilin1 (NRP1) and neuropilin2 (NRP2), which could act as co-receptors of VEGFA-165 and VEGFC and play a key role in promoting tumour proliferation, invasion and metastasis. In this review, we introduced the schematic diagram to visually reveal the function of NRP1 and NRP2 in enhancing the binding affinity of VEGFR2 to VEGFA-165 and VEGFR3 to VEGFC, respectively. We also discussed the signalling pathways that depend on the co-receptors NRP1 and NRP2 and some existing targeted therapeutic strategies, such as monoclonal antibodies, targeted peptides, microRNAs and small molecule inhibitors. It will contribute a vital foundation for the future research and development of new drugs targeting NRPs. HIGHLIGHTS NRP1 acts as a co-receptor with VEGFR2 and the pro-angiogenic factor VEGFA-165 to up-regulate tumour angiogenesis by promoting endothelial cells proliferation, survival, migration, invasion and by preventing of apoptosis. NRP2 acts as a co-receptor with VEGFR3 and the pro-lymphogenic factor VEGFC to facilitate tumour metastasis by promoting lymphangiogenesis. Although NRP1 and NRP2 do not have enzymatic signalling activity, the affinity of VEGFR2 for VEGFA-165 and VEGFR3 for VEGFC can increase in a co-receptor manner, as detailed in the schematic. The exclusive roles of NRP1 and NRP2 in signalling pathways are specifically described to emphasise the molecular regulatory mechanisms involved in co-receptors. Various studies have shown that the co-receptors NRP1 and NRP2 can be directly or indirectly targeted by different methods to prevent tumour angiogenesis and lymphangiogenesis. Therapeutic strategies targeting NRPs look promising soon as evidenced by preclinical and clinical studies.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan, China
| | - Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lei Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
12
|
Cheng S, Jiang Z, Xiao J, Guo H, Wang Z, Wang Y. The prognostic value of six survival-related genes in bladder cancer. Cell Death Discov 2020; 6:58. [PMID: 32695477 PMCID: PMC7359373 DOI: 10.1038/s41420-020-00295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to identify genes that are differentially expressed in paracancerous tissue and to determine the potential predictive value of selected gene panel. Gene transcriptome data of bladder tissue was downloaded from UCSC Xena browser and NCBI GEO repository, including GTEx (the Genotype-Tissue Expression project) data, TCGA (The Cancer Genome Atlas) data, and GEO (Gene Expression Omnibus) data. Differentially Expressed Genes (DEGs) analysis was performed to identify tumor-DEGs candidate genes, using the intersection of tumor-paracancerous DEGs genes and paracancerous-normal DEGs genes. The survival-related genes were screened by Kaplan-Meier (KM) survival analysis and univariable Cox regression with the cutoff criteria of KM < 0.05 and cox p-value < 0.05. The risk model was developed using Lasso regression. The clinical data were analyzed by univariate and multivariate Cox regression analysis. Gene Ontology (GO) and KEGG enrichment analysis were performed in the DEGs genes between the high-risk and low-risk subgroups. We identified six survival-related genes, EMP1, TPM1, NRP2, FGFR1, CAVIN1, and LATS2, found in the DEG analyses of both, tumor-paracancerous and paracancerous-normal differentially expressed data sets. Then, the patients were classified into two clusters, which can be distinguished by specific clinical characteristics. A three-gene risk prediction model (EMP1, FGFR1, and CAVIN1) was constructed in patients within cluster 1. The model was applied to categorize cluster 1 patients into high-risk and low-risk subgroups. The prognostic risk score was considered as an independent prognostic factor. The six identified survival-related genes can be used in molecular characterization of a specific subtype of bladder cancer. This subtype had distinct clinical features of T (topography), N (lymph node), stage, grade, and survival status, compared to the other subtype of bladder cancer. Among the six identified survival-related genes, three-genes, EMP1, FGFR1, and CAVIN1, were identified as potential independent prognostic markers for the specific bladder cancer subtype with clinical features described.
