1
|
Ng D, Cyr D, Khan S, Dossa F, Swallow C, Kazazian K. Molecular mechanisms of metastatic peritoneal dissemination in gastric adenocarcinoma. Cancer Metastasis Rev 2025; 44:50. [PMID: 40317360 DOI: 10.1007/s10555-025-10265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Peritoneal dissemination portends a dismal prognosis in patients with gastric adenocarcinoma in the context of limited effective treatments. The underlying cellular processes that drive gastric peritoneal carcinomatosis remain unclear, limiting the application of novel targeted therapies. In this comprehensive review, we aimed to identify and summarize all existing context-dependent molecular mechanisms that have been implicated in peritoneal dissemination and peritoneal carcinomatosis establishment from primary gastric adenocarcinoma. We applied a multilevel examination including data from in vivo murine models using human gastric cancer cell lines, in vitro technique-based studies, ex vivo models, and genomic/proteomic and molecular profiling analyses to report on various aspects of gastric cancer peritoneal metastasis biology. Mechanisms promoting peritoneal dissemination were grouped into three main functional categories: (1) intrinsic cancer cell biology, (2) cancer cell-peritoneal surface adhesion, and (3) peritoneal tumor microenvironment. We identified significant overlap among the three categories, indicating a complex interplay between multiple molecular mechanisms. By interrupting these pathways, peritoneal-directed therapies have the potential to improve quality and length of life in patients with high-risk primary gastric cancer.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - David Cyr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Shawn Khan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Fahima Dossa
- Complex General Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Swallow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Karineh Kazazian
- Department of Surgery, University of Toronto, Toronto, Canada.
- Department of Surgical Oncology, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 10 Eaton North, Room 219, Toronto, M5G 2 C4, Canada.
| |
Collapse
|
2
|
Shi P, Xu J, Cui H. Targeting oxygenases could be a viable anti-metastatic approach in cancer therapy. Int J Biol Macromol 2025; 310:143375. [PMID: 40268020 DOI: 10.1016/j.ijbiomac.2025.143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Malignant tumors are characterized by irregular boundaries, rapid and uncontrolled cell growth, the ability to invade surrounding tissues, and the potential to spread and metastasize to other parts of the body through the bloodstream or lymphatic system. More than 90 % of cancer-related deaths are attributed to the metastasis of cancer cells. When malignant tumors metastasize, the metabolic processes within the cells undergo significant changes, with enzymes playing a crucial role in regulating metabolism and serving as key mediators in both synthesis and degradation. Oxygenases are a group of oxidative enzymes that catalyze the incorporation of oxygen atoms into various substrates. Advances in our understanding of the genome and proteome of malignant tumors have revealed that oxygenases are highly expressed in many metastatic tumor cells, where they can enhance the activity of specific proteins that regulate tumor metastasis. Furthermore, there is a growing recognition that certain drugs can specifically target oxygenases to inhibit tumor metastasis, with several of these agents are currently undergoing clinical evaluation. In this context, we summarize the mechanisms by which oxygenases influence cancer cell behavior, along with the preclinical and clinical studies related to targeted therapies involving oxygenases.
Collapse
Affiliation(s)
- Pengfei Shi
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China
| | - Jie Xu
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China
| | - Hongjuan Cui
- Jinfeng Laboratory, 401329 Chongqing, China; Cancer Center, Medical Research Institute, Southwest University, 400716 Chongqing, China.
| |
Collapse
|
3
|
Ye W, Zhang X, Tang Z, Hu Y, Zheng Y, Yuan Y. Comprehensive analysis of glycometabolism-related genes reveals PLOD2 as a prognostic biomarker and therapeutic target in gastric cancer. BMC Gastroenterol 2025; 25:256. [PMID: 40229676 PMCID: PMC11998276 DOI: 10.1186/s12876-025-03878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, with limited therapeutic options and a poor prognosis, particularly in advanced stages. Glycometabolism, a hallmark of cancer, plays a critical role in tumor progression, immune evasion, and response to therapy. However, the specific roles of glycometabolism-related genes and their prognostic and therapeutic implications in GC remain inadequately understood. METHODS Transcriptomic and clinical data from GC patients were retrieved from TCGA and GEO databases. Glycometabolism-related genes were identified and analyzed using machine learning algorithms to construct a prognostic model. Functional assays, immune profiling, and pathway enrichment analyses were performed to explore the roles of these genes in tumor progression, immune-modulatory effects, and drug resistance. PLOD2, the gene with the highest prognostic significance, was further investigated to uncover its underlying regulatory mechanisms, roles in immune modulation, and contribution to therapeutic resistance. RESULTS A glycometabolism-related prognostic model consisting of four genes (PLOD2, CHSY3, SLC2A3 and SLC5A1) was developed and validated, effectively stratifying GC patients into high- and low-risk subgroups with distinct survival outcomes. Among these, PLOD2 emerged as the most significant gene, exhibiting strong associations with tumor progression and poor survival. Functional analyses revealed that PLOD2 promotes glycolysis and tumor progression through activation of the PI3K/AKT/mTOR pathway. Immune profiling revealed that PLOD2 overexpression is associated with an immunosuppressive tumor microenvironment, characterized by increased M2 macrophage infiltration and reduced immune activity. Moreover, treatment with rapamycin, an mTOR inhibitor, significantly suppressed PLOD2-mediated proliferation and anchorage-independent growth in GC cells, highlighting the central role of the PI3K/AKT/mTOR pathway in PLOD2-driven oncogenic behaviors. CONCLUSIONS This study identifies PLOD2 as a key prognostic biomarker and therapeutic target in gastric cancer. As a central component in a glycometabolism-related model, PLOD2 promotes glycolysis, tumor progression, and immune evasion via the PI3K/AKT/mTOR pathway. The model effectively stratifies patient risk, offering both prognostic utility and therapeutic insight. Targeting PLOD2-mediated pathways may represent a promising strategy for precision therapy and improved clinical outcomes in gastric cancer.
Collapse
Affiliation(s)
- Wanchun Ye
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, Jinan Fourth People's Hospital, Jinan, China
| | - Zhongjie Tang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yufeng Hu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuanliang Zheng
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuping Yuan
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
4
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Wang L, Yang R, Kong Y, Zhou J, Chen Y, Li R, Chen C, Tang X, Chen X, Xia J, Chen X, Cheng B, Ren X. Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC. Int J Oral Sci 2024; 16:44. [PMID: 38886346 PMCID: PMC11183126 DOI: 10.1038/s41368-024-00310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.
