1
|
Meevassana J, Varophas S, Prabsattru P, Kamolratanakul S, Ruangritchankul K, Kitkumthorn N. 5-Methylcytosine immunohistochemistry for predicting cutaneous melanoma prognosis. Sci Rep 2024; 14:7554. [PMID: 38555324 PMCID: PMC10981665 DOI: 10.1038/s41598-024-58011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
There is a correlation between DNA methylation and the diseased stage and poor survival. 5-methylcytosine (5-mC) is one of the epigenetic modifications of bases that researchers focus on. Staining with 5-mC immunohistochemistry was used to examine pathological samples taken from individuals diagnosed with cutaneous melanoma. Between Breslow levels 2 and 4, there was a significant difference in the H-score of 5-mC expression (p = 0.046). A significant reduction in 5-mC expression H-scores was seen in patients who were diagnosed with ulcers (p = 0.039). It was shown that patients with low 5-mC had a significantly worse overall survival rate (p = 0.027).
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shananya Varophas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Prabsattru
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, No. 6, Yothi Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Abstract
Skin is the thin layer of tissue forming the natural integumentary system of the body that acts as a barrier to protect it from exogenous and endogenous factors that induce undesirable biological responses in the body. Among these risk factors, skin damage triggered by solar ultraviolet radiation (UVR) is an escalating problem in dermatology with an increased incidence of acute and chronic cutaneous reactions. Several epidemiological studies have provided evidence for both beneficial and harmful effects of sunlight, particularly the solar UVR exposure of human beings. Due to overexposure to solar UVR on the earth's surface, outdoor professionals such as farmers, rural workers, builders and road workers are most vulnerable to developing occupational skin diseases. Indoor tanning is also associated with increased risks for various dermatological diseases. Sunburn is described as the erythematic acute cutaneous response in addition to increased melanin and apoptosis of keratinocytes to prevent skin carcinoma. Alterations in molecular, pigmentary and morphological characteristics cause carcinogenic progression in skin malignancies and premature ageing of the skin. Solar UV damage leads to immunosuppressive skin diseases such as phototoxic and photoallergic reactions. UV-induced pigmentation persists for a longer time, called long-lasting pigmentation. Sunscreen is the most mentioned skin protective behaviour and it is the most promoted part of the sun smart message along with other effective skin protection strategies such as clothing, that is, long sleeves, hats and sunglasses.
Collapse
Affiliation(s)
- KA Merin
- From the Doctor of Pharmacy, Department of Pharmacy Practice, J. K. K Nattraja College of Pharmacy, Kumarapalayam, Tamil Nadu, India
| | - Merin Shaji
- From the Doctor of Pharmacy, Department of Pharmacy Practice, J. K. K Nattraja College of Pharmacy, Kumarapalayam, Tamil Nadu, India
| | - R Kameswaran
- Department of Pharmacy Practice, J. K. K Nattraja College of Pharmacy, Kumarapalayam, Tamil Nadu, India
| |
Collapse
|
3
|
Shen J, Fuemmeler BF, Sheppard VB, Bear HD, Song R, Chow WH, Zhao H. Neighborhood disadvantage and biological aging biomarkers among breast cancer patients. Sci Rep 2022; 12:11006. [PMID: 35773311 PMCID: PMC9246873 DOI: 10.1038/s41598-022-15260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Living in a disadvantaged neighborhood is associated with adverse clinical outcomes among breast cancer patients, but the underlying pathway is still unclear. Limited evidence has suggested that accelerated biological aging may play an important role. In this study, using a sub-sample of 906 women with newly diagnosed breast cancer at M.D. Anderson, we examined whether levels of selected markers of biological aging (e.g., allostatic load, telomere length, and global DNA methylation) were affected by neighborhood disadvantage. The Area Deprivation Index was used to determine the neighborhood disadvantage. Based on the median ADI at the national level, the study population was divided into low and high ADI groups. Overall, breast cancer patients from the high ADI group were more likely to be younger and non-Hispanic Black than those from the low ADI group (P < 0.001, respectively). They were also more likely to have higher grade and poorly differentiated breast tumors (P = 0.029 and 0.019, respectively). For the relationship with markers, compared to the low ADI group, high ADI group had higher median levels of allostatic load (P = 0.046) and lower median levels of global DNA methylation (P < 0.001). Compared to their counterparts, those from the high ADI group were 20% more likely to have increased allostatic load and 51% less likely to have increased levels of global DNA methylation. In summary, we observed that levels of allostatic load and global DNA methylation are influenced by neighborhood disadvantage among breast cancer patients.
