1
|
Nakamura K, Dalal AR, Yokoyama N, Pedroza AJ, Kusadokoro S, Mitchel O, Gilles C, Masoudian B, Leipzig M, Casey KM, Hiesinger W, Uchida T, Fischbein MP. Lineage-Specific Induced Pluripotent Stem Cell-Derived Smooth Muscle Cell Modeling Predicts Integrin Alpha-V Antagonism Reduces Aortic Root Aneurysm Formation in Marfan Syndrome Mice. Arterioscler Thromb Vasc Biol 2023; 43:1134-1153. [PMID: 37078287 PMCID: PMC10330156 DOI: 10.1161/atvbaha.122.318448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Casey Gilles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Bahar Masoudian
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Matthew Leipzig
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Tetsuro Uchida
- Second Department of Surgery, Yamagata University Faculty of Medicine. Yamagata, Japan
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
2
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
4
|
Tsao T, Beretov J, Ni J, Bai X, Bucci J, Graham P, Li Y. Cancer stem cells in prostate cancer radioresistance. Cancer Lett 2019; 465:94-104. [DOI: 10.1016/j.canlet.2019.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
|
5
|
Morshed A, Abbas AB, Hu J, Xu H. Shedding New Light on The Role of ανβ3 and α5β1 Integrins in Rheumatoid Arthritis. Molecules 2019; 24:E1537. [PMID: 31003546 PMCID: PMC6515208 DOI: 10.3390/molecules24081537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
ανβ3 and α5β1 are essential glycoproteins involved in the pathogenesis of rheumatoid arthritis (RA). Understanding of the role these integrins play in disease have been analyzed via description of cells-expressing ανβ3 and α5β1 and their mediators to trigger inflammation. ανβ3 and α5β1 facilitate cells-ECM and cell-cell communication, producing pro-inflammatory factors. Pro-inflammatory factors are essential for the building of undesirable new blood vessels termed angiogenesis which can further lead to destruction of bones and joints. Despite many attempts to target these glycoproteins, there are still some problems, therefore, there is still interest in understanding the synergistic role these integrins play in the pathogenesis of RA. The purpose of this review is to gain insights into the biological effects of ανβ3 and α5β1 in synovial tissues that are relevant to pathogenesis and therapy of RA.
Collapse
Affiliation(s)
- Arwa Morshed
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Abdul Baset Abbas
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
- Nanjing Anji Biotechnology Co. Ltd., Nanjing 210046, China.
| |
Collapse
|
6
|
Mussawy H, Viezens L, Schroeder M, Hettenhausen S, Sündermann J, Wellbrock J, Kossow K, Schaefer C. The bone microenvironment promotes tumor growth and tissue perfusion compared with striated muscle in a preclinical model of prostate cancer in vivo. BMC Cancer 2018; 18:979. [PMID: 30326868 PMCID: PMC6192198 DOI: 10.1186/s12885-018-4905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer-related morbidity is associated with its preferential spread to the bone. Although the molecular interactions between the bone microenvironment and cancer cells have been researched extensively, the relevance of the microvascular properties of prostate cancer bone metastases remains largely unknown. Most preclinical studies focusing on microvascular analyses are based on heterotopic tumor implantation, whereas the impact of the microenvironment on site-specific growth behavior and angiogenesis is rarely addressed. Methods The microvascular changes associated with tumor growth in bone and soft tissue were characterized by implanting single cell suspensions of LnCap, Du145, and Pc3 cells into the femur (femur window) or striated muscle (dorsal skinfold chamber) of NSG mice. Tumor growth and the local microvasculature were analyzed for 21 days using intravital fluorescence microscopy. Results The results showed a higher engraftment of tumor cells in bone than in striated muscle associated with accelerated growth of LnCap cells and Pc3 cells. Permeability, blood flow, and tissue perfusion rates were greater in bone than in striated muscle. Du145 cells showed similar growth behavior in both tissues with similar vascular properties. The bone microenvironment facilitated tumor engraftment and growth. Increased microvascular density in striated muscle led to a higher tumor burden during early growth, whereas the increased perfusion promoted later prostate cancer growth in bone. Conclusions Monitoring prostate cancer microcirculation in bone and soft tissue may be useful to evaluate the organ-specific efficacy of new treatments. Electronic supplementary material The online version of this article (10.1186/s12885-018-4905-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haider Mussawy
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Lennart Viezens
- Department of Trauma, Orthopaedic, and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Malte Schroeder
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Spine Surgery, Klinikum Bad Bramstedt, 24576, Bad Bramstedt, Germany
| | - Svenja Hettenhausen
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jördis Sündermann
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Hematology, Oncology and Stem Cell Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kai Kossow
- Center of Psychosocial Medicine, Institute and Policlinics of Medical Psychology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Schaefer
- Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Spine Surgery, Klinikum Bad Bramstedt, 24576, Bad Bramstedt, Germany
| |
Collapse
|
7
|
Schreiter J, Meyer S, Schmidt C, Schulz RM, Langer S. Dorsal skinfold chamber models in mice. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2017; 6:Doc10. [PMID: 28706772 PMCID: PMC5506728 DOI: 10.3205/iprs000112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
Abstract
Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows in vivo pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber) and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to 66 C57Bl/6 female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1st of January 2006 to 31st of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model. Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous in vivo models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter than the former ones. However, the new chamber does not reach the advantages of already existing chamber models used in Asia and the US, which are smaller and lighter. Conclusion: Elaborating a smaller and lighter dorsal skinfold chamber allows research studies on smaller animals and reduces the animals’ discomfort while carrying the chamber. Greater research exchange should be done to spread the use of smaller and lighter chamber models.
Collapse
Affiliation(s)
- Jeannine Schreiter
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| | - Sophia Meyer
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| | - Christian Schmidt
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany.,Centre for Biotechnology and Biomedicine, Leipzig, Germany
| | - Ronny M Schulz
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany.,Centre for Biotechnology and Biomedicine, Leipzig, Germany
| | - Stefan Langer
- Department of Plastic, Aesthetic and Special Hand Surgery, Clinic and Polyclinic for Orthopaedics, Traumatology and Plastic Surgery, University Hospital Leipzig, Germany
| |
Collapse
|
8
|
Paolillo M, Serra M, Schinelli S. Integrins in glioblastoma: Still an attractive target? Pharmacol Res 2016; 113:55-61. [PMID: 27498157 DOI: 10.1016/j.phrs.2016.08.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
Abstract
Integrin-mediated signaling pathways have been found to promote the invasiveness and survival of glioma cells by modifying the brain microenvironment to support the formation of the tumoral niche. A variety of cells in the niche express integrin receptors, including tumor-associated macrophages, fibroblasts, endothelial cells and pericytes. In particular, RGD-binding integrins have been demonstrated to have an important role in the epithelial-mesenchymal transition process, considered the first step in the infiltration of tissue by cancer cells and molecular markers of which have been found in glioma cells. In simultaneous research, Small Molecule Integrin Antagonists (SMIA) yielded initially promising results in in vitro and in vivo studies, leading to clinical trials to test their safety and efficacy in combination with other anticancer drugs in the treatment of several tumor types. The initially high expectations, especially because of their antiangiogenic activity, which appeared to be a winning strategy against GBM, were not confirmed and this cast serious doubts on the real benefits to be gained from the use of SMIA for the treatment of cancer in humans. In this review, we provide an overview of recent findings concerning the functional roles of integrins, especially RGD-binding integrins, in the processes related to glioma cells survival and brain tissue infiltration. These findings disclose a new scenario in which recently developed SMIA might become useful tools to hinder glioblastoma cell dissemination.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy.
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|