Collapse
Affiliation(s)
- Lixuan Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rongchun Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Kong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhou
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yingyao Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rui Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuwen Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xinran Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Liu T, Xiang W, Chen Z, Wang G, Cao R, Zhou F, Meng Z, Luo Y, Chen L. Hypoxia-induced PLOD2 promotes clear cell renal cell carcinoma progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14:774. [PMID: 38008826 PMCID: PMC10679098 DOI: 10.1038/s41419-023-06298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer that is both common and aggressive, with a rising incidence in recent decades. Hypoxia is a key factor that plays a vital role in the tumorigenesis and metastasis of malignancy. However, the precise mechanisms of hypoxia driving ccRCC progression were not totally uncovered. Our study found that hypoxia level was elevated in ccRCC and might be an independent risk factor of prognosis in ccRCC patients. We identified a key protein PLOD2 was induced under hypoxic conditions and strongly associated with poor prognosis in ccRCC patients. When PLOD2 was depleted, the proliferation and migration of ccRCC cells were reduced in vitro and in vivo, while overexpression of PLOD2 had the opposite effect. Mechanically, the study further revealed that PLOD2 was transcriptionally activated by HIF1A, which binds to a specific promoter region of the PLOD2 gene. PLOD2 was also shown to interact with EGFR, leading to the phosphorylation of the receptor. Furthermore, PLOD2 was responsible for binding to the extracellular domain of EGFR, which ultimately activated the AKT signaling pathway, thus promoting the malignant progression of ccRCC. Treatment with the PLOD2 inhibitor Minoxidil significantly suppressed ccRCC progression by inactivating the EGFR/AKT signaling axis. In summary, the findings of this study shed light on the molecular mechanisms behind PLOD2 expression in ccRCC and suggest that it may serve as a potential predictor and therapeutic target for the clinical prognosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Yao Y, Lv J, Wang G, Hong X. Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:18318-18344. [PMID: 38052560 DOI: 10.3934/mbe.2023814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Multiple types of RNA modifications are associated with the prognosis of hepatocellular carcinoma (HCC) patients. However, the overall mediating effect of RNA modifications on the tumor microenvironment (TME) and the prognosis of patients with HCC is unclear. METHODS Thoroughly analyze the TME, biological processes, immune infiltration and patient prognosis based on RNA modification patterns and gene patterns. Construct a prognostic model (RNA modification score, RNAM-S) to predict the overall survival (OS) in HCC patients. Analyze the immune status, cancer stem cell (CSC), mutations and drug sensitivity of HCC patients in both the high and low RNAM-S groups. Verify the expression levels of the four characteristic genes of the prognostic RNAM-S using in vitro cell experiments. RESULTS Two modification patterns and two gene patterns were identified in this study. Both the high-expression modification pattern and the gene pattern exhibited worse OS. A prognostic RNAM-S model was constructed based on four featured genes (KIF20A, NR1I2, NR2F1 and PLOD2). Cellular experiments suggested significant dysregulation of the expression levels of these four genes. In addition, validation of the RNAM-S model using each data set showed good predictive performance of the model. The two groups of HCC patients (high and low RNAM-S groups) exhibited significant differences in immune status, CSC, mutation and drug sensitivity. CONCLUSION The findings of the study demonstrate the clinical value of RNA modifications, which provide new insights into the individualized treatment for patients with HCC.
Collapse
Affiliation(s)
- Yuanqian Yao
- Guangxi University of Chinese medicine, NanNing 530000, China
| | - Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guangyao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaohua Hong
- Guangxi University of Chinese medicine, NanNing 530000, China
| |
Collapse
|
8
|
Tong Y, Qi Y, Xiong G, Li J, Scott TL, Chen J, He D, Li L, Wang C, Lane AN, Xu R. The PLOD2/succinate axis regulates the epithelial-mesenchymal plasticity and cancer cell stemness. Proc Natl Acad Sci U S A 2023; 120:e2214942120. [PMID: 37155842 PMCID: PMC10194013 DOI: 10.1073/pnas.2214942120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023] Open
Abstract
Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.
Collapse
Affiliation(s)
- Yuxin Tong
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Yifei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Junyan Li
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Timothy L. Scott
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY40536
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY40536
| | - Jie Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
| | - Linzhang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY40536
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY40536
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40536
| |
Collapse
|
9
|
Proteotranscriptomic Discrimination of Tumor and Normal Tissues in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054488. [PMID: 36901940 PMCID: PMC10003397 DOI: 10.3390/ijms24054488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of patients with malignant and paired normal tissue samples from gene array cohorts, we identified the top genes over-expressed in ccRCC. We collected surgically resected ccRCC specimens to further investigate the transcriptomic results on the proteome level. The differential protein abundance was evaluated using targeted mass spectrometry (MS). We assembled a database of 558 renal tissue samples from NCBI GEO and used these to uncover the top genes with higher expression in ccRCC. For protein level analysis 162 malignant and normal kidney tissue samples were acquired. The most consistently upregulated genes were IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1 (p < 10-5 for each gene). Mass spectrometry further validated the differential protein abundance of these genes (IGFBP3, p = 7.53 × 10-18; PLIN2, p = 3.9 × 10-39; PLOD2, p = 6.51 × 10-36; PFKP, p = 1.01 × 10-47; VEGFA, p = 1.40 × 10-22; CCND1, p = 1.04 × 10-24). We also identified those proteins which correlate with overall survival. Finally, a support vector machine-based classification algorithm using the protein-level data was set up. We used transcriptomic and proteomic data to identify a minimal panel of proteins highly specific for clear cell renal carcinoma tissues. The introduced gene panel could be used as a promising tool in the clinical setting.
