1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
3
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
Yang C, Wang ZQ, Zhang ZC, Lou G, Jin WL. CBL0137 activates ROS/BAX signaling to promote caspase-3/GSDME-dependent pyroptosis in ovarian cancer cells. Biomed Pharmacother 2023; 161:114529. [PMID: 37002567 DOI: 10.1016/j.biopha.2023.114529] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Curaxin CBL0137 was designed to regulate p53 and nuclear factor-κB simultaneously and exhibits antitumor activity by inhibiting tumor cell proliferation and inducing apoptosis in multiple cancers. However, whether CBL0137 can induce pyroptosis has not yet been reported. This study demonstrated that CBL0137 induces caspase-3/gasdermin E (GSDME)-dependent pyroptosis via the reactive oxygen species (ROS)/BAX pathway. In ovarian cancer cells, CBL0137 inactivated the chromatin remodeling complex which could facilitate chromatin transcription, leading to the decreased transcription of antioxidant genes and oxidation and causing increased ROS levels. BAX was recruited on the mitochondrial membrane by mitochondrial ROS and induced the release of cytochrome c to cleave caspase-3. This led to the cleavage of the N-terminal of GSDME to form pores on the cell membrane and induced pyroptosis. Results of in vivo experiments revealed that CBL0137 also had anti-tumor effects on ovarian cancer cells in vivo. Our study outcomes reveal the mechanisms and targets of CBL0137 inducing pyroptosis in ovarian cancer cells and indicate that CBL0137 is a promising therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Lv Y, Du Y, Li K, Ma X, Wang J, Du T, Ma Y, Teng Y, Tang W, Ma R, Wu J, Wu J, Feng J. The FACT-targeted drug CBL0137 enhances the effects of rituximab to inhibit B-cell non-Hodgkin's lymphoma tumor growth by promoting apoptosis and autophagy. Cell Commun Signal 2023; 21:16. [PMID: 36691066 PMCID: PMC9869543 DOI: 10.1186/s12964-022-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/25/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Aggressive B-cell non-Hodgkin's lymphoma (B-NHL) patients often develop drug resistance and tumor recurrence after conventional immunochemotherapy, for which new treatments are needed. METHODS We investigated the antitumor effects of CBL0137. In vitro, cell proliferation was assessed by CCK-8 and colony formation assay. Flow cytometry was performed to analyze cell cycle progression, apoptosis, mitochondrial depolarization, and reactive oxygen species (ROS) production. Autophagy was detected by transmission electron microscopy and mGFP-RFP-LC3 assay, while western blotting was employed to detect proteins involved in apoptosis and autophagy. RNA-sequencing was conducted to analyze the transcription perturbation after CBL0137 treatment in B-NHL cell lines. Finally, the efficacy and safety of CBL0137, rituximab, and their combination were tested in vivo. RESULTS CBL0137, a small molecule anticancer agent that has significant antitumor effects in B-NHL. CBL0137 sequesters the FACT (facilitates chromatin transcription) complex from chromatin to produce cytotoxic effects in B-NHL cells. In addition, we discovered novel anticancer mechanisms of CBL0137. CBL0137 inhibited human B-NHL cell proliferation by inducing cell cycle arrest in S phase via the c-MYC/p53/p21 pathway. Furthermore, CBL0137 triggers ROS generation and induces apoptosis and autophagy in B-NHL cells through the ROS-mediated PI3K/Akt/mTOR and MAPK signaling pathways. Notably, a combination of CBL0137 and rituximab significantly suppressed B-NHL tumor growth in subcutaneous models, consistent with results at the cellular level in vitro. CONCLUSIONS CBL0137 has potential as a novel approach for aggressive B-NHL, and its combination with rituximab can provide new therapeutic options for patients with aggressive B-NHL. Video Abstract.
Collapse
Affiliation(s)
- Yan Lv
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yuxin Du
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China.
| | - Kening Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Juan Wang
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Tongde Du
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yuxin Ma
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Yue Teng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Weiyan Tang
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Rong Ma
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jianqiu Wu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jianzhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China
| | - Jifeng Feng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
6
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Theranostics 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Tao Guo
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan 450003, China
| | - Michael Carnell
- Biomedical Imaging Facility, University of New South Wales, NSW, 2052, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Nicole Cole
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, NSW, 2305, Australia
| | - Qihan Dong
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Jenny Y. Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Lei Jin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| |
Collapse
|
8
|
Hnit SST, Ding R, Bi L, Xie C, Yao M, De Souza P, Xu L, Li Z, Dong Q. Agrimol B present in Agrimonia pilosa Ledeb impedes cell cycle progression of cancer cells through G 0 state arrest. Biomed Pharmacother 2021; 141:111795. [PMID: 34098217 DOI: 10.1016/j.biopha.2021.111795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer recurrence poses a significant challenge. At the cellular level, recurrence takes place as a result of reactivation of dormant cancer cells residing at G0 phase. The aim of the study was to identify compounds that can trap prostate and lung cancer cells in G0 phase from a new Chinese herb recipe, Astringent recipe, consisting of Radix Paeoniae Alba, Agrimonia pilosa Ledeb, Fructus Mume, Fritillaria thunbergii Miq., Ganoderma Lucidum Karst, and Astragalus membranaceus (Fisch.) Bunge. Astringent recipe impeded cell cycle progression in prostate and lung cancer cells by rounding them up at G0 phase by flow cytometric analysis of cancer cells stained with Hoechst 33342 and Pyronin Y, respectively, for DNA and RNA. The anti-cancer efficacy of the recipe was found to be attributable to Agrimonia pilosa Ledeb. Further study established that agrimol B, a polyphenol derived from Agrimonia pilosa Ledeb, contributed to the activity of the herb. The action of agrimol B on the cancer cells was likely derived from its effect on c-MYC, SKP2 and p27 by immunoblotting and immunofluorescence. Oral administration of Agrimonia pilosa Ledeb or agrimol B reduced growth of prostate cancer cell xenograft in animal. In conclusion, Agrimol B can enrich for prostate and lung cancer cells in G0 state and influence key regulators that govern G0 status.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rongzhen Ding
