1
|
Panagopoulou M, Panou T, Gkountakos A, Tarapatzi G, Karaglani M, Tsamardinos I, Chatzaki E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: Implementation in liquid biopsy in the era of precision medicine. Clin Epigenetics 2024; 16:178. [PMID: 39643918 PMCID: PMC11622545 DOI: 10.1186/s13148-024-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND BReast CAncer gene 1 (BRCA1) and BReast CAncer gene 2 (BRCA2) encode for tumor suppressor proteins which are critical regulators of the Homologous Recombination (HR) pathway, the most precise and important DNA damage response mechanism. Dysfunctional HR proteins cannot repair double-stranded DNA breaks in mammalian cells, a situation called HR deficiency. Since their identification, pathogenic variants and other alterations of BRCA1 and BRCA2 genes have been associated with an increased risk of developing mainly breast and ovarian cancer. Interestingly, HR deficiency is also detected in tumors not carrying BRCA1/2 mutations, a condition termed "BRCAness". MAIN TEXT One of the main mechanisms causing the BRCAness phenotype is the methylation of the BRCA1/2 promoters, and this epigenetic modification is associated with carcinogenesis and poor prognosis mainly among patients with breast and ovarian cancer. BRCA1 promoter methylation has been suggested as an emerging biomarker of great predictive significance, especially concerning Poly (ADP-ribose) Polymerase inhibitors (PARP inhibitor-PARPi) responsiveness, along with or beyond BRCA1/2 mutations. However, as its clinical exploitation is still insufficient, the impact of BRCA1/2 promoter methylation status needs to be further evaluated. The current review aims to gather the latest findings about the mechanisms that underline BRCA1/2 function as well as the molecular characteristics of tumors associated with BRCA1/2 defects, by focusing on DNA methylation. Furthermore, we critically analyze their translational meaning and the validity of BRCA methylation biomarkers in predicting treatment response. CONCLUSIONS We believe that BRCA1/2 methylation alone or combined with other biomarkers in a clinical setting is expected to change the scenery in prognosis and predicting treatment response in multiple cancer types and is worthy of further attention. The quantitative BRCA1 promoter methylation assessment might predict treatment response in PARPi and analysis of BRCA1/2 methylation in liquid biopsy might define patient subgroups at different time points that may benefit from PARPi. Finally, we suggest a pipeline that could be implemented in liquid biopsy to aid precision pharmacotherapy in BRCA-associated tumors.
Collapse
Grants
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
- TAEDR-0535850 European Union- Next-Generation EU, Greece 2.0 National Recovery and Resilience plan, National Flagship Initiative "Health and Pharmaceuticals"
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece.
| | - Theodoros Panou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Anastasios Gkountakos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research and Innovation Centre, Hellenic Mediterranean University, 71003, Heraklion, Greece
| | - Ioannis Tsamardinos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
- Department of Computer Science, University of Crete, Voutes Campus, 70013, Heraklion, Greece
- Institute of Applied and Computational Mathematics, 70013, Heraklion, Greece
- JADBio Gnosis Data Analysis (DA) S.A., Science and Technology Park of Crete (STEPC), 70013, Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
| |
Collapse
|
2
|
OUP accepted manuscript. Clin Chem 2022; 68:973-983. [DOI: 10.1093/clinchem/hvac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022]
|
3
|
Nastały P, Smentoch J, Popęda M, Martini E, Maiuri P, Żaczek AJ, Sowa M, Matuszewski M, Szade J, Kalinowski L, Niemira M, Brandt B, Eltze E, Semjonow A, Bednarz-Knoll N. Low Tumor-to-Stroma Ratio Reflects Protective Role of Stroma against Prostate Cancer Progression. J Pers Med 2021; 11:1088. [PMID: 34834440 PMCID: PMC8622253 DOI: 10.3390/jpm11111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/09/2022] Open
Abstract
Tumor-to-stroma ratio (TSR) is a prognostic factor that expresses the relative amounts of tumor and intratumoral stroma. In this study, its clinical and molecular relevance was evaluated in prostate cancer (PCa). The feasibility of automated quantification was tested in digital scans of tissue microarrays containing 128 primary tumors from 72 PCa patients stained immunohistochemically for epithelial cell adhesion molecule (EpCAM), followed by validation in a cohort of 310 primary tumors from 209 PCa patients. In order to investigate the gene expression differences between tumors with low and high TSR, we applied multigene expression analysis (nCounter® PanCancer Progression Panel, NanoString) of 42 tissue samples. TSR scores were categorized into low (<1 TSR) and high (≥1 TSR). In the pilot cohort, 31 patients (43.1%) were categorized as low and 41 (56.9%) as high TSR score, whereas 48 (23.0%) patients from the validation cohort were classified as low TSR and 161 (77.0%) as high. In both cohorts, high TSR appeared to indicate the shorter time to biochemical recurrence in PCa patients (Log-rank test, p = 0.04 and p = 0.01 for the pilot and validation cohort, respectively). Additionally, in the multivariate analysis of the validation cohort, TSR predicted BR independent of other factors, i.e., pT, pN, and age (p = 0.04, HR 2.75, 95%CI 1.07-7.03). Our data revealed that tumors categorized into low and high TSR score show differential expression of various genes; the genes upregulated in tumors with low TSR score were mostly associated with extracellular matrix and cell adhesion regulation. Taken together, this study shows that high stroma content can play a protective role in PCa. Automatic EpCAM-based quantification of TSR might improve prognostication in personalized medicine for PCa.
Collapse
Affiliation(s)
- Paulina Nastały
- Laboratory of Translational Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (P.N.); (J.S.); (M.P.); (A.J.Ż.)
- FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; (E.M.); (P.M.)
| | - Julia Smentoch
- Laboratory of Translational Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (P.N.); (J.S.); (M.P.); (A.J.Ż.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (P.N.); (J.S.); (M.P.); (A.J.Ż.)
| | - Emanuele Martini
- FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; (E.M.); (P.M.)
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; (E.M.); (P.M.)
| | - Anna J. Żaczek
- Laboratory of Translational Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (P.N.); (J.S.); (M.P.); (A.J.Ż.)
| | - Marek Sowa
- Department of Urology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.S.); (M.M.)
| | - Marcin Matuszewski
- Department of Urology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.S.); (M.M.)
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland;
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.pl), 80-214 Gdańsk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Centre Schleswig-Holstein, 24105 Kiel, Germany;
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, 66113 Saarbruecken, Germany;
| | - Axel Semjonow
- Department of Urology, Prostate Center, University Clinic Münster, 48149 Münster, Germany;
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (P.N.); (J.S.); (M.P.); (A.J.Ż.)
| |
Collapse
|
4
|
Cimadamore A, Cheng L, Massari F, Santoni M, Pepi L, Franzese C, Scarpelli M, Lopez-Beltran A, Galosi AB, Montironi R. Circulating Tumor DNA Testing for Homology Recombination Repair Genes in Prostate Cancer: From the Lab to the Clinic. Int J Mol Sci 2021; 22:5522. [PMID: 34073818 PMCID: PMC8197269 DOI: 10.3390/ijms22115522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Approximately 23% of metastatic castration-resistant prostate cancers (mCRPC) harbor deleterious aberrations in DNA repair genes. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) therapy has shown improvements in overall survival in patients with mCRPC who harbor somatic and/or germline alterations of homology recombination repair (HRR) genes. Peripheral blood samples are typically used for the germline mutation analysis test using the DNA extracted from peripheral blood leucocytes. Somatic alterations can be assessed by extracting DNA from a tumor tissue sample or using circulating tumor DNA (ctDNA) extracted from a plasma sample. Each of these genetic tests has its own benefits and limitations. The main advantages compared to the tissue test are that liquid biopsy is a non-invasive and easily repeatable test with the value of better representing tumor heterogeneity than primary biopsy and of capturing changes and/or resistance mutations in the genetic tumor profile during disease progression. Furthermore, ctDNA can inform about mutation status and guide treatment options in patients with mCRPC. Clinical validation and test implementation into routine clinical practice are currently very limited. In this review, we discuss the state of the art of the ctDNA test in prostate cancer compared to blood and tissue testing. We also illustrate the ctDNA testing workflow, the available techniques for ctDNA extraction, sequencing, and analysis, describing advantages and limits of each techniques.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Laura Pepi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Carmine Franzese
- Department of Specialist Clinical Science and Odontostomatology, Urology Division, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (C.F.); (A.B.G.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, 14071 Cordoba, Spain;
| | - Andrea Benedetto Galosi
- Department of Specialist Clinical Science and Odontostomatology, Urology Division, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (C.F.); (A.B.G.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (L.P.); (M.S.)