Collapse
|
10
|
Wang Z, Fan G, Zhu H, Yu L, She D, Wei Y, Huang J, Li T, Zhan S, Zhou S, Zhu Y, Wang Y, Chen X, Zhao J, Zhou G. PLOD2 high expression associates with immune infiltration and facilitates cancer progression in osteosarcoma. Front Oncol 2022; 12:980390. [PMID: 36276118 PMCID: PMC9581331 DOI: 10.3389/fonc.2022.980390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumors in children and adolescents. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) is a key gene in mediating the formation of the stabilized collagen cross-link, playing an important role in the progression of cancer. However, the interaction between OS and PLOD2 has not been clarified so far. Methods The target gene PLOD2 was screened through our own RNA-seq results and other two RNA-seq results from GEO database. The expression of PLOD2 in OS was detected by RT-qPCR, Western blot and immunohistochemistry. Functional experiments were performed to investigate the role of PLOD2 in OS cell invasion, migration and angiogenesis in vitro. An OS lung metastasis model was established to investigate the function of PLOD2 in OS metastasis and angiogenesis in vivo. The role of PLOD2 in immune infiltration in OS was explored by KEGG/GO analysis and immune infiltration analysis with TARGET, TCGA and TIMER. Results PLOD2 was high-expressed in OS, which was related to poor prognosis of OS patients. PLOD2 promoted OS cell migration, invasion and angiogenesis in vitro and aggravated OS metastasis and angiogenesis in vivo. Bioinformatic analysis showed that PLOD2 played an important role in immune cell infiltration in OS, including CD8 positive T cells, macrophages M0 cells, DC cells, endothelial cells, iDC cells, ly endothelial cells, MEP cells, mv endothelial cells, native B cells, smooth muscle cells and Th1 cells. Immunohistochemical results showed that the expression of CD4 and CD8A was negatively correlated with the expression of PLOD2 in OS. Conclusion PLOD2 was high-expressed in OS and promoted OS migration, invasion and angiogenesis in vitro and facilitated OS metastasis and angiogenesis in vivo. PLOD2 was associated with immune cell infiltration in OS, which could be a promising target to treat OS patients with metastasis and utilized to guide clinical immunotherapy in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Gentao Fan
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhu
- Department of Orthopaedics, Affiliated Jianhu Hospital of Nantong University, Yancheng, China
| | - Lingfeng Yu
- Department of Orthopaedics, Jinling Hospital, Nanjing University, Nanjing, China
| | - Diankun She
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yanting Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianhao Huang
- Department of Orthopaedics, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shenkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Zhu
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yicun Wang
- Department of Orthopaedics, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xi Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Guangxin Zhou, ; Jianning Zhao, ; Xi Chen,
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guangxin Zhou, ; Jianning Zhao, ; Xi Chen,
| | - Guangxin Zhou
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Guangxin Zhou, ; Jianning Zhao, ; Xi Chen,
| |
Collapse
|
11
|
Gong X, Wang A, Song W. Clinicopathological significances of PLOD2, epithelial-mesenchymal transition markers, and cancer stem cells in patients with esophageal squamous cell carcinoma. Medicine (Baltimore) 2022; 101:e30112. [PMID: 36042592 PMCID: PMC9410680 DOI: 10.1097/md.0000000000030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To examine the expression level of procollagen-lysine2-oxoglutarate 5-dioxygenase 2 (PLOD2) in esophageal squamous cell carcinoma (ESCC) and analyze its correlation with clinicopathological parameters, in order to explore the mechanism of PLOD2 in regulating invasion and metastasis of ESCC. METHODS Immunohistochemistry was used to detect the expression level of PLOD2 in tumor tissues and paired adjacent tissues of 172 patients with ESCC, and the relationship between PLOD2 expression and clinicopathological parameters was analyzed. The deposition of collagen fibers in tumor was detected by Sirius red staining. The correlation between tumor stem cells and epithelial-mesenchymal transition (EMT) markers ZEB1 was analyzed by multivariate logistic regression. RESULTS The expression level of PLOD2 in tumor tissues of patients with ESCC (70.35%, 121/172) was significantly higher than that in paired adjacent tissues (29.65%, 51/172; P < .01). The positive expression rate of PLOD2 in ESCC was related to T classification, lymph node metastasis, and pathological tumor node metastasis of a tumor. The expression rates of ZEB1, CD44, and CD133 in ESCC were correlated with T classification, lymph node metastasis and pathological tumor node metastasis. Scarlet red staining showed that collagen fiber deposition in ESCC tissues with high expression of PLOD2 was significantly higher than that in tissues with low expression of PLOD2 (P < .01). A positive correlation was observed between the expression of PLOD2 and CD133, PLOD2 and CD44, and PLOD2 and N-cadherin (P < .01). Moreover, a negative correlation was noted between the expression of PLOD2 and E-cadherin (P < .01). The combined expression of PLOD2 and ZEB1 were independent prognostic factors for the total survival time of patients with ESCC. CONCLUSION PLOD2 is highly expressed in ESCC and is closely related to tumor invasion and metastasis. The mechanism of PLOD2 for promoting invasion and metastasis of ESCC may be related to activation of the EMT signaling pathway to promote EMT and tumor stem cell transformation.
Collapse
Affiliation(s)
- Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Ailian Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical College, Bengbu, China
- *Correspondence: Wenqing Song, Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233000, China (e-mail: )
| |
Collapse
|
12
|
Mari V, Angerilli V, Munari G, Scarpa M, Bao QR, Pucciarelli S, Fassan M, Spolverato G. Molecular Determinants of Peritoneal Dissemination in Gastric Adenocarcinoma. Dig Dis 2022; 41:49-65. [PMID: 35940137 DOI: 10.1159/000526333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peritoneal dissemination represents a poor prognostic indicator in gastric cancer. Despite a comprehensive molecular characterization of this disease, no peritoneal dissemination-specific signature has been identified, limiting the tailoring of the surgical and oncological treatments. In this review, we outline the available literature focusing on the role of the different molecular pathways involved in the acquisition of peritoneal metastatic dissemination. SUMMARY According to our results, several molecular determinants are associated with peritoneal carcinomatosis and are involved in several cellular and molecular carcinogenetic processes. However, a comprehensive understanding of the complex molecular landscape of gastric carcinosis is still lacking. KEY MESSAGES More efforts should be made toward the integration of molecular and histologic data to perform a risk prediction assessment of peritoneal dissemination based on molecular profiling and histological evaluation.
