1
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2025; 35:364-380. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Zhou Z, Cai S, Zhou X, Zhao W, Sun J, Zhou Z, Yang Z, Li W, Wang Z, Zou H, Fu H, Wang X, Khoo BL, Yang M. Circulating Tumor Cells Culture: Methods, Challenges, and Clinical Applications. SMALL METHODS 2024:e2401026. [PMID: 39726345 DOI: 10.1002/smtd.202401026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers. Furthermore, research based on CTC cell lines serves as a valuable complement to traditional cancer cell line-based research. While numerous reports exist on CTC in vitro culture and even the establishment of CTC cell lines, the methods used vary, leading to disparate culture outcomes. This review presents the developmental history and current status of CTC in vitro culture research. Additionally, the culture strategies applied in different methods and analyzed the impact of various steps on culture outcomes are compared. Overall, the review indicates that while the short-term culture of CTCs is relatively straightforward, long-term culture success has been achieved for various specific cancer types but still faces challenges. Further optimization of efficient and widely applicable culture strategies is needed. Additionally, ongoing applications of CTC in vitro culture are summarized, highlighting the potential of expanded CTCs for drug susceptibility testing and as therapeutic tools in personalized treatment.
Collapse
Affiliation(s)
- Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wei Zhao
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhihang Zhou
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhe Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Heng Zou
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, 518118, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
3
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, Saffarfar H, Ali-Khiavi P. Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med 2024; 25:7. [PMID: 39546080 PMCID: PMC11567993 DOI: 10.1007/s10238-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Metastatic disease and cancer recurrence are the primary causes of cancer-related deaths. Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are the driving forces behind the spread of cancer cells. The emergence and development of liquid biopsy using rare CTCs as a minimally invasive strategy for early-stage tumor detection and improved tumor management is a promising advancement in recent years. However, before blood sample analysis and clinical translation, precise isolation of CTCs from patients' blood based on their biophysical properties, followed by molecular identification of CTCs using single-cell multi-omics technologies is necessary to understand tumor heterogeneity and provide effective diagnosis and monitoring of cancer progression. Additionally, understanding the origin, morphological variation, and interaction between CTCs and the primary and metastatic tumor niche, as well as and regulatory immune cells, will offer new insights into the development of CTC-based advanced tumor targeting in the future clinical trials.
Collapse
Affiliation(s)
| | - SeyedAbbas Pakmehr
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ahvaz Jundishapur University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Anis Elhami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Samawa, Al-Muthanna, 66002, Iraq
| | | | | | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Payam Ali-Khiavi
- Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Stojanović Gužvić N, Lüke F, Treitschke S, Coluccio A, Hoffmann M, Feliciello G, Varadarajan AR, Lu X, Weidele K, Botteron C, Materna-Reichelt S, Keil F, Evert K, Weber F, Schamberger T, Althammer M, Grosse J, Hellwig D, Schulz C, Seitz S, Ugocsai P, Schlenska-Lange A, Mayr R, Kaiser U, Dietmaier W, Polzer B, Warfsmann J, Honarnejad K, Pukrop T, Heudobler D, Klein CA, Werno C. Cellular liquid biopsy provides unique chances for disease monitoring, preclinical model generation and therapy adjustment in rare salivary gland cancer patients. Mol Oncol 2024. [PMID: 39367702 DOI: 10.1002/1878-0261.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024] Open
Abstract
While cell-free liquid biopsy (cfLB) approaches provide simple and inexpensive disease monitoring, cell-based liquid biopsy (cLB) may enable additional molecular genetic assessment of systemic disease heterogeneity and preclinical model development. We investigated 71 blood samples of 62 patients with various advanced cancer types and subjected enriched circulating tumor cells (CTCs) to organoid culture conditions. CTC-derived tumoroid models were characterized by DNA/RNA sequencing and immunohistochemistry, as well as functional drug testing. Results were linked to molecular features of primary tumors, metastases, and CTCs; CTC enumeration was linked to disease progression. Of 52 samples with positive CTC counts (≥1) from eight different cancer types, only CTCs from two salivary gland cancer (SGC) patients formed tumoroid cultures (P = 0.0005). Longitudinal CTC enumeration of one SGC patient closely reflected disease progression during treatment and revealed metastatic relapse earlier than clinical imaging. Multiomics analysis and functional in vitro drug testing identified potential resistance mechanisms and drug vulnerabilities. We conclude that cLB might add a functional dimension (to the genetic approaches) in the personalized management of rare, difficult-to-treat cancers such as SGC.