Collapse
Affiliation(s)
- Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
13
|
Andreatos N, Iyer G, Grivas P. Emerging biomarkers in urothelial carcinoma: Challenges and opportunities. Cancer Treat Res Commun 2020; 25:100179. [PMID: 32920502 PMCID: PMC8387954 DOI: 10.1016/j.ctarc.2020.100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Advanced urothelial carcinoma (UC) is a very important cause of cancer-related morbidity and mortality with, until recently, only a few available therapeutic options. The treatment landscape has dramatically changed in recent years with the introduction of immune checkpoint inhibitors and the development of novel targeted agents, such as erdafitinib, and antibody-drug conjugates, such as enfortumab vedotin. Cost-effective utilization of this rapidly expanding therapeutic armamentarium can be further optimized via the identification and validation of reliable prognostic and predictive biomarkers that inform prognostication and patient selection. In this review, we aim to summarize examples of recent developments in the rapidly expanding field of emerging biomarkers in UC, outlining challenges and opportunities.
Collapse
Affiliation(s)
- Nikolaos Andreatos
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Gopa Iyer
- Assistant Attending Physician, Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Petros Grivas
- Division of Oncology, Department of Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, United States.
| |
Collapse
|
14
|
Schulz A, Gorodetska I, Behrendt R, Fuessel S, Erdmann K, Foerster S, Datta K, Mayr T, Dubrovska A, Muders MH. Linking NRP2 With EMT and Chemoradioresistance in Bladder Cancer. Front Oncol 2020; 9:1461. [PMID: 32038994 PMCID: PMC6986262 DOI: 10.3389/fonc.2019.01461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropilin-2 (NRP2) is a prognostic indicator for reduced survival in bladder cancer (BCa) patients. Together with its major ligand, vascular endothelial growth factor (VEGF)-C, NRP2 expression is a predictive factor for treatment outcome in response to radiochemotherapy in BCa patients who underwent transurethral resection. Therefore, we investigated the benefit of combining cisplatin-based chemotherapy with irradiation treatment in the BCa cell line RT112 exhibiting or lacking endogenous NRP2 expression in order to evaluate NRP2 as potential therapeutic target. We have identified a high correlation of NRP2 and the glioma-associated oncogene family zinc finger 2 (GLI2) transcripts in the cancer genome atlas (TCGA) cohort of BCa patients and a panel of 15 human BCa cell lines. Furthermore, we used in vitro BCa models to show the transforming growth factor-beta 1 (TGFβ1)-dependent regulation of NRP2 and GLI2 expression levels. Since NRP2 was shown to bind TGFβ1, associate with TGFβ receptors, and enhance TGFβ1 signaling, we evaluated downstream signaling pathways using an epithelial-to-mesenchymal transition (EMT)-assay in combination with a PCR profiling array containing 84 genes related to EMT. Subsequent target validation in NRP2 knockout and knockdown models revealed secreted phosphoprotein 1 (SPP1/OPN/Osteopontin) as a downstream target positively regulated by NRP2.