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mu Yao
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Australia
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
9
|
Proteasomal Regulation of Mammalian SPT16 in Controlling Transcription. Mol Cell Biol 2021; 41:MCB.00452-20. [PMID: 33526453 DOI: 10.1128/mcb.00452-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
FACT (facilitates chromatin transcription), an essential and evolutionarily conserved heterodimer from yeast to humans, controls transcription and is found to be upregulated in various cancers. However, the basis for such upregulation is not clearly understood. Our recent results deciphering a new ubiquitin-proteasome system regulation of the FACT subunit SPT16 in orchestrating transcription in yeast hint at the involvement of the proteasome in controlling FACT in humans, with a link to cancer. To test this, we carried out experiments in human embryonic kidney (HEK293) cells, which revealed that human SPT16 undergoes ubiquitylation and that its abundance is increased following inhibition of the proteolytic activity of the proteasome, thus implying proteasomal regulation of human SPT16. Furthermore, we find that the increased abundance/expression of SPT16 in HEK293 cells alters the transcription of genes, including ones associated with cancer, and that the proteasomal degradation of SPT16 is impaired in kidney cancer (Caki-2) cells to upregulate SPT16. Like human SPT16, murine SPT16 in C2C12 cells also undergoes ubiquitylation and proteasomal degradation to regulate transcription. Collectively, our results reveal a proteasomal regulation of mammalian SPT16, with physiological relevance in controlling transcription, and implicate such proteasomal control in the upregulation of SPT16 in cancer.
Collapse
|
10
|
Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021; 10:cells10030562. [PMID: 33807533 PMCID: PMC7999675 DOI: 10.3390/cells10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
- Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Correspondence: (Q.D.); (H.X.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: (Q.D.); (H.X.)
| |
Collapse
|
11
|
SSRP1 Is a Prognostic Biomarker Correlated with CD8 + T Cell Infiltration in Hepatocellular Carcinoma (HCC). BIOMED RESEARCH INTERNATIONAL 2021; 2021:9409836. [PMID: 33688504 PMCID: PMC7925027 DOI: 10.1155/2021/9409836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common primary malignancies, is theoretically an epitope candidate for immune checkpoint inhibitors, and therefore, the identification of HCC biomarkers is important. Structure-specific recognition protein 1 (SSRP1) is involved in almost all chromatin-related processes, including DNA replication, repair, and transcription. However, its role in HCC remains to be elucidated. Methods This study investigated the expression of SSRP1 in HCCDB, Oncomine, HPA, and other databases. The prognostic value of SSRP1 in HCC and its relationship with clinical characteristics were then explored using Kaplan-Meier plotter. At the same time, SSRP1 coexpression genes were explored and functionally annotated in the LinkedOmics database. Finally, the correlation between the SSRP1 expression and HCC immune cell infiltration was explored in TIMER and online single-cell sequencing database. Results Significantly elevated transcriptional and proteomic SSRP1 expressions were found in HCC. Increased SSRP1 mRNA expression was significantly correlated with relevant clinicopathological parameters such as immune cells. Notably, the SSRP1 expression was positively correlated with the infiltration levels of Treg and CD8+ T cells, especially exhausted CD8+ T cells. Interestingly, the SSRP1 expression was higher in both tumor Treg and exhausted CD8+ T cells than in adjacent tissues. Conclusion SSRP1, as a new prognostic marker for HCC, promotes HCC development by influencing the infiltration of depleted CD8+ T cells and may influence the effect of immunotherapy.
Collapse
|
12
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
13
|
Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, Liu H, Xi ZC, Xu HX. Safrana l Prevents Prostate Cancer Recurrence by Blocking the Re-activation of Quiescent Cancer Cells via Downregulation of S-Phase Kinase-Associated Protein 2. Front Cell Dev Biol 2021; 8:598620. [PMID: 33392189 PMCID: PMC7772204 DOI: 10.3389/fcell.2020.598620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ling Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Pharmaceutical Services Program, Ministry of Health, Petaling Jaya, Malaysia
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Liu
- Hospital Management Office, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Yang L, Wang X, Jiao X, Tian B, Zhang M, Zhou C, Wang R, Chen H, Wang B, Li J, Liu J, Zhang G, Liu P. Suppressor of Ty 16 promotes lung cancer malignancy and is negatively regulated by miR-1227-5p. Cancer Sci 2020; 111:4075-4087. [PMID: 32860308 PMCID: PMC7648015 DOI: 10.1111/cas.14627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Suppressor of Ty 16 (Spt16) is a component of the facilitates chromatin transcription (FACT) complex, which is a histone chaperone and involved in gene transcription, DNA replication, and DNA repair. Previous studies showed that FACT is highly expressed in cancer, and cancer cells are more reliant on FACT than normal cells. However, the relationship between Spt16 and lung cancer remains unclear. In this study, we explored the functions of Spt16 in lung cancer cells. The effects of Spt16 on lung cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion were examined. We found that knockdown of Spt16 led to obvious decreases of both