Collapse
Affiliation(s)
| | - Florian Lüke
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Steffi Treitschke
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Andrea Coluccio
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Martin Hoffmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | | | | | - Xin Lu
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Kathrin Weidele
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | | | - Felix Keil
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Insitute for Pathology, University of Regensburg, Germany
| | - Katja Evert
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Insitute for Pathology, University of Regensburg, Germany
| | - Florian Weber
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Insitute for Pathology, University of Regensburg, Germany
| | - Thomas Schamberger
- Experimental Medicine and Therapy Research, University of Regensburg, Germany
| | - Michael Althammer
- Experimental Medicine and Therapy Research, University of Regensburg, Germany
| | - Jirka Grosse
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Nuclear Medicine, University Hospital Regensburg, Germany
| | - Dirk Hellwig
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Nuclear Medicine, University Hospital Regensburg, Germany
| | - Christian Schulz
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Internal Medicine II, University Hospital Regensburg, Germany
| | - Stephan Seitz
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Obstetrics and Gynecology, University Hospital Regensburg, Germany
| | - Peter Ugocsai
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Department of Obstetrics and Gynecology, University Hospital Regensburg, Germany
| | - Anke Schlenska-Lange
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Roman Mayr
- Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Germany
| | - Ulrich Kaiser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | | | - Bernhard Polzer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Jens Warfsmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Kamran Honarnejad
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| | - Tobias Pukrop
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Christoph A Klein
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM-R, Germany
| |
Collapse
|
5
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
He J, Zhang C, Ozkan A, Feng T, Duan P, Wang S, Yang X, Xie J, Liu X. Patient-derived tumor models and their distinctive applications in personalized drug therapy. MECHANOBIOLOGY IN MEDICINE 2023; 1:100014. [PMID: 40395637 PMCID: PMC12082161 DOI: 10.1016/j.mbm.2023.100014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 05/22/2025]
Abstract
Tumor models in vitro are conventional methods for developing anti-cancer drugs, evaluating drug delivery, or calculating drug efficacy. However, traditional cell line-derived tumor models are unable to capture the tumor heterogeneity in patients or mimic the interaction between tumors and their surroundings. Recently emerging patient-derived preclinical cancer models, including of patient-derived xenograft (PDX) model, circulating tumor cell (CTC)-derived model, and tumor organoids-on-chips, are promising in personalized drug therapy by recapitulating the complexities and personalities of tumors and surroundings. These patient-derived models have demonstrated potential advantages in satisfying the rigorous demands of specificity, accuracy, and efficiency necessary for personalized drug therapy. However, the selection of suitable models is depending on the specific therapeutic requirements dictated by cancer types, progressions, or the assay scale. As an example, PDX models show remarkable advantages to reconstruct solid tumors in vitro to understand drug delivery and metabolism. Similarly, CTC-derived models provide a sensitive platform for drug testing in advanced-stage patients, while also facilitating the development of drugs aimed at suppressing tumor metastasis. Meanwhile, the demand for large-scale testing has promoted the development of tumor organoids-on-chips, which serves as an optimal tool for high-throughput drug screening. This review summarizes the establishment and development of PDX, CTC-derived models, and tumor organoids-on-chips and addresses their distinctive advantages in drug discovery, sensitive testing, and screening, which demonstrate the potential to aid in the selection of suitable models for fundamental cancer research and clinical trials, and further developing the personalized drug therapy.