Collapse
Affiliation(s)
- Alexander Schulz
- Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Ielizaveta Gorodetska
- Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Rayk Behrendt
- Faculty of Medicine, Institute for Immunology, Technische Universität Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Kati Erdmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Sarah Foerster
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Mayr
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Anna Dubrovska
- Faculty of Medicine and University Hospital Carl Gustav Carus, OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael H. Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
15
|
Borkowetz A, Froehner M, Rauner M, Conrad S, Erdmann K, Mayr T, Datta K, Hofbauer LC, Baretton GB, Wirth M, Fuessel S, Toma M, Muders MH. Neuropilin‐2 is an independent prognostic factor for shorter cancer‐specific survival in patients with acinar adenocarcinoma of the prostate. Int J Cancer 2019; 146:2619-2627. [DOI: 10.1002/ijc.32679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Kati Erdmann
- Department of Urology Technische Universität Dresden Germany
| | - Thomas Mayr
- Institute of Pathology, Technische Universität Dresden Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center Omaha NE
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universität Dresden Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden Dresden Germany
| | - Manfred Wirth
- Department of Urology Technische Universität Dresden Germany
| | - Susanne Fuessel
- Department of Urology Technische Universität Dresden Germany
| | - Marietta Toma
- Institute of Pathology, Technische Universität Dresden Germany
| | | |
Collapse
|
16
|
Miyamoto DT, Mouw KW, Feng FY, Shipley WU, Efstathiou JA. Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder cancer. Lancet Oncol 2019; 19:e683-e695. [PMID: 30507435 DOI: 10.1016/s1470-2045(18)30693-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Although muscle-invasive bladder cancer is commonly treated with radical cystectomy, a standard alternative is bladder preservation therapy, consisting of maximum transurethral bladder tumour resection followed by radiotherapy with concurrent chemotherapy. Although no successfully completed randomised comparisons are available, the two treatment paradigms seem to have similar long-term outcomes; however, clinicopathologic parameters can be insufficient to provide clear guidance in the selection of one treatment over the other. Recent advances in the molecular understanding of bladder cancer have led to the identification of new predictive biomarkers that ultimately might help guide the tailored selection of therapy on the basis of the intrinsic biology of the tumour. In this Review, we discuss the existing evidence for molecular alterations and genomic signatures as prognostic or predictive biomarkers for bladder preservation therapy. If validated in prospective clinical trials, such biomarkers could enable the identification of subgroups of patients who are more likely to benefit from one treatment over another, and guide the use of combination therapies that include other modalities, such as immunotherapy, which might act synergistically with radiotherapy.
Collapse
Affiliation(s)
- David T Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA; Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, CA, USA
| | - William U Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Napolitano V, Tamagnone L. Neuropilins Controlling Cancer Therapy Responsiveness. Int J Mol Sci 2019; 20:ijms20082049. [PMID: 31027288 PMCID: PMC6515012 DOI: 10.3390/ijms20082049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins, acting as co-receptors for secreted Semaphorins (SEMAs) and for members of the vascular endothelial growth factor (VEGF) family; they have been initially implicated in axon guidance and angiogenesis regulation, and more recently in cancer progression. In addition, NRPs have been shown to control many other fundamental signaling pathways, especially mediated by tyrosine kinase receptors (RTKs) of growth factors, such as HGF (hepatocyte growth factor), PDGF (platelet derived growth factor) and EGF (epidermal growth factor). This enables NRPs to control a range of pivotal mechanisms in the cancer context, from tumor cell proliferation and metastatic dissemination, to tumor angiogenesis and immune escape. Moreover, cancer treatment failures due to resistance to innovative oncogene-targeted drugs is typically associated with the activity of alternative RTK-dependent pathways; and neuropilins’ capacity to control oncogenic signaling cascades supports the hypothesis that they could elicit such mechanisms in cancer cells, in order to escape cytotoxic stress and therapeutic attacks. Intriguingly, several studies have recently assayed the impact of NRPs inhibition in combination with diverse anti-cancer drugs. In this minireview, we will discuss the state-of-art about the relevance of NRPs as potential predictive biomarkers of drug response, and the rationale to target these proteins in combination with other anticancer therapies.
Collapse
Affiliation(s)
- Virginia Napolitano
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy.
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, 10168 Rome, Italy.
- Fondazione Policlinico Universitario Agostino Gemelli, 10168 Rome, Italy.