Collapse
Affiliation(s)
- Valentina Mari
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giada Munari
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Marco Scarpa
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Quoc Riccardo Bao
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (I.O.V. IRCSS), Padua, Italy
| | - Gaya Spolverato
- Department of Surgical, General Surgery 3, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, Padua, Italy
| |
Collapse
|
13
|
Ng D, Ali A, Lee K, Eymael D, Abe K, Luu S, Kazazian K, Lu YQ, Brar S, Conner J, Magalhaes M, Swallow CJ. Investigating the mechanisms of peritoneal metastasis in gastric adenocarcinoma using a novel ex vivo peritoneal explant model. Sci Rep 2022; 12:11499. [PMID: 35798764 PMCID: PMC9262973 DOI: 10.1038/s41598-022-13948-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Gastric adenocarcinoma, commonly known as stomach cancer, has a predilection for metastasis to the peritoneum, which portends limited survival. The peritoneal metastatic cascade remains poorly understood, and existing models fail to recapitulate key elements of the interaction between cancer cells and the peritoneal layer. To explore the underlying cellular and molecular mechanisms of peritoneal metastasis, we developed an ex vivo human peritoneal explant model. Fresh peritoneal tissue samples were suspended, mesothelial layer down but without direct contact, above a monolayer of red-fluorescent dye stained AGS human gastric adenocarcinoma cells for 24 h, then washed thoroughly. Implantation of AGS cells within the explanted peritoneum and invasion beyond the mesothelial layer were examined serially using real-time confocal fluorescence microscopy. Histoarchitecture of the explanted peritoneum was preserved over 5 days ex vivo. Both implantation and invasion were suppressed by restoration of functional E-cadherin through stable transfection of AGS cells, demonstrating sensitivity of the model to molecular manipulation. Thus, our ex vivo human peritoneal explant model permits meaningful investigation of the pathways and mechanism that contribute to peritoneal metastasis. The model will facilitate screening of new therapies that target peritoneal dissemination of gastric, ovarian and colorectal cancer.
Collapse
Affiliation(s)
- Deanna Ng
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Aiman Ali
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Kiera Lee
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Denise Eymael
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Kento Abe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Shelly Luu
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Surgical Oncology and Division of General Surgery, Princess Margaret Cancer Centre, University Health Network/Mount Sinai Hospital, 600 University Avenue #1225, Toronto, ON, M5G 1X5, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Karineh Kazazian
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Surgical Oncology and Division of General Surgery, Princess Margaret Cancer Centre, University Health Network/Mount Sinai Hospital, 600 University Avenue #1225, Toronto, ON, M5G 1X5, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Yi Qing Lu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Savtaj Brar
- Department of Surgical Oncology and Division of General Surgery, Princess Margaret Cancer Centre, University Health Network/Mount Sinai Hospital, 600 University Avenue #1225, Toronto, ON, M5G 1X5, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - James Conner
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Marco Magalhaes
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Carol J Swallow
- Institute of Medical Science, University of Toronto, Toronto, Canada. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. .,Department of Surgical Oncology and Division of General Surgery, Princess Margaret Cancer Centre, University Health Network/Mount Sinai Hospital, 600 University Avenue #1225, Toronto, ON, M5G 1X5, Canada. .,Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Lin Z, Song J, Gao Y, Huang S, Dou R, Zhong P, Huang G, Han L, Zheng J, Zhang X, Wang S, Xiong B. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol 2022; 52:102312. [PMID: 35447413 PMCID: PMC9043498 DOI: 10.1016/j.redox.2022.102312] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Peritoneal metastasis (PM) is the main site of gastric cancer (GC) distant metastasis and indicates an extremely poor prognosis and survival. Hypoxia is a common feature of peritoneal metastases and up-regulation of hypoxia inducible factor 1 alpha (HIF-1α) may be a potential driver in the occurrence of PM. Ferroptosis is a recently discovered form of regulated cell death and closely related to the occurrence and development of tumors. However, the underlying mechanism link HIF-1α to ferroptosis in PM of GC remains unknown. Here, lncRNA-microarrays and RNA library construction/lncRNA-seq results shown that lncRNA-PMAN was highly expressed in PM and significantly modulated by HIF-1α. Upregulation of PMAN is associated with poor prognosis and PM in patients with GC. PMAN was up-regulated by HIF-1α and improved the stability of SLC7A11 mRNA by promoting the cytoplasmic distribution of ELAVL1, which was identified in RNA-pulldown/mass spectrometry results. Accumulation of SLC7A11 increases the level of l-Glutathione (GSH) and inhibits the accumulation of reactive oxygen species (ROS) and irons in the GC cells. Finally protect GC cells against ferroptosis induced by Erastin and RSL3. Our findings have elucidated the effect of HIF-1α/PMAN/ELAVL1 in GC cells ferroptosis and provides theoretical support for the potential diagnostic biomarkers and therapeutic targets for PM in GC. HIF-1⍺ mediates abnormally high expression of PMAN in PM from GC under hypoxia. GC cells suppress ferroptosis by relieving ROS and irons accumulation through HIF-1⍺/PMAN under hypoxia. Inhibition of ferroptosis may contributes to the development of PM from GC. Increased cytoplasmic translocation of ELAVL1 is a key intermediate factor in PMAN inhibition of ferroptosis.
Collapse
Affiliation(s)
- Zaihuan Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuke Gao
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Panyi Zhong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Guoquan Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xinyao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Wuhan Peritoneal Cancer Clinical Medical Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Wuhan Peritoneal Cancer Clinical Medical Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
15
|
Xu Q, Kong N, Zhao Y, Wu Q, Wang X, Xun X, Gao P. Pan-Cancer Analyses Reveal Oncogenic and Immunological Role of PLOD2. Front Genet 2022; 13:864655. [PMID: 35586565 PMCID: PMC9108334 DOI: 10.3389/fgene.2022.864655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Some previous studies have shown that PLOD2 has some value in tumorigenesis. However, the broad significance of PLOD2 has not been discussed in depth. This study was aimed at elaborated and summarized the value of PLOD2 in various tumors. First, we integrated GTEx, The Cancer Genome Atlas and Cancer Cell Line Encyclopedia databases to analyze the expression of PLOD2, and found that it was expressed differently in normal tissues and significantly highly expressed in most tumors compared with normal tissues. Second, our analysis revealed that PLOD2 expression was negatively correlated with the prognosis of several tumors. For gastric cancer, the median overall survival time was significantly higher in the PLOD2 low expression group [HR 0.616 (95%CI 0.442–0.858), p = 0.004]. Third, for tumor immunity, PLOD2 was significantly associated with tumor infiltration, including immune infiltrating cells; immune checkpoint expression; immune microenvironment scores (immune score, stromal score and estimate scores); immunotherapy-related scores (tumor mutational burden, microsatellite instability, tumor neoantigen burden); expression of DNA repair genes Mismatch Repairs and methyltransferase; and enrichment analyses identified PLOD2-associated terms and pathways. Lastly, twenty pairs of gastric cancer and adjacent immunohistochemistry showed that PLOD2 was significantly overexpressed in gastric cancer (p < 0.001). Collectively, PLOD2 played a significant role in tumorigenesis and maybe serve as a potential biomarker for diagnosis and prognosis in cancers.