| |
Collapse
|
5
|
Stopsack KH, Gerke T, Zareba P, Pettersson A, Chowdhury D, Ebot EM, Flavin R, Finn S, Kantoff PW, Stampfer MJ, Loda M, Fiorentino M, Mucci LA. Tumor protein expression of the DNA repair gene BRCA1 and lethal prostate cancer. Carcinogenesis 2021; 41:904-908. [PMID: 32556091 DOI: 10.1093/carcin/bgaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
DNA repair genes are commonly altered in metastatic prostate cancer, but BRCA1 mutations are rare. Preliminary studies suggest that higher tumor expression of the BRCA1 protein may be associated with worse prognosis. We undertook a prospective study among men with prostate cancer in the Health Professionals Follow-up Study and evaluated BRCA1 via immunohistochemical staining on tissue microarrays. BRCA1 was expressed in 60 of 589 tumors. Prevalence of BRCA1 positivity was 43% in the 14 men with metastases at diagnosis compared with 9% in non-metastatic tumors [difference, 33 percentage points; 95% confidence interval (CI), 7-59]. BRCA1-positive tumors had 2.16-fold higher Ki-67 proliferative indices (95% CI, 1.18-3.95), higher tumor aneuploidy as predicted from whole-transcriptome profiling, and higher Gleason scores. Among the 575 patients with non-metastatic disease at diagnosis, we evaluated the association between BRCA1 expression and development of lethal disease (metastasis or cancer-specific death, 69 events) during long-term follow-up (median, 18.3 years). A potential weak association of BRCA1 positivity with lethal disease (hazard ratio, 1.61; 95% CI, 0.82-3.15) was attenuated when adjusting for age, Gleason score and clinical stage (hazard ratio, 1.11; 95% CI, 0.54-2.29). In summary, BRCA1 protein expression is a feature of more proliferative and more aneuploid prostate tumors and is more common in metastatic disease. While not well suited as a prognostic biomarker in primary prostate cancer, BRCA1 protein expression may be most relevant in advanced disease.