| |
Collapse
|
18
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
19
|
Ott OJ. Multimodality Treatment for Bladder Conservation. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Liu X, Xu X, Deng W, Huang M, Wu Y, Zhou Z, Zhu K, Wang Y, Cheng X, Zhou X, Chen L, Li Y, Wang G, Fu B. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol Med Rep 2018; 19:1678-1686. [PMID: 30592282 PMCID: PMC6390063 DOI: 10.3892/mmr.2018.9791] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Increased expression of CCL18 has been observed in various malignancies and in the urine samples of patients with bladder cancer (BC). However, the roles of CCL18 in the development, progression and metastasis of BC remain unclear. The present study demonstrated that CCL18 expression was significantly associated with advanced clinical stages of BC. Furthermore, exogenous CCL18 promoted cell invasion and migration, and induced cell epithelial-mesenchymal transition (EMT) in BC cells. Western blotting demonstrated that E-cadherin, an epithelial marker, was decreased, whereas matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF)-C were increased in CCL18-treated cells. Blocking CCR8 via a small molecule inhibitor or short hairpin (sh)RNA mitigated the decrease in E-cadherin, and increase in MMP-2 and VEGF-C, caused by human recombinant (r)CCL18. CCR8 knockdown by shRNA reversed rCCL18-induced cancer cell invasion, migration and EMT. In conclusion, these data suggested that CCL18 may promote migration, invasion and EMT by binding CCR8 in BC cells. Inhibition of CCL18 activity by blocking CCR8 could be a potential therapeutic strategy for preventing the progression of BC.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyun Xu
- Department of Urology, The Third Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingchuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanlong Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinfu Cheng
- Department of Urology, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333000, P.R. China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Exosomes as a Communication Tool Between the Lymphatic System and Bladder Cancer. Int Neurourol J 2018; 22:220-224. [PMID: 30286586 PMCID: PMC6177726 DOI: 10.5213/inj.1836186.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
|
22
|
LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 2018; 9:3826. [PMID: 30237493 PMCID: PMC6148066 DOI: 10.1038/s41467-018-06152-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor microenvironment and contribute to lymph node (LN) metastasis. However, the precise mechanisms of TAMs-induced LN metastasis remain largely unknown. Herein, we identify a long noncoding RNA, termed Lymph Node Metastasis Associated Transcript 1 (LNMAT1), which is upregulated in LN-positive bladder cancer and associated with LN metastasis and prognosis. Through gain and loss of function approaches, we find that LNMAT1 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. Mechanistically, LNMAT1 epigenetically activates CCL2 expression by recruiting hnRNPL to CCL2 promoter, which leads to increased H3K4 tri-methylation that ensures hnRNPL binding and enhances transcription. Furthermore, LNMAT1-induced upregulation of CCL2 recruits macrophages into the tumor, which promotes lymphatic metastasis via VEGF-C excretion. These findings provide a plausible mechanism for LNMAT1-modulated tumor microenvironment in lymphatic metastasis and suggest that LNMAT1 may represent a potential therapeutic target for clinical intervention in LN-metastatic bladder cancer.
Collapse
|
23
|
Koga F, Takemura K, Fukushima H. Biomarkers for Predicting Clinical Outcomes of Chemoradiation-Based Bladder Preservation Therapy for Muscle-Invasive Bladder Cancer. Int J Mol Sci 2018; 19:ijms19092777. [PMID: 30223570 PMCID: PMC6165010 DOI: 10.3390/ijms19092777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Chemoradiation-based bladder preservation therapy (BPT) is currently a curative option for non-metastatic muscle-invasive bladder cancer (MIBC) patients at favorable risk or an alternative to radical cystectomy (RC) for those who are unfit for RC. In BPT, only patients who achieve complete response (CR) after chemoradiation have a favorable prognosis and quality of life with a preserved functional bladder. Thus, predicting CR and favorable prognosis is important for optimal patient selection for BPT. We reviewed biomarkers for predicting the clinical outcomes of chemoradiation-based BPT. The biomarkers studied were categorized into those related to apoptosis, cell proliferation, receptor tyrosine kinases, DNA damage response genes, hypoxia, molecular subtype, and others. Among these biomarkers, the Ki-67 labeling index (Ki-67 LI) and meiotic recombination 11 may be used for selecting BPT or RC. Ki-67 LI and erythroblastic leukemia viral oncogene homolog 2 (erbB2) may be used for predicting both the chemoradiation response and the prognosis of patients on BPT. Concurrent use of trastuzumab and a combination of carbogen and nicotinamide can overcome chemoradiation resistance conferred by erbB2 overexpression and tumor hypoxia. Further studies are needed to confirm the practical utility of these biomarkers for progress on biomarker-directed personalized management of MIBC patients.