Collapse
|
16
|
Abou-Fadel J, Bhalli M, Grajeda B, Zhang J. CmP Signaling Network Leads to Identification of Prognostic Biomarkers for Triple-Negative Breast Cancer in Caucasian Women. Genet Test Mol Biomarkers 2022; 26:198-219. [PMID: 35481969 DOI: 10.1089/gtmb.2021.0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Triple-negative breast cancer (TNBC) constitutes ∼15% of all diagnosed invasive breast cancer cases with limited options for treatment since immunotherapies that target ER, PR, and HER2 receptors are ineffective. Progesterone (PRG) can induce its effects through either classic, nonclassic, or combined responses by binding to classic nuclear PRG receptors (nPRs) or nonclassic membrane PRG receptors (mPRs). Under PRG-induced actions, we previously demonstrated that the CCM signaling complex (CSC) can couple both nPRs and mPRs into a CmPn signaling network, which plays an important role during nPR(+) breast cancer tumorigenesis. We recently defined the novel CmP signaling network in African American women (AAW)-derived TNBC cells, which overlapped with our previously defined CmPn network in nPR(+) breast cancer cells. Methods: Under mPR-specific steroid actions, we measured alterations to key tumorigenic pathways in Caucasian American women (CAW)- derived TNBC cells, with RNAseq/proteomic and systems biology approaches. Exemption from ethics approval from IRB: This study only utilized cultured NBC cell lines with publicly available TNBC clinical data sets. Results: Our results demonstrated that TNBCs in CAW share similar altered signaling pathways, as TNBCs in AAW, under mPR-specific steroid actions, demonstrating the overall aggressive nature of TNBCs, regardless of racial differences. Furthermore, in this report, we have deconvoluted the CmP signalosome, using systems biology approaches and CAW-TNBC clinical data, to identify 21 new CAW-TNBC-specific prognostic biomarkers that reinforce the definitive role of CSC and mPR signaling during CAW-TNBC tumorigenesis. Conclusion: This new set of potential prognostic biomarkers may revolutionize molecular mechanisms and currently known concepts of tumorigenesis in CAW-TNBCs, leading to hopeful new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, Texas, USA
| |
Collapse
|
17
|
Huo J, Fan X, Qi B, Sun P. A Five-Gene Signature Associated With DNA Damage Repair Molecular Subtype Predict Overall Survival for Hepatocellular Carcinoma. Front Genet 2022; 13:771819. [PMID: 35126478 PMCID: PMC8811360 DOI: 10.3389/fgene.2022.771819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Background: DNA damage repair (DDR) is an important mechanism for the occurrence and development of hepatocellular carcinoma (HCC), but its impact on prognosis has not been fully understood.Materials and methods: A total of 904 HCC patients were included in our study, TCGA (n = 370) and GSE14520 (n = 239) were merged into a large-sample training cohort (n = 609). The training cohort was clustered into C1 and C2 based on prognostic DDR-related genes, the differentially expressed genes (DEGs) between C1 and C2 were identified by the Wilcoxon signed-rank test referred to criteria (|log2FC|≥1 and FDR< 0.05). The univariate Cox analysis was used to screen the prognostic-related DEGs, and Lasso penalized Cox regression analysis was used to construct the risk score. The patients were clarified into high- and low-risk groups based on the median risk score. ICGC (n = 231) and GSE116174 (n = 64) cohorts were used for external validation of the risk score’s prognostic value.Results: The Kaplan–Meier survival analysis showed that the high-risk group had a significantly reduced overall survival (OS) compared to the low-risk group in the three independent cohorts, and the time-dependent ROC curve showed that the five-gene (STMN1, PON1, PLOD2, MARCKSL1, and SPP1) risk score with a high accuracy in predicting OS. The patients with AFP >300 ng/ml, tumor poor differentiation (grade 3–4), micro and macro vascular tumor invasion, advanced stage (AJCC III-IV, BCLC stage B-C, and CLIP score >2) exhibited a higher risk score. Subgroup survival analysis found that the risk score was applicable to patients with different clinical characteristics. GO and KEGG functional enrichment analysis revealed that cell cycle, p53 signaling, TNF signaling-related pathways were upregulated in the high-risk group. The higher infiltration level of activated CD4 T cell, CD56 bright natural killer cell, plasmacytoid dendritic cell, and type 2 T helper cells were found to lead an unfavorable impact on the OS of HCC patients, and these four kinds of immune cells exhibited a higher infiltration level in the high-risk group.Conclusion: The five-gene risk score proposed in the research may provide new insights into the individualized evaluation of HCC prognosis.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinyi Fan
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingxin Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobilary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Peng Sun,
| |
Collapse
|
18
|
Song W, Bai Y, Zhu J, Zeng F, Yang C, Hu B, Sun M, Li C, Peng S, Chen M, Sun X. A novel prognostic model based on epithelial-mesenchymal transition-related genes predicts patient survival in gastric cancer. World J Surg Oncol 2021; 19:216. [PMID: 34281542 PMCID: PMC8290588 DOI: 10.1186/s12957-021-02329-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background Gastric cancer (GC) represents a major malignancy and is the third deathliest cancer globally. Several lines of evidence indicate that the epithelial-mesenchymal transition (EMT) has a critical function in the development of gastric cancer. Although plentiful molecular biomarkers have been identified, a precise risk model is still necessary to help doctors determine patient prognosis in GC. Methods Gene expression data and clinical information for GC were acquired from The Cancer Genome Atlas (TCGA) database and 200 EMT-related genes (ERGs) from the Molecular Signatures Database (MSigDB). Then, ERGs correlated with patient prognosis in GC were assessed by univariable and multivariable Cox regression analyses. Next, a risk score formula was established for evaluating patient outcome in GC and validated by survival and ROC curves. In addition, Kaplan-Meier curves were generated to assess the associations of the clinicopathological data with prognosis. And a cohort from the Gene Expression Omnibus (GEO) database was used for validation. Results Six EMT-related genes, including CDH6, COL5A2, ITGAV, MATN3, PLOD2, and POSTN, were identified. Based on the risk model, GC patients were assigned to the high- and low-risk groups. The results revealed that the model had good performance in predicting patient prognosis in GC. Conclusions We constructed a prognosis risk model for GC. Then, we verified the performance of the model, which may help doctors predict patient prognosis.