Collapse
Affiliation(s)
- Jia He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chunhe Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Tang Feng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyan Duan
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuo Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Fernández-Santiago C, López-López R, Piñeiro R. Models to study CTCs and CTC culture methods. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:57-98. [PMID: 37739484 DOI: 10.1016/bs.ircmb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The vast majority of cancer-related deaths are due to the presence of disseminated disease. Understanding the metastatic process is key to achieving a reduction in cancer mortality. Particularly, there is a need to understand the molecular mechanisms that drive cancer metastasis, which will allow the identification of curative treatments for metastatic cancers. Liquid biopsies have arisen as a minimally invasive approach to gain insights into the biology of metastasis. Circulating tumour cells (CTCs), shed to the circulation from the primary tumour or metastatic lesions, are a key component of liquid biopsy. As metastatic precursors, CTCs hold the potential to unravel the mechanisms involved in metastasis formation as well as new therapeutic strategies for treating metastatic disease. However, the complex biology of CTCs together with their low frequency in circulation are factors hampering an in-depth mechanistic investigation of the metastatic process. To overcome these problems, CTC-derived models, including CTC-derived xenograft (CDX) and CTC-derived ex vivo cultures, in combination with more traditional in vivo models of metastasis, have emerged as powerful tools to investigate the biological features of CTCs facilitating cancer metastasis and uncover new therapeutic opportunities. In this chapter, we provide an up to date view of the diverse models used in different cancers to study the biology of CTCs, and of the methods developed for CTC culture and expansion, in vivo and ex vivo. We also report some of the main challenges and limitations that these models are facing.
Collapse
Affiliation(s)
- Cristóbal Fernández-Santiago
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
8
|
Xiao J, Pohlmann PR, Schlegel R, Agarwal S. State of the Art in the Propagation of Circulating Tumor Cells. CURRENT CANCER RESEARCH 2023:247-274. [DOI: 10.1007/978-3-031-22903-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Basic Science with Preclinical Models to Investigate and Develop Liquid Biopsy: What Are the Available Data and Is It a Fruitful Approach? Int J Mol Sci 2022; 23:ijms23105343. [PMID: 35628154 PMCID: PMC9141279 DOI: 10.3390/ijms23105343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular analysis of circulating analytes (circulating tumor-DNA (ctDNA), -cells (CTCs) and -RNA (ctRNA)/exosomes) deriving from solid tumors and detected in the bloodstream—referred as liquid biopsy—has emerged as one of the most promising concepts in cancer management. Compelling data have evidenced its pivotal contribution and unique polyvalence through multiple applications. These data essentially derived from translational research. Therewith, data on liquid biopsy in basic research with preclinical models are scarce, a concerning lack that has been widely acknowledged in the field. This report aimed to comprehensively review the available data on the topic, for each analyte. Only 17, 17 and 2 studies in basic research investigated ctDNA, CTCs and ctRNA/exosomes, respectively. Albeit rare, these studies displayed noteworthy relevance, demonstrating the capacity to investigate questions related to the biology underlying analytes release that could not be explored via translational research with human samples. Translational, clinical and technological sectors of liquid biopsy may benefit from basic research and should take note of some important findings generated by these studies. Overall, results underscored the need to intensify the efforts to conduct future studies on liquid biopsy in basic research with new preclinical models.
Collapse
|
10
|
Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade. Br J Cancer 2022; 127:800-810. [PMID: 35484215 PMCID: PMC9427839 DOI: 10.1038/s41416-022-01819-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation is the main cause of cancer-related death in patients with solid tumours. At the beginning of this process, cancer cells escape from the primary tumour to the blood circulation where they become circulating tumour cells (CTCs). Only a small subgroup of CTCs will survive during the harsh journey in the blood and colonise distant sites. The in-depth analysis of these metastasis-competent CTCs is very challenging because of their extremely low concentration in peripheral blood. So far, only few groups managed to expand in vitro and in vivo CTCs to be used as models for large-scale descriptive and functional analyses of CTCs. These models have shown already the high variability and complexity of the metastatic cascade in patients with cancer, and open a new avenue for the development of new diagnostic and therapeutic approaches.