Collapse
Affiliation(s)
- Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Piotr Zareba
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Urology, McMaster University, Hamilton, ON, USA
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Clinical Epidemiology Unit, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard Flavin
- Department of Pathology, St. James's Hospital, Dublin, Ireland.,Trinity College, Dublin, Ireland
| | - Stephen Finn
- Department of Pathology, St. James's Hospital, Dublin, Ireland.,Trinity College, Dublin, Ireland
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Massimo Loda
- Department of Pathology, Cornell Medical School, New York, NY, USA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pathology Unit, Addarii Institute, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Nastały P, Stoupiec S, Popęda M, Smentoch J, Schlomm T, Morrissey C, Żaczek AJ, Beyer B, Tennstedt P, Graefen M, Eltze E, Maiuri P, Semjonow A, Pantel K, Brandt B, Bednarz-Knoll N. EGFR as a stable marker of prostate cancer dissemination to bones. Br J Cancer 2020; 123:1767-1774. [PMID: 32901137 PMCID: PMC7722745 DOI: 10.1038/s41416-020-01052-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is among the most commonly diagnosed malignancies in men. Although 5-year survival in patients with localised disease reaches nearly 100%, metastatic disease still remains incurable. Therefore, there is a need for markers indicating metastatic dissemination. METHODS EGFR overexpression (EGFRover) was tracked in 1039 primary tumours, circulating tumour cells from 39 d'Amico high-risk patients and metastatic samples from 21 castration-resistant PCa cases. EGFR status was compared to clinical parameters and multiple molecular factors were assessed using immunohistochemistry and gene ontology analysis. The functional aspect of EGFR was evaluated by plating PC-3 cells on soft and rigid matrices. RESULTS EGFRover was found in 14% of primary tumours, where it was associated with shorter metastasis-free survival and was an independent indicator of worse overall survival. EGFRover correlated with a pro-migratory and pro-metastatic phenotype of tumour cells as well as rich collagen fibre content. All circulating tumour cells (detected in 13% of cases) were positive for EGFR, independent of their EMT-related phenotype. EGFRover was more prevalent in castration-resistant bone metastases (29% of patients) and supported growth of human PCa cells on rigid matrices mimicking bone stiffness. CONCLUSIONS EGFRover is a stable, EMT-independent marker of PCa disseminating to rigid organs, preferentially bones.
Collapse
Affiliation(s)
- Paulina Nastały
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Sara Stoupiec
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Popęda
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Julia Smentoch
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Thorsten Schlomm
- Department of Urology, Charité University Hospital Berlin, Berlin, Germany
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Anna Joanna Żaczek
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center and Section for Translational Prostate Cancer Research at the Clinic of Urology at University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Clinic, Prostate Cancer Center and Section for Translational Prostate Cancer Research at the Clinic of Urology at University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center and Section for Translational Prostate Cancer Research at the Clinic of Urology at University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, Saarbruecken, Germany
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Axel Semjonow
- Department of Urology, Prostate Center University Clinic Münster, Münster, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland.
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Smentoch J, Szade J, Żaczek AJ, Eltze E, Semjonow A, Brandt B, Bednarz-Knoll N. Low Numbers of Vascular Vessels Correlate to Progression in Hormone-Naïve Prostate Carcinomas Undergoing Radical Prostatectomy. Cancers (Basel) 2019; 11:cancers11091356. [PMID: 31547460 PMCID: PMC6770894 DOI: 10.3390/cancers11091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Vascularization influences tumor development by supporting the nutrition and dissemination of tumor cells. On the other hand, a low number of vascular vessels (VVlow) may induce hypoxia, accounting for selection of resistant clone(s) of tumor cells. This study aimed to evaluate the prognostic significance of vascular (VV) and lymphatic vessels (LV) in prostate cancer (PCa). Tumor samples from 400 PCa patients undergoing radical prostatectomy (RP) were prepared in duplex as tissue microarrays. Numbers of VV and LV were evaluated using immunohistochemistry detecting CD34 and podoplanin, respectively, and correlated to clinical data, biochemical recurrence (BR), and proteins analyzed in tumor cells. VVlow and LV were found in 32% and 43% of patients with informative PCa samples, respectively. VVlow correlated with a shorter time to BR 3, 5, and 10 years after RP in hormone-naïve patients (p = 0.028, p = 0.027 and p = 0.056, respectively). It was also shown to be an independent prognostic factor 5 years after surgery (multivariate analysis, p = 0.046). Tumors characterized by VVlow expressed the epithelial cell adhesion molecule, EpCAM, less frequently (p = 0.016) and revealed a borderline correlation to increased levels of tumor cell invasion marker Loxl-2 (p = 0.059). No correlations were found for LV. In summary, VVlow in hormone-naïve patients undergoing RP has prognostic potential and seems to be related to an aggressive phenotype of tumor cells.