Collapse
Affiliation(s)
- Wanting Song
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Bai
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jialin Zhu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fanxin Zeng
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunmeng Yang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Beibei Hu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Moye Chen
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Dai W, Xiao Y, Tang W, Li J, Hong L, Zhang J, Pei M, Lin J, Liu S, Wu X, Xiang L, Wang J. Identification of an EMT-Related Gene Signature for Predicting Overall Survival in Gastric Cancer. Front Genet 2021; 12:661306. [PMID: 34249086 PMCID: PMC8264558 DOI: 10.3389/fgene.2021.661306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background It has been widely reported that epithelial-mesenchymal transition (EMT) is associated with malignant progression in gastric cancer (GC). Integration of the molecules related to EMT for predicting overall survival (OS) is meaningful for understanding the role of EMT in GC. Here, we aimed to establish an EMT-related gene signature in GC. Methods Transcriptional profiles and clinical data of GC were downloaded from The Cancer Genome Atlas (TCGA). We constructed EMT-related gene signature for predicting OS by using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Time-dependent receiver operating characteristic (ROC), Kaplan-Meier analysis were performed to assess its predictive value. A nomogram combining the prognostic signature with clinical characteristics for OS prediction was established. And its predictive power was estimated by concordance index (C-index), time-dependent ROC curve, calibration curve and decision curve analysis (DCA). GSE62254 dataset from Gene Expression Omnibus (GEO) was used for external validation. Quantitative real-time PCR (qRT-PCR) was used to detected the mRNA expression of the five EMT-related genes in human normal gastric mucosal and GC cell lines. To further understand the potential mechanisms of the signature, Gene Set Enrichment Analysis (GSEA), pathway enrichment analysis, predictions of transcription factors (TFs)/miRNAs were performed. Results A novel EMT-related gene signature (including ITGAV, DAB2, SERPINE1, MATN3, PLOD2) was constructed for OS prediction of GC. With external validation, ROC curves indicated the signature’s good performance. Patients stratified into high- and low-risk groups based on the signature yielded significantly different prognosis. Univariate and multivariate Cox regression suggested that the signature was an independent prognostic variable. Nomogram for prognostication including the signature presented better predictive accuracy and clinical usefulness than the similar model without risk score to some extent with external validation. The qRT-PCR assays suggested that high expression of the five EMT-related genes could be found in human GC cell lines compared with normal gastric mucosal cell line. GSEA and pathway enrichment analysis revealed that focal adhesion and ECM-receptor interaction might be the two important pathways to the signature. Conclusion Our EMT-related gene signature may have practical application as an independent prognostic factor in GC.
Collapse
Affiliation(s)
- Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjiao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| |
Collapse
|
20
|
Abstract
Objective Glioblastoma (GB) is a refractory malignancy with a high rate of recurrence and treatment resistance. Hypoxia-related genes are promising prognostic indicators for GB, so we herein developed a reliable hypoxia-related gene risk scoring model to predict the prognosis of patients with GB. Method Gene expression profiles and corresponding clinicopathological features of patients with GB were obtained from the Cancer Genome Atlas (TCGA; n = 160) and Gene Expression Omnibus (GEO) GSE7696 (n = 80) databases. Univariate and multivariate Cox regression analyses of differentially expressed hypoxia-related genes were performed using R 3.5.1 software. Result Fourteen prognosis-related genes were identified and used to construct a risk signature. Patients with high-risk scores had significantly lower overall survival (OS) than those with low-risk scores. The median risk score was used as a critical value and for OS prediction in an independent external verification GSE7696 cohort. Risk score was not significantly affected by clinical-related factors. We also developed a prediction nomogram based on the TCGA training set to predict survival rates, and included six independent prognostic parameters in the TCGA prediction model. Conclusion We determined a reliable hypoxia-related gene risk scoring model for predicting the prognosis of patients with GB.
Collapse
Affiliation(s)
- Chao-Qun Lin
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu-Kui Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
22
|
Li J, Pu K, Li C, Wang Y, Zhou Y. A Novel Six-Gene-Based Prognostic Model Predicts Survival and Clinical Risk Score for Gastric Cancer. Front Genet 2021; 12:615834. [PMID: 33692828 PMCID: PMC7938863 DOI: 10.3389/fgene.2021.615834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Autophagy plays a vital role in cancer initiation, malignant progression, and resistance to treatment. However, autophagy-related genes (ARGs) have rarely been analyzed in gastric cancer (GC). The purpose of this study was to analyze ARGs in GC using bioinformatic analysis and to identify new biomarkers for predicting the overall survival (OS) of patients with GC. Methods: The gene expression profiles and clinical data of patients with GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and ARGs were obtained from two other datasets (the Human Autophagy Database and Molecular Signatures Database). Lasso, univariate, and multivariate Cox regression analyses were performed to identify the OS-related ARGs. Finally, a six-ARG model was identified as a prognostic indicator using the risk-score model, and survival and prognostic performance were analyzed based on the Kaplan-Meier test and ROC curve. Estimate calculations were used to assess the immune status of this model, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed for investigating the functions and terms associated with the model-related genes in GC. Results: The six ARGs, DYNLL1, PGK2, HPR, PLOD2, PHYHIP, and CXCR4, were identified using Lasso and Cox regression analyses. Survival analysis revealed that the OS of GC patients in the high-risk group was significantly lower than that of the low-risk group (p < 0.05). The ROC curves revealed that the risk score model exhibited better prognostic performance with respect to OS. Multivariate Cox regression analysis indicated that the model was an independent predictor of OS and was not affected by most of the clinical traits (p < 0.05). The model-related genes were associated with immune suppression and several biological process terms, such as extracellular structure organization and matrix organization. Moreover, the genes were associated with the P13K-Akt signaling pathway, focal adhesion, and MAPK signaling pathway. Conclusions: This study presents potential prognostic biomarkers for GC patients that would aid in determining the best patient-specific course of treatment.