Collapse
Affiliation(s)
- Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| | - Kosuke Takemura
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| | - Hiroshi Fukushima
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan.
| |
Collapse
|
24
|
Lian J, Lin SH, Ye Y, Chang DW, Huang M, Dinney CP, Wu X. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget 2018; 9:14895-14908. [PMID: 29599914 PMCID: PMC5871085 DOI: 10.18632/oncotarget.24473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of nearly all cancers and may function as promising biomarkers for early detection, diagnosis and prognosis. We sought to investigate the role of serum miRNAs as potential diagnostic biomarkers or biomarkers of risk for early-stage bladder cancer. First, we profiled global serum miRNAs in a pilot set of 10 non-muscle invasive bladder cancer (NMIBC) cases and 10 healthy controls matched on age, gender and smoking status. Eighty nine stably detectable miRNAs were selected for further testing and quantification by high-throughput Taqman analysis using the Fluidigm BioMark HD System to assess their association with NMIBC risk in both discovery and validation sets totaling 280 cases and 278 controls. We found miR-409-3p and six miRNAs expression ratios were significantly associated with risk of bladder cancer in both discovery and validation sets. Interestingly, we identified expression of miR-409-3p and miR-342-3p inversely correlated with age and age of onset of NMIBC. A risk score was generated based on the combination of three miRNA ratios (miR-29a-3p/miR-222-3p, miR-150-5p/miR-331-3p, miR-409-3p/miR-423-5p). In dichotomized analysis, we found individuals with high risk score showed increased risk of bladder cancer in the discovery, validation, and combined sets. Pathway enrichment analyses suggested altered miRNAs and cognate target genes are linked to the retinoid acid receptor (RAR) signaling pathway. Overall, these results suggested specific serum miRNA signatures may serve as noninvasive predictors of NMIBC risk. Biological insights underlying bladder cancer development based on the pathway enrichment analysis may reveal novel therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Jie Lian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David W. Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, Chen X, Huang J, Lin T. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest 2018; 128:861-875. [PMID: 29355840 PMCID: PMC5785244 DOI: 10.1172/jci96218] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
The prognosis for bladder cancer patients with lymph node (LN) metastasis is dismal and only minimally improved by current treatment modalities. Elucidation of the molecular mechanisms that underlie LN metastasis may provide clinical therapeutic strategies for LN-metastatic bladder cancer. Here, we report that a long noncoding RNA LINC00958, which we have termed bladder cancer-associated transcript 2 (BLACAT2), was markedly upregulated in LN-metastatic bladder cancer and correlated with LN metastasis. Overexpression of BLACAT2 promoted bladder cancer-associated lymphangiogenesis and lymphatic metastasis in both cultured bladder cancer cell lines and mouse models. Furthermore, we demonstrate that BLACAT2 epigenetically upregulated VEGF-C expression by directly associating with WDR5, a core subunit of human H3K4 methyltransferase complexes. Importantly, administration of an anti-VEGF-C antibody inhibited LN metastasis in BLACAT2-overexpressing bladder cancer. Taken together, these findings uncover a molecular mechanism in the lymphatic metastasis of bladder cancer and indicate that BLACAT2 may represent a target for clinical intervention in LN-metastatic bladder cancer.