Collapse
Affiliation(s)
- Julia Smentoch
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk 80-214, Poland;
| | - Anna J. Żaczek
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, Saarbruecken 66113, Germany;
| | - Axel Semjonow
- Department of Urology, Prostate Center, University Clinic Münster, Münster 48149, Germany;
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany;
| | - Natalia Bednarz-Knoll
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
- Correspondence: ; Tel.: +48-58-349-14-34
| |
Collapse
|
8
|
Gorodetska I, Lukiyanchuk V, Peitzsch C, Kozeretska I, Dubrovska A. BRCA1 and EZH2 cooperate in regulation of prostate cancer stem cell phenotype. Int J Cancer 2019; 145:2974-2985. [DOI: 10.1002/ijc.32323] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
| | - Vasyl Lukiyanchuk
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- Helmholtz‐Zentrum Dresden ‐ RossendorfInstitute of Radiooncology – OncoRay Dresden Germany
| | - Claudia Peitzsch
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- National Center for Tumor Diseases (NCT)Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz‐Zentrum Dresden ‐ Rossendorf (HZDR) Dresden Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Iryna Kozeretska
- Department of General and Medical GeneticsESC “The Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - Anna Dubrovska
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- Helmholtz‐Zentrum Dresden ‐ RossendorfInstitute of Radiooncology – OncoRay Dresden Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
9
|
Bednarz-Knoll N, Eltze E, Semjonow A, Brandt B. BRCAness in prostate cancer. Oncotarget 2019; 10:2421-2422. [PMID: 31069005 PMCID: PMC6497433 DOI: 10.18632/oncotarget.26818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 02/03/2023] Open
Affiliation(s)
- Natalia Bednarz-Knoll
- Natalia Bednarz-Knoll: Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Elke Eltze
- Natalia Bednarz-Knoll: Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Axel Semjonow
- Natalia Bednarz-Knoll: Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Burkhard Brandt
- Natalia Bednarz-Knoll: Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
ALDH1-positive intratumoral stromal cells indicate differentiated epithelial-like phenotype and good prognosis in prostate cancer. Transl Res 2019; 203:49-56. [PMID: 30287243 DOI: 10.1016/j.trsl.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/28/2018] [Accepted: 08/16/2018] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) characterizes tumor-initiating cells in solid tumors; however, little is known about its expression in intratumoral stromal cells. Herein, we aimed to dissect its potential dual relevance in prostate cancer (PCa). ALDH1 expression was evaluated immunohistochemically in tumor and stromal cells in primary PCa and metastases. It was correlated to clinico-pathologic parameters, patients' outcome, and selected proteins (CK5/6, CK14, CK8/18, CK19, EpCAM, Ki-67, E-cadherin, N-cadherin, and vimentin). ALDH1 protein was detected in tumor and stromal cells in 16% and 67% of 348 primary PCa, respectively. Tumor cell ALDH1 expression was associated with advanced T stage (P = 0.009), higher Gleason score (P = 0.016), shorter time to biochemical recurrence (TBR P = 0.010) and CK14 expression (P = 0.023). Stromal cell ALDH1 expression correlated to lower T stage (P = 0.008) and Gleason score (P = 0.016), N0 stage (P = 0.017), and longer TBR (P = 0.017). It occurred to be an independent predictor of good prognosis in the subgroup of d'Amico high-risk patients (multivariate analysis, P = 0.050). ALDH1-positive stromal cells were found in tumors characterized frequently by CK8/18 (P = 0.033) or EpCAM expression (P < 0.001) and rarely by epithelial-mesenchymal transition defined as CK8/18(-)vimentin(+) phenotype (P = 0.003). ALDH1-positive tumor and stromal cells were detected in 33% and 41% of hormone naive lymph node metastases (n = 63), 52% and 24% of castration resistant bone metastases, as well as 89% and 28% of castration resistant visceral metastases (n = 21), respectively. We have determined that contrary to tumor cell ALDH1, the presence of stromal ALDH1 is associated with epithelial phenotype of primary PCa, improved clinical outcome, and is less frequent in PCa metastases.
Collapse
|