Collapse
Affiliation(s)
- Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chunmei Li
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Li F, Liu H, Zhang K, Xiao DJ, Wang C, Wang YS. Adipose-derived stromal cells improve functional recovery after spinal cord injury through TGF-β1/Smad3/PLOD2 pathway activation. Aging (Albany NY) 2021; 13:4370-4387. [PMID: 33495412 PMCID: PMC7906172 DOI: 10.18632/aging.202399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
Transplantation of mesenchymal stromal cells (MSCs) improves functional recovery in experimental models of spinal cord injury (SCI), but the mechanism is not fully understood. Activation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a collagen-modifying enzyme, reportedly follows MSC transplantation in an SCI animal model. We investigated the regulation of PLOD2 expression and its potential contribution to the neuroprotective effects of adipose-derived stromal cells (ADSCs) following mechanical injury to neurons in vitro and SCI in vivo. ADSCs enhanced wound healing in vitro and promoted functional recovery after their implantation near injury sites in a rat SCI model. These effects correlated with upregulation of PLOD2, MAP2, NSE and GAP43, and downregulation of GFAP, which is indicative of improved neuronal survival and axonal regeneration as well as reduced glial scar formation. The neurorestorative effect of ADSCs was weakened after inhibition of PLOD2 expression. ADSCs appeared to induce PLOD2 upregulation via TGF-β1 secretion, as ADSC-mediated PLOD2 expression, neuronal survival, and functional recovery after SCI were largely prevented by SB431542, a TGF-(1 receptor inhibitor. These findings indicate that ADSCs reduce lesion size and promote functional recovery after SCI mainly through activation of a TGF-β1/P-Samd3/PLOD2 pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Fang Li
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Hua Liu
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Kun Zhang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Dong-Jie Xiao
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Chang Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Jinan Dien Forensic Judical Appraisal Institute, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Yun-Shan Wang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| |
Collapse
|
24
|
Yao X, Ajani JA, Song S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl Gastroenterol Hepatol 2020; 5:57. [PMID: 33073052 DOI: 10.21037/tgh.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastases occur in 55-60% of patients with gastric cancer (GC) and are associated with a 2% 5-year overall survival rate. There are limited treatment options for these patients, and no targeted therapy or immunotherapy is available. Rational therapeutic targets remain to be found. In this review, we present the published literature and our own recent experience in molecular biology to identify important molecules and signaling pathways as well as cellular immunity involved in the peritoneal metastasis of GC. We also suggest potential novel strategies for improving the outcomes of GC patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Berglund A, Amankwah EK, Kim YC, Spiess PE, Sexton WJ, Manley B, Park HY, Wang L, Chahoud J, Chakrabarti R, Yeo CD, Luu HN, Pietro GD, Parker A, Park JY. Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Med 2020; 9:8662-8675. [PMID: 32986937 PMCID: PMC7666730 DOI: 10.1002/cam4.3475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10%‐20% of patients with clinically localized clear cell renal cell carcinoma (ccRCC) at time of surgery will subsequently experience metastatic progression. Although considerable progression was seen in the systemic treatment of metastatic ccRCC in last 20 years, once ccRCC spreads beyond the confines of the kidney, 5‐year survival is less than 10%. Therefore, significant clinical advances are urgently needed to improve overall survival and patient care to manage the growing number of patients with localized ccRCC. We comprehensively evaluated expression of 388 candidate genes related with survival of ccRCC by using TCGA RNAseq (n = 515), Total Cancer Care (TCC) expression array data (n = 298), and a well characterized Moffitt RCC cohort (n = 248). We initially evaluated all 388 genes for association with overall survival using TCGA and TCC data. Eighty‐one genes were selected for further analysis and tested on Moffitt RCC cohort using NanoString expression analysis. Expression of nine genes (AURKA, AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, and TOP2A) was validated as being associated with poor survival. Survival prognostic models showed that expression of the nine genes and clinical factors predicted the survival in ccRCC patients with AUC value: 0.776, 0.821 and 0.873 for TCGA, TCC and Moffitt data set, respectively. Some of these genes have not been previously implicated in ccRCC survival and thus potentially offer insight into novel therapeutic targets. Future studies are warranted to validate these identified genes, determine their biological mechanisms and evaluate their therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ernest K Amankwah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Young-Chul Kim
- Department of Biostatistics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brandon Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyun Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Chang D Yeo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hung N Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuliano D Pietro
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao, Brazil
| | - Alexander Parker
- University of Florida College of Medicine, Jacksonville, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Wang X, Guo J, Dai M, Wang T, Yang T, Xiao X, Tang Q, Zhang L, Jia L. PLOD2 increases resistance of gastric cancer cells to 5-fluorouracil by upregulating BCRP and inhibiting apoptosis. J Cancer 2020; 11:3467-3475. [PMID: 32284742 PMCID: PMC7150456 DOI: 10.7150/jca.41828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common cancers, and it is the third most common cause of cancer-related mortality worldwide. Fluorouracil (5-FU)-based chemotherapy is frequently used for the treatment of advanced GC. However, a substantial proportion of patients eventually experience refractory disease due to drug resistance. PLOD2 was reported to increase invasion and migration in several GC cell lines, but the roles of PLOD2 in chemoresistance are still unclear. The present study aimed to determine whether PLOD2 could confer 5-FU resistance in GC. Methods: The expression of PLOD2 in GC cell lines was assessed by Western blotting. The cells were transfected by lentiviral transduction. The IC50 values were determined by the CCK-8 assay. The migration and invasion abilities of cells were analyzed by the Transwell assay. The proportion of apoptotic cells was assessed by flow cytometry. The protein levels of P-gp (MDR1), MRP1, BCRP (ABCG2), Bax and Bcl2 were analyzed by Western blotting. Furthermore, tumor xenograft models in nude mice were established to test tumor growth and weight. Result: The knockdown of PLOD2 in BGC823 cells significantly decreased the IC50 values of 5-FU. It also contributed to reducing the cell migration and invasion and promoting the apoptosis of GC cells. The opposite results appeared in PLOD2-overexpressing MGC803 GC cells. In vivo experiments showed that the knockdown of PLOD2 increased the growth inhibition of transplanted tumors in nude mice in response to 5-FU. Our mechanistic studies revealed that PLOD2-overexpressing cells appear to be resistant to the therapeutic characteristics of 5-FU in GC cells by upregulating BCRP and that PLOD2 confers resistance to 5-FU-induced apoptosis in GC cells by affecting the expression of Bax and Bcl2. Conclusion: PLOD2 contributed to increasing resistance of gastric cancer cells to 5-fluorouracil by upregulating BCRP and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xiaohui Wang
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jiaojiao Guo
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Meng Dai