Collapse
|
11
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [PMID: 35331850 DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
12
|
Carmona-Ule N, González-Conde M, Abuín C, Cueva JF, Palacios P, López-López R, Costa C, Dávila-Ibáñez AB. Short-Term Ex Vivo Culture of CTCs from Advance Breast Cancer Patients: Clinical Implications. Cancers (Basel) 2021; 13:cancers13112668. [PMID: 34071445 PMCID: PMC8198105 DOI: 10.3390/cancers13112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are responsible for metastasis, they represent tumor biology and have also predictive value for therapy monitoring and prognosis of metastatic breast cancer patients. In the blood, CTCs are found in low frequency and a small percentage of them survive. Therefore, achieving their expansion in vitro will allow performing characterization and functional analysis. In this work, we used growth factors and Nanoemulsions to support CTCs culture. We have seen that the CTCs subpopulation capable of ex vivo expanding presented mesenchymal and stem characteristics and loss of epithelial markers. Besides, CTC culture predicted progression-free survival. Abstract Background: Circulating tumor cells (CTC) have relevance as prognostic markers in breast cancer. However, the functional properties of CTCs or their molecular characterization have not been well-studied. Experimental models indicate that only a few cells can survive in the circulation and eventually metastasize. Thus, it is essential to identify these surviving cells capable of forming such metastases. Methods: We isolated viable CTCs from 50 peripheral blood samples obtained from 35 patients with advanced metastatic breast cancer using RosetteSepTM for ex vivo culture. The CTCs were seeded and monitored on plates under low adherence conditions and with media supplemented with growth factors and Nanoemulsions. Phenotypic analysis was performed by immunofluorescence and gene expression analysis using RT-PCR and CTCs counting by the Cellsearch® system. Results: We found that in 75% of samples the CTC cultures lasted more than 23 days, predicting a shorter Progression-Free Survival in these patients, independently of having ≥5 CTC by Cellsearch®. We also observed that CTCs before and after culture showed a different gene expression profile. Conclusions: the cultivability of CTCs is a predictive factor. Furthermore, the subset of cells capable of growing ex vivo show stem or mesenchymal features and may represent the CTC population with metastatic potential in vivo.
Collapse
Affiliation(s)
- Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Juan F. Cueva
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Patricia Palacios
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| |
Collapse
|
13
|
Hou M, Yin X, Jiang J, He J. DNAzyme-Triggered Sol-Gel-Sol Transition of a Hydrogel Allows Target Cell Enrichment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15031-15039. [PMID: 33764744 DOI: 10.1021/acsami.1c02262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enrichment of rare cancer cells from various cell mixtures for subsequent analysis or culture is essential for understanding cancer formation and progression. In particular, maintaining the viability of captured cancer cells and gently releasing them for relevant applications remain challenging for many reported methods. Here, a physically cross-linked deoxyribozyme (DNAzyme)-based hydrogel strategy was developed for the specific envelopment and release of targeted cancer cells, allowing the aptamer-guided capture, 3D envelopment, and Zn2+-dependent release of viable cancer cells. The DNAzyme hydrogel is constructed through the intertwinement and hybridization of two complementary DNAzyme strands located on two rolling circle amplification-synthesized ultralong DNA chains. The enveloping and separation of target cells were achieved during the formation of the DNAzyme hydrogel (sol-gel transition). Triggered by Zn2+, the encapsulated cells can be gently released from the dissociated DNAzyme hydrogel with high viability (gel-sol transition). Successful isolations of target cells from cancer cell mixtures and peripheral blood mononuclear cells (PBMC) were demonstrated. This method offers an attractive approach for the separation of target cancer cells for various downstream applications that require viable cells.
Collapse
Affiliation(s)
- Min Hou
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiang Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianjun He
- College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
15
|
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 2020; 20:107-124. [PMID: 31780785 DOI: 10.1038/s41568-019-0221-x] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.