Collapse
Affiliation(s)
- Jie Shen
- Departments of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Bernard F Fuemmeler
- Health Behavior and Policy, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Vanessa B Sheppard
- Health Behavior and Policy, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Harry D Bear
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wong-Ho Chow
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua Zhao
- Departments of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
4
|
Scattone NV, Epiphanio TMF, Caddrobi KG, Ferrão JSP, Hernandez-Blazquez FJ, Loureiro APDM, Massoco CDO, Dagli MLZ. Quantification of Global DNA Methylation in Canine Melanotic and Amelanotic Oral Mucosal Melanomas and Peripheral Blood Leukocytes From the Same Patients With OMM: First Study. Front Vet Sci 2021; 8:680181. [PMID: 34504885 PMCID: PMC8421724 DOI: 10.3389/fvets.2021.680181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive and resistant cancers of high importance in veterinary oncology. Amelanotic OMM produces comparatively less melanin and is considered to be more aggressive than melanotic OMM. Global DNA methylation profiles with hypomethylated or hypermethylated patterns have both been associated with aggressive neoplasms; however, global DNA hypomethylation seems to correlate to higher aggressiveness. Accordingly, global DNA methylation in peripheral blood leukocytes has been investigated to understand the role of systemic or environmental factors in cancer development. This study aimed to quantify global DNA methylation in canine melanotic and amelanotic OMM samples and in the peripheral blood leukocytes of the same dogs. Tumor tissue samples were collected from 38 dogs, of which 19 were melanotic and 19 were amelanotic OMM. These were submitted to immunohistochemistry (IHC) with anti-5-methylcytosine (5mC) and anti-Ki67 primary antibodies. Ki67- and 5mC-positive nuclei were manually scored with the help of an image analysis system. Peripheral blood samples were collected from 18 among the 38 OMM-bearing dogs and from 7 additional healthy control dogs. Peripheral blood leukocytes were isolated from the 25 dogs, and DNA was extracted and analyzed by high-performance liquid chromatography (HPLC) for global DNA methylation. The pattern of global DNA methylation in both canine melanotic and amelanotic OMM indicated higher percentages of weakly or negatively stained nuclei in most of the OMM cells, presuming predominant global DNA hypomethylation. In addition, Ki67 counts in amelanotic OMM were significantly higher than those in melanotic OMM (p < 0.001). Global DNA methylation different immunostaining patterns (strong, weak or negative) correlated with Ki67 scores. Global DNA methylation in circulating leukocytes did not differ between the 9 melanotic and 9 amelanotic OMM or between the 18 OMM-bearing dogs and the 7 healthy dogs. This study provides new information on canine melanotic and amelanotic OMM based on global DNA methylation and cell proliferation.
Collapse
Affiliation(s)
- Nayra Villar Scattone
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tatiane Moreno Ferrarias Epiphanio
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula de Melo Loureiro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Bonilla C, Bertoni B, Min JL, Hemani G, Elliott HR. Investigating DNA methylation as a potential mediator between pigmentation genes, pigmentary traits and skin cancer. Pigment Cell Melanoma Res 2021; 34:892-904. [PMID: 33248005 PMCID: PMC8518056 DOI: 10.1111/pcmr.12948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Pigmentation characteristics are well-known risk factors for skin cancer. Polymorphisms in pigmentation genes have been associated with these traits and with the risk of malignancy. However, the functional relationship between genetic variation and disease is still unclear. This study aims to assess whether pigmentation SNPs are associated with pigmentary traits and skin cancer via DNA methylation (DNAm). Using a meta-GWAS of whole-blood DNAm from 36 European cohorts (N = 27,750; the Genetics of DNA Methylation Consortium, GoDMC), we found that 19 out of 27 SNPs in 10 pigmentation genes were associated with 391 DNAm sites across 30 genomic regions. We examined the effect of 25 selected DNAm sites on pigmentation traits, sun exposure phenotypes and skin cancer and on gene expression in whole blood. We uncovered an association of DNAm site cg07402062 with red hair in the Avon Longitudinal Study of Parents and Children (ALSPAC). We also found that the expression of ASIP and CDK10 was associated with hair colour, melanoma and basal cell carcinoma. Our results indicate that DNAm and expression of pigmentation genes may play a role as potential mediators of the relationship between genetic variants, pigmentation phenotypes and skin cancer and thus deserve further scrutiny.