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| | - Tengqi Wang
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Xuejun Xiao
- Department of Pharmacology, Xinjiang Medical University, Wulumuqi, Xinjiang, PR China
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, PR China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia, PR China.,Bayannur Clinical Medical College, Inner Mongolia Medical University, Bayannur, Inner Mongolia, PR China
| |
Collapse
|
28
|
Li SS, Lian YF, Huang YL, Huang YH, Xiao J. Overexpressing PLOD family genes predict poor prognosis in gastric cancer. J Cancer 2020; 11:121-131. [PMID: 31892979 PMCID: PMC6930397 DOI: 10.7150/jca.35763] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a set of enzymes involved in the hydroxylation of lysine and stabilization of collagen by crosslinks. Previous studies have highlighted that overexpressing PLOD genes were related to the progression, migration and progression of different human cancers. However, the diverse expression patterns and prognostic values of PLOD genes remain to be elucidated in gastric cancer (GC). In this study, we mined the expression and survival data in GC patients through ONCOMINE, UALCAN and Kaplan-Meier Plotter database. STRING portal couple with DAVID was used to establish a functional protein interaction network of PLOD family genes and analyze the GO and KEGG enriched pathways. Differential gene expression correlated with PLOD family genes was identified with LinkedOmics. We found that PLOD1, 2 and 3 were up-regulated in GC patients compared with normal tissues. High expression levels of PLOD1 and PLOD3 were associated with shorter overall survival (OS), first progression (FP) and post progression survival (PPS) while high expression level of PLOD2 was only associated with shorter FP in all GC patients. Specifically, only high PLOD2 expression had significant correlation with shorter OS, FP and PPS in the diffuse type GC patients. Furthermore, combinatorial use of expressions of all PLOD genes was a superior prognostic indicator for GC patients. Pathway analysis confirmed that PLOD family genes mainly participate in regulating the collagen metabolism and extracellular matrix constitution, and the cellular adaptor protein SHC1, which helps to transduce an extracellular signal into an intracellular signal, could be the regulatory module mediating PLOD's effect on GC. Therefore, we propose that individual PLOD genes or PLOD family genes as a whole could be potential prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Lin Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Wan J, Qin J, Cao Q, Hu P, Zhong C, Tu C. Hypoxia-induced PLOD2 regulates invasion and epithelial-mesenchymal transition in endometrial carcinoma cells. Genes Genomics 2019; 42:317-324. [PMID: 31872384 DOI: 10.1007/s13258-019-00901-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was induced in hypoxia and participated in cancer development. However, the role of PLOD2 in endometrial carcinoma remains unclear. OBJECTIVE To explore the influences and regulation mechanism of PLOD2 in endometrial carcinoma under hypoxic condition. METHODS The small interfering RNA (siRNA) targeting to PLOD2 and pcDNA3.1-PLPD2 were transfected to endometrial carcinoma cells to alter PLOD2 expression. Cell proliferation ability was determined by colony formation assay. Wound healing assay used to detect cell migration ability. Transwell invasion assay was used to detect cell invasion ability. RESULTS PLOD2 and Hypoxia-inducible factor-1α (HIF-1α) were induced by hypoxia. Down-regulation of PLOD2 did not affect endometrial carcinoma cell proliferation ability, while inhibited cell migration, invasion under hypoxic condition. Besides, down-regulation of PLOD2 increased the levels of γ-catenin and E-cadherin and decreased levels of Fibronectin and Snail under hypoxic condition. Down-regulation of PLOD2 also inactivated Src and phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) signaling under hypoxic condition. The promoting effects of PLOD2 overexpression on migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells were reversed by Akt inhibitor (MK2206) under hypoxic condition. CONCLUSION PLOD2 expression was increased in endometrial carcinoma cells under hypoxic condition. PLOD2 modulated migration, invasion, and EMT of endometrial carcinoma cells via PI3K/Akt signaling. PLOD2 may be a potential therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Junhui Wan
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China
| | - Junli Qin
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China
| | - Qinyue Cao
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Ping Hu
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Chunmei Zhong
- Department of Obstetrics and Gynecology, Medical College of Nanchang University, Nanchang City, Jiangxi Province, 330006, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Nanchang University, 17# Yongwai Zheng Street, Nanchang City, Jiangxi Province, 330006, China.
| |
Collapse
|
30
|
Wei X, Li S, He J, Du H, Liu Y, Yu W, Hu H, Han L, Wang C, Li H, Shi X, Zhan M, Lu L, Yuan S, Sun L. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal 2019; 17:58. [PMID: 31170987 PMCID: PMC6554964 DOI: 10.1186/s12964-019-0373-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Breast cancer cells recruit surrounding stromal cells, such as cancer-associated fibroblasts (CAFs), to remodel collagen and promote tumor metastasis. Adipocytes are the most abundant stromal partners in breast tissue, local invasion of breast cancer leads to the proximity of cancer cells and adipocytes, which respond to generate cancer-associated adipocytes (CAAs). These cells exhibit enhanced secretion of extracellular matrix related proteins, including collagens. However, the role of adipocyte-derived collagen on breast cancer progression still remains unclear. Methods Adipocytes were cocultured with breast cancer cells for 3D collagen invasion and collagen organization exploration. Breast cancer cells and adipose tissue co- implanted mouse model, clinical breast cancer samples analysis were used to study the crosstalk between adipose and breast cancer cells in vivo. A combination of proteomics, enzyme-linked immunosorbent assay, loss of function assay, qPCR, western blot, database analysis and chromatin immunoprecipitation assays were performed to study the mechanism mediated the activation of PLOD2 in adipocytes. Results It was found that CAAs remodeled collagen alignment during crosstalk with breast cancer cells in vitro and in vivo, which further promoted breast cancer metastasis. Tumor-derived PAI-1 was required to activate the expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in CAAs. Pharmacologic blockade of PAI-1 or PLOD2 disrupted the collagen reorganization in CAAs. Mechanistically, it was observed that PI3K/AKT pathway was activated in adipocytes upon co-culturing with breast cancer cells or treatment with recombinant PAI-1, which could promote the translocation of transcription factor FOXP1 into the nucleus and further enhanced the promoter activity of PLOD2 in CAAs. In addition, collagen reorganization at the tumor-adipose periphery, as well as the positive relevance between PAI-1 and PLOD2 in invasive breast carcinoma were confirmed in clinical specimens of breast cancer. Conclusion In summary, our findings revealed a new stromal collagen network that favors tumor invasion and metastasis establish between breast cancer cells and surrounding adipocytes at the tumor invasive front, and identified PLOD2 as a therapeutic target for metastatic breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12964-019-0373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Sijing Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Jinyong He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Wei Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Haolin Hu
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Lifei Han
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Chenfei Wang
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Shi
- Department of General Surgery, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China.
| |
Collapse
|