Collapse
Affiliation(s)
- Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- CNRS SNC 505, Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
16
|
Chen L, Wei Q, Bi S, Xie S. Maternal Embryonic Leucine Zipper Kinase Promotes Tumor Growth and Metastasis via Stimulating FOXM1 Signaling in Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:10. [PMID: 32047721 PMCID: PMC6997270 DOI: 10.3389/fonc.2020.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignancy and is one of the most important cause of cancer related mortalities in the world. However, there is no clinically effective targeted therapeutic drugs for ESCC due to lack of valuable molecular therapeutic targets. In the present study, we investigated the biological function and molecular mechanisms of maternal embryonic leucine zipper kinase (MELK) in ESCC. The expression of MELK mRNA and protein was determined in cell lines and clinical samples of ESCC. MTT, focus formation and soft agar assays were carried out to measure cell proliferation and colony formation. Wound healing and transwell assays were used to assess the capacity of tumor cell migration and invasion. Nude mice models of subcutaneous tumor growth and lung metastasis were performed to examine the function of MELK in tumorigenecity and metastasis of ESCC cells. High expression of MELK was observed in ESCC cell line and human samples, especially in the metastatic tumor tissues. Moreover, overexpression of MELK promoted cell proliferation, colony formation, migration and invasion, and increased the expression and enzyme activity of MMP-2 and MMP-9 in ESCC cells. More importantly, enhanced expression of MELK greatly accelerated tumor growth and lung metastasis of ESCC cells in vivo. In contrast, knockdown of MELK by lentiviral shRNA resulted in an opposite effect both in vitro and in animal models. Mechanistically, MELK facilitated the phosphorylation of FOXM1, leading to activation of its downstream targets (PLK1, Cyclin B1, and Aurora B), and thereby promoted tumorigenesis and metastasis of ESCC cells. In conclusion, MELK enhances tumorigenesis, migration, invasion and metastasis of ESCC cells via activation of FOXM1 signaling pathway, suggesting MELK is a potential therapeutic target for ESCC patients, even those in an advanced stage.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Henan University, Kaifeng, China
| | - Qiuren Wei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuning Bi
- School of Pharmacy, Henan University, Kaifeng, China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Abreu M, Cabezas-Sainz P, Pereira-Veiga T, Falo C, Abalo A, Morilla I, Curiel T, Cueva J, Rodríguez C, Varela-Pose V, Lago-Lestón R, Mondelo P, Palacios P, Moreno-Bueno G, Cano A, García-Caballero T, Pujana MÁ, Sánchez-Piñón L, Costa C, López R, Muinelo-Romay L. Looking for a Better Characterization of Triple-Negative Breast Cancer by Means of Circulating Tumor Cells. J Clin Med 2020; 9:E353. [PMID: 32012729 PMCID: PMC7074553 DOI: 10.3390/jcm9020353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients' outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.
Collapse
Affiliation(s)
- Manuel Abreu
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (L.S.-P.)
| | - Thais Pereira-Veiga
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (T.P.-V.); (C.C.)
| | - Catalina Falo
- Department of Medical Oncology-Breast Cancer Unit, Institut Català d’Oncologia (ICO)-Hospitalet-Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, 08007 Barcelona, Spain; (C.F.); (I.M.)
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
| | - Idoia Morilla
- Department of Medical Oncology-Breast Cancer Unit, Institut Català d’Oncologia (ICO)-Hospitalet-Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, 08007 Barcelona, Spain; (C.F.); (I.M.)
| | - Teresa Curiel
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
| | - Juan Cueva
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
| | - Carmela Rodríguez
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
| | - Vanesa Varela-Pose
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
| | - Ramón Lago-Lestón
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
| | - Patricia Mondelo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
| | - Patricia Palacios
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
- Fundación MD Anderson Internacional, C/Gómez Hemans 2, 28033 Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Amparo Cano
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina, Universidad de Santiago, Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain;
| | - Miquel Ángel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute of Biomedical Research (IDIBELL), 08908 Barcelona, Spain;
| | - Laura Sánchez-Piñón
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (L.S.-P.)
| | - Clotilde Costa
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (T.P.-V.); (C.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
| | - Rafael López
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
- Roche-CHUS Joint Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (T.P.-V.); (C.C.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (T.C.); (J.C.); (C.R.); (V.V.-P.); (P.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (M.A.); (A.A.); (R.L.-L.); (P.M.); (R.L.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (G.M.-B.); (A.C.)
| |
Collapse
|
18
|
Costa C, Dávila-Ibáñez AB. Methodology for the Isolation and Analysis of CTCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:45-59. [PMID: 32304079 DOI: 10.1007/978-3-030-35805-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of deaths related to breast cancer are caused by metastasis. Understanding the process of metastasis is key to achieve a reduction on breast cancer mortality. Currently, liquid biopsies are gaining attention in this regard. Circulating tumor cells (CTCs), an important component of liquid biopsies, are cells shed from primary tumor that disseminate to blood circulation being responsible of distal metastasis. Hence, the study CTCs is a promising alternative to monitor the progress of metastasis disease and can be used for early diagnosis of cancers as well as for earlier assessment of cancer recurrence and therapy efficacy. Despite their clinical interest, CTC analysis is not recommended by oncology guidelines so far. The main reason is that there is no gold standard technology for CTCs isolation and most of the current technologies are not yet validated for clinical use. In this chapter we will focus on the most relevant technologies for CTC isolation based on their properties and depending on whether it is a positive or negative selection. We also describe each technology based on its potential use and its relevance in breast cancer. The chapter also contains a future perspective including the challenges and requirements of CTC detection.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:61-80. [PMID: 32304080 DOI: 10.1007/978-3-030-35805-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of breast cancer death worldwide. In metastatic breast cancer, circulating tumor cells (CTCs) can be captured from patient blood samples sequentially over time and thereby serve as surrogates to assess the biology of surviving cancer cells that may still persist in solitary or multiple metastatic sites following treatment. CTCs may thus function as potential real-time decision-making guides for selecting appropriate therapies during the course of disease or for the development and testing of new treatments. The heterogeneous nature of CTCs warrants the use of single cell platforms to better inform our understanding of these cancer cells. Current techniques for single cell analyses and techniques for investigating interactions between cancer and immune cells are discussed. In addition, methodologies for growing patient-derived CTCs in vitro or propagating them in vivo to facilitate CTC drug testing are reviewed. We advocate the use of CTCs in appropriate microenvironments to appraise the effectiveness of cancer chemotherapies, immunotherapies, and for the development of new cancer treatments, fundamental to personalizing and improving the clinical management of metastatic breast cancer.