Collapse
|
26
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett 2018; 418:176-184. [PMID: 29339213 DOI: 10.1016/j.canlet.2018.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Neuropilin-2 (NRP-2) not only functions as a receptor for semaphorins, a family of neural axon guidance factors, but also interacts with VEGFs, a family of vascular endothelial growth factors. As an independent receptor or a co-receptor, NRP-2 binds to ligands VEGF-C/D, activates the VEGF-C/D-NRP-2 signaling axis, and further regulates lymphangiogenesis-associated factors in both lymphatic endothelial cells (LECs) and some tumor cells during tumor progression. Via VEGF-C/D-NRP-2 axis, NRP-2 induces LEC proliferation, reconstruction and lymphangiogenesis and subsequently promotes tumor cell migration, invasion and lymphatic metastasis. There are similarities and differences among NRP-1, NRP-2 and VEGFR-3 in chemical structure, ligand specificity, chromosomal location, soluble protein forms, cellular functions and expression profiles. High expression of NRP-2 in LECs and tumor cells has been observed in different anatomic sites, histological patterns and progression stages of various tumors, especially during tumor lymphangiogenesis and lymphatic metastasis, and therefore the NRP-2 and VEGF-C/D-NRP-2 axis are closely related to tumor development, progression, invasion, and metastasis. In addition, it is important for prognosis of tumor. The studies on NRP-2 targeted therapy have recently achieved some successes, utilizing NRP-2 blocking antibodies, NRP-2 inhibitory peptides, soluble NRP-2 antagonists, small molecule inhibitors and various NRP-2 gene therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China; Institute of Medical Technology, Ningbo College of Health Science, No.51, XueFu Road, Ningbo Zhejiang 315100, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jiayu Yang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China.
| |
Collapse
|
27
|
Multimodality Treatment for Bladder Conservation. Urol Oncol 2018. [DOI: 10.1007/978-3-319-42603-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Azevedo R, Peixoto A, Gaiteiro C, Fernandes E, Neves M, Lima L, Santos LL, Ferreira JA. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget 2017; 8:91734-91764. [PMID: 29207682 PMCID: PMC5710962 DOI: 10.18632/oncotarget.19433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
29
|
131I-labeled monoclonal antibody targeting neuropilin receptor type-2 for tumor SPECT imaging. Int J Oncol 2016; 50:649-659. [PMID: 28000859 DOI: 10.3892/ijo.2016.3808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 11/05/2022] Open
Abstract
As a co-receptor for vascular endothelial growth factor‑3 (VEGF‑3), neuropilin receptor type‑2 (NRP‑2) plays a central role in lymphangiogenesis and angiogenesis. Recently, mounting data of evidence show that NRP‑2 is overexpressed in several human cancers, and its overexpression is often associated with poor prognosis. Therefore, it is necessary for us to develop an affinity reagent for noninvasive imaging of NRP‑2 expression because it may be possible to provide early cancer diagnosis, more accurate prognosis, and better treatment planning. Due to their high affinity, and specificity, monoclonal antibodies (mAbs) have been considered attractive candidates for targeted cancer therapy and diagnostics. We recently generated and validated a monoclonal antibody that specifically binds NRP‑2 b1b2 domain with no cross‑reactivity to NRP‑1 b1b2 domain, also known to be overexpressed in a variety of cancers. Here, we developed a single photon emission computed tomography (SPECT) probe for imaging NRP‑2- positive tumors. Anti‑NRP‑2 monoclonal antibodies were prepared by hybridomas and were labeled with iodine‑131 by chloramine‑T method. The in vitro physicochemical properties of 131I‑anti‑NRP‑2 mAb was determined. Binding affinity and specificity of 131I‑anti‑NRP‑2 mAb to NRP‑2 were assessed using human lung adenocarcinoma A549 cells. Biodistribution and SPECT studies were performed in mice bearing A549 tumor xenografts to evaluate the in vivo performance of 131I‑anti‑NRP‑2 mAb. The preparation of anti‑NRP‑2 mAb was completed successfully by hybridoma with high purity (>95%) and specific for NRP‑2 b1b2 domain, but not NRP‑1 b1b2 domain. The radiosynthesis of 131I‑anti‑NRP‑2 mAb was completed successfully within 60 min with high labelling efficiency (94.69±3.63%), and radiochemical purity (98.56±0.48%). The resulting probe, 131I‑anti‑NRP‑2 mAb displayed excellent stability in PBS solution during 24-72 h. 131I‑anti‑NRP‑2 mAb showed high binding affinity with A549 cells (96.6±1.44 nM). In vivo biodistribution and SPECT studies demonstrated targeting of A549 glioma xenografts was NRP‑2 specific. The tumor uptake was 5.86±0.27% ID/g at 6 h, and kept at high level of 4.64±0.82% ID/g at 72 h‑post‑injection. The tumor to contralateral muscle ratio (T/NT) was 2.08±0.33 at 6 h, and reached the highest level of 3.83±0.18 at 72 h after injection. SPECT imaging studies revealed that 131I‑anti‑NRP‑2 mAb could clearly identify A549 tumors with good contrast, especially at 48‑72 h after injection. In conclusion, this study demonstrates that 131I‑anti‑NRP‑2 mAb exhibited highly selective uptake in NRP‑2‑expressing tumors, and may provide a promising SPECT probe for imaging NRP‑2 positive tumors.