Collapse
Affiliation(s)
- Carolina Bonilla
- Departamento de Medicina PreventivaFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Bernardo Bertoni
- Departamento de GenéticaFacultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
| | - Josine L. Min
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Gibran Hemani
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| | | | - Hannah R. Elliott
- Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| |
Collapse
|
6
|
Page CM, Djordjilović V, Nøst TH, Ghiasvand R, Sandanger TM, Frigessi A, Thoresen M, Veierød MB. Lifetime Ultraviolet Radiation Exposure and DNA Methylation in Blood Leukocytes: The Norwegian Women and Cancer Study. Sci Rep 2020; 10:4521. [PMID: 32161338 PMCID: PMC7066249 DOI: 10.1038/s41598-020-61430-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/26/2020] [Indexed: 12/04/2022] Open
Abstract
Ultraviolet radiation (UVR) exposure is a leading cause of skin cancers and an ubiquitous environmental exposure. However, the molecular mechanisms relating UVR exposure to melanoma is not fully understood. We aimed to investigate if lifetime UVR exposure could be robustly associated to DNA methylation (DNAm). We assessed DNAm in whole blood in three data sets (n = 183, 191, and 125) from the Norwegian Woman and Cancer cohort, using Illumina platforms. We studied genome-wide DNAm, targeted analyses of CpG sites indicated in the literature, global methylation, and accelerated aging. Lifetime history of UVR exposure (residential ambient UVR, sunburns, sunbathing vacations and indoor tanning) was collected by questionnaires. We used one data set for discovery and the other two for replication. One CpG site showed a genome-wide significant association to cumulative UVR exposure (cg01884057) (pnominal = 3.96e-08), but was not replicated in any of the two replication sets (pnominal ≥ 0.42). Two CpG sites (cg05860019, cg00033666) showed suggestive associations with the other UVR exposures. We performed extensive analyses of the association between long-term UVR exposure and DNAm. There was no indication of a robust effect of past UVR exposure on DNAm.
Collapse
Affiliation(s)
- Christian M Page
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public health, Oslo, Norway
| | - Vera Djordjilović
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Therese H Nøst
- Department of Community Medicine, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Reza Ghiasvand
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Magne Thoresen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Indoor tanning and the risk of developing non-cutaneous cancers: a systematic review and meta-analysis. Cancer Causes Control 2018; 29:937-950. [DOI: 10.1007/s10552-018-1070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
8
|
Widschwendter M, Jones A, Evans I, Reisel D, Dillner J, Sundström K, Steyerberg EW, Vergouwe Y, Wegwarth O, Rebitschek FG, Siebert U, Sroczynski G, de Beaufort ID, Bolt I, Cibula D, Zikan M, Bjørge L, Colombo N, Harbeck N, Dudbridge F, Tasse AM, Knoppers BM, Joly Y, Teschendorff AE, Pashayan N. Epigenome-based cancer risk prediction: rationale, opportunities and challenges. Nat Rev Clin Oncol 2018; 15:292-309. [PMID: 29485132 DOI: 10.1038/nrclinonc.2018.30] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence of cancer is continuing to rise and risk-tailored early diagnostic and/or primary prevention strategies are urgently required. The ideal risk-predictive test should: integrate the effects of both genetic and nongenetic factors and aim to capture these effects using an approach that is both biologically stable and technically reproducible; derive a score from easily accessible biological samples that acts as a surrogate for the organ in question; and enable the effectiveness of risk-reducing measures to be monitored. Substantial evidence has accumulated suggesting that the epigenome and, in particular, DNA methylation-based tests meet all of these requirements. However, the development and implementation of DNA methylation-based risk-prediction tests poses considerable challenges. In particular, the cell type specificity of DNA methylation and the extensive cellular heterogeneity of the easily accessible surrogate cells that might contain information relevant to less accessible tissues necessitates the use of novel methods in order to account for these confounding issues. Furthermore, the engagement of the scientific community with health-care professionals, policymakers and the public is required in order to identify and address the organizational, ethical, legal, social and economic challenges associated with the routine use of epigenetic testing.