Collapse
|
20
|
Tayoun T, Faugeroux V, Oulhen M, Aberlenc A, Pawlikowska P, Farace F. CTC-Derived Models: A Window into the Seeding Capacity of Circulating Tumor Cells (CTCs). Cells 2019; 8:E1145. [PMID: 31557946 PMCID: PMC6829286 DOI: 10.3390/cells8101145] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells. Therefore, detection and functional characterization of these subclones may offer insight into mechanisms underlying CTC tumorigenicity and inform on the complex biology behind metastatic spread. Although an in-depth mechanistic investigation is limited by the extremely low CTC count in circulation, significant progress has been made over the past few years to establish relevant systems from patient CTCs. CTC-derived xenograft (CDX) models and CTC-derived ex vivo cultures have emerged as tractable systems to explore tumor-initiating cells (TICs) and uncover new therapeutic targets. Here, we introduce basic knowledge of CTC biology, including CTC clusters and evidence for EMT/cancer stem cell (CSC) hybrid phenotypes. We report and evaluate the CTC-derived models generated to date in different types of cancer and shed a light on challenges and key findings associated with these novel assays.
Collapse
Affiliation(s)
- Tala Tayoun
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
- Faculty of Medicine, Université Paris Sud, Université Paris-Saclay, F-94270 Le Kremlin-Bicetre, France.
| | - Vincent Faugeroux
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Marianne Oulhen
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Agathe Aberlenc
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Patrycja Pawlikowska
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| | - Françoise Farace
- "Circulating Tumor Cells" Translational Platform, CNRS UMS3655 - INSERM US23AMMICA, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France.
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805 Villejuif, France.
| |
Collapse
|
21
|
Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol 2019; 53:131-147. [PMID: 31104002 PMCID: PMC6572494 DOI: 10.2478/raon-2019-0024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tumor cells can shed from the tumor, enter the circulation and travel to distant organs, where they can seed metastases. These cells are called circulating tumor cells (CTCs). The ability of CTCs to populate distant tissues and organs has led us to believe they are the primary cause of cancer metastasis. The biological properties and interaction of CTCs with other cell types during intravasation, circulation in the bloodstream, extravasation and colonization are multifaceted and include changes of CTC phenotypes that are regulated by many signaling molecules, including cytokines and chemokines. Considering a sample is readily accessible by a simple blood draw, monitoring CTC levels in the blood has exceptional implications in oncology field. A method called the liquid biopsy allows the extraction of not only CTC, but also CTC products, such as cell free DNA (cfDNA), cell free RNA (cfRNA), microRNA (miRNA) and exosomes. Conclusions The clinical utility of CTCs and their products is increasing with advances in liquid biopsy technology. Clinical applications of liquid biopsy to detect CTCs and their products are numerous and could be used for screening of the presence of the cancer in the general population, as well as for prognostic and predictive biomarkers in cancer patients. With the development of better CTC isolation technologies and clinical testing in large prospective trials, increasing clinical utility of CTCs can be expected. The understanding of their biology and interactions with other cell types, particularly with those of the immune system and the rise of immunotherapy also hold great promise for novel therapeutic possibilities.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Gersak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- General Hospital Izola, Izola, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|