Collapse
|
30
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
31
|
Zhao H, Hou C, Hou A, Zhu D. Concurrent Expression of VEGF-C and Neuropilin-2 Is Correlated with Poor Prognosis in Glioblastoma. TOHOKU J EXP MED 2016; 238:85-91. [PMID: 26753562 DOI: 10.1620/tjem.238.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor-C (VEGF-C) is a secreted growth factor involved in many oncogenic processes, and neuropilin-2 (NRP2) is essential for neuronal guidance as a well-acknowledged co-receptor of VEGF receptors. The overexpression of NRP2 has been reported in many types of cancers, but the significance of NRP2 in glioblastoma is not elucidated. To investigate the clinical significance of VEGF-C and NRP2 in glioblastoma, we detected their expression in 86 cases of glioblastoma with immunohistochemistry and categorized our cohort into high- and low-expression groups according to the immunohistochemistry score, which was the product of the score of staining intensity multiplied by the score reflecting the percentage of positive cells. The proportion of glioblastoma with high VEGF-C expression was 34.9% (30/86), and that with high NRP2 expression was 37.2% (32/86). The proportion of glioblastoma with high expression of both VEGF-C and NRP2 was 15.1% (13/86). Moreover, the proportion of cases with high VEGF-C and low NRP2 was 19.7% (17/86), while the proportion of cases with low VEGF-C and high NRP2 was 22.1% (19/86). The high expression of both VEGF-C and NRP2 was associated with poorer survival rate (P = 0.023), and can be identified as an independent prognostic factor in glioblastoma (P = 0.030). Moreover, cases with low NRP2 expression are easier for complete tumor resection (P = 0.038). In conclusion, the concurrent high expression of VEGF-C and NRP2 is predictive of the unfavorable prognosis in glioblastoma, indicating that the VEGF-C-NRP2 signaling pathway is a potential and promising drug target in glioblastoma therapy.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Neurology, Yidu Central Hospital of Weifang City
| | | | | | | |
Collapse
|
32
|
Trimodal therapy for invasive bladder cancer: is it really equal to radical cystectomy? Curr Opin Urol 2016; 25:476-82. [PMID: 26125510 DOI: 10.1097/mou.0000000000000203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Trimodal therapy (TMT) is considered the most effective bladder-sparing approach for muscle-invasive urothelial carcinoma of the bladder (MIBC) and an alternative to radical cystectomy. The purpose of this article was to review and summarize the current knowledge on the equivalence of TMT and radical cystectomy based on the recent literature. RECENT FINDINGS TMT consists of a maximal transuretral resection of the bladder, followed by a concurrent radiotherapy and chemotherapy, limiting salvage radical cystectomy to nonresponder tumors or muscle-invasive recurrence. In large population studies, less than 6% of the patients with nonmetastatic MIBC receive a chemoradiation therapy and this rate is stable. A growing body of evidence exists that TMT provides good oncologic outcomes with low morbidity when compared with radical cystectomy. TMT requires, however, a close follow-up because of the high risk of local recurrence and salvage radical cystectomy in up to 30% of the patients. Salvage radical cystectomy can be performed with adequate results but does not offer the same opportunity of reconstruction and functional outcomes than primary radical cystectomy. SUMMARY Although radical cystectomy is still the treatment of reference for most of the patients with localized MIBC, TMT represents a reasonable alternative in highly selected patients. Any firm conclusion on the equivalence or superiority of one treatment to the other is still limited by the lack of randomized controlled trials and the heterogeneity of the available literature. Future studies and multidisciplinary approach are mandatory to optimize the patient selection and regimen of TMT.