Collapse
Affiliation(s)
- Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Allison Jones
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Iona Evans
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Daniel Reisel
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Joakim Dillner
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Sundström
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Ewout W Steyerberg
- Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, Netherlands.,Department of Biomedical Data Sciences, LUMC, Leiden, Netherlands
| | - Yvonne Vergouwe
- Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, Netherlands
| | - Odette Wegwarth
- Max Planck Institute for Human Development, Harding Center for Risk Literacy, Berlin, Germany.,Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
| | - Felix G Rebitschek
- Max Planck Institute for Human Development, Harding Center for Risk Literacy, Berlin, Germany
| | - Uwe Siebert
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research, and HTA, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,Harvard T. C. Chan School of Public Health, Center for Health Decision Science, Department of Health Policy and Management, Boston, MA, USA.,Oncotyrol: Center for Personalized Medicine, Innsbruck, Austria
| | - Gaby Sroczynski
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research, and HTA, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Inez D de Beaufort
- Department of Medical Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ineke Bolt
- Department of Medical Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - David Cibula
- Department of Obstetrics and Gynaecology, First Medical Faculty of the Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Michal Zikan
- Department of Obstetrics and Gynaecology, First Medical Faculty of the Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, and Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicoletta Colombo
- European Institute of Oncology and University Milan-Bicocca, Milan, Italy
| | - Nadia Harbeck
- Breast Center, Department of Gynaecology and Obstetrics, University of Munich (LMU), Munich, Germany
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.,Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anne-Marie Tasse
- Public Population Project in Genomics and Society, McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | | | - Yann Joly
- Centre of Genomics and Policy, McGill University, Montreal, Canada
| | - Andrew E Teschendorff
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Nora Pashayan
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, UK
| | | |
Collapse
|
9
|
Shen J, Song R, Gong Y, Zhao H. Global DNA hypomethylation in leukocytes associated with glioma risk. Oncotarget 2017; 8:63223-63231. [PMID: 28968983 PMCID: PMC5609915 DOI: 10.18632/oncotarget.18739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA hypomethylation in leukocytes has been associated with increased risk for a variety of cancers. However, the role of leukocyte global DNA hypomethylation in glioma development, if any, is largely unknown. To define this role, we performed a case-control study with 390 glioma patients and 390 controls with no known cancer. Levels of 5-methylcytosine (5-mC%), a marker for global DNA methylation, were measured in leukocyte DNA. Overall, median levels of 5-mC% were significantly lower in glioma cases than in controls (3.45 vs 3.82, P=0.001). Levels of 5-mC% differed significantly by age and sex among controls and by tumor subtype and grade among glioma cases. In multivariate analysis, lower levels of 5-mC% were associated with a 1.31-fold increased risk of glioma (odds ratio = 1.31, 95% confidence interval = 1.10-1.41). A significant dose-response trend was observed in quartile analysis (P=0.001). In an analysis further stratified by clinical characteristics at baseline, the association between lower levels of 5-mC% and glioma risk was evident only among younger participants (age <52 years), women, and those with aggressive tumor characteristics, such as glioblastoma subtype, high tumor grade (grade III or IV), and absence of IDH1 mutation. Our findings indicate that global DNA hypomethylation in leukocytes may contribute to the development of glioma and that the association is affected by age, sex, and tumor aggressiveness.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|