Collapse
|
33
|
Dutta S, Roy S, Polavaram NS, Baretton GB, Muders MH, Batra S, Datta K. NRP2 transcriptionally regulates its downstream effector WDFY1. Sci Rep 2016; 6:23588. [PMID: 27026195 PMCID: PMC4812299 DOI: 10.1038/srep23588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/09/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins that often act as co-receptors for plexins and VEGF family receptors. Neuropilin-2 (NRP2), a family member of NRPs, was shown to regulate autophagy and endocytic trafficking in cancer cells, a function distinctly different from its role as a co-receptor. WD Repeat and FYVE domain containing 1 (WDFY1)–protein acts downstream of NRP2 for this function. Our results indicated that NRP2 maintains an optimum concentration of WDFY1 by negatively regulating its expression. Since increased expression of WDFY1 reduces the endocytic activity, maintenance of WDFY1 level is crucial in metastatic cancer cells to sustain high endocytic activity, essential for promotion of oncogenic activation and cancer cell survival. Here, we have delineated the underlying molecular mechanism of WDFY1 synthesis by NRP2. Our results indicated that NRP2 inhibits WDFY1 transcription by preventing the nuclear localization of a transcription factor, Fetal ALZ50-reactive clone 1 (FAC1). Our finding is novel as transcriptional regulation of a gene by NRP2 axis has not been reported previously. Regulation of WDFY1 transcription by NRP2 axis is a critical event in maintaining metastatic phenotype in cancer cells. Thus, inhibiting NRP2 or hyper-activating WDFY1 can be an effective strategy to induce cell death in metastatic cancer.
Collapse
Affiliation(s)
- Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Navatha S Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology of Dresden, Germany
| | - Michael H Muders
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology of Dresden, Germany
| | - Surinder Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Fred &Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, Omaha, Nebraska, U.S.A
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.,Fred &Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, Omaha, Nebraska, U.S.A
| |
Collapse
|
34
|
Muders MH, Baretton GB. [The metastatic niche. Mechanisms and prognostic implications]. DER PATHOLOGE 2015; 36 Suppl 2:185-8. [PMID: 26395891 DOI: 10.1007/s00292-015-0079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disseminated tumor cells require a special microenvironment to form metastases. This metastatic niche is organ specific and forms prior to the establishment of visible metastases. The niche is characterized by vascular remodeling and bone marrow-derived cells which have migrated into it. Studies by other groups and our own results have already shown that intranodal lymphangiogenesis is an important prerequisite for regional lymph node metastases in rectal cancer patients, and can be used as a prognostic marker for progression-free survival. Niche cells such as endothelia secrete factors that attract tumor and bone marrow-derived cells. CXCL12 is one of these factors. CXCL12 activates the CXCR4 chemokine axis and induces migration along its gradient. Several factors, such as hypoxia, have been described to regulate CXCR4 function and surface expression on tumor cells. Low molecular weight agents have been used to block CXCR4 activation. This review focuses on the function and regulation of CXCR4 and its ligand CXCL12 in metastases formation. It also discusses potential options for therapeutic blockage.
Collapse
Affiliation(s)
- M H Muders
- Institut für Pathologie, Universitätsklinikum "Carl Gustav Carus" an der TU Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland.
| | - G B Baretton
- Institut für Pathologie, Universitätsklinikum "Carl Gustav Carus" an der TU Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland.
| |
Collapse
|
35
|
Hartmann A, Knüchel-Clarke R. [Report of the meeting of the working group on uropathology 2014]. DER PATHOLOGE 2014; 35 Suppl 2:303-5. [PMID: 25352001 DOI: 10.1007/s00292-014-2016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Hartmann
- Pathologisches Institut, Universität Erlangen-Nürnberg, Krankenhausstr. 22, 91054, Erlangen, Deutschland,
| | | |
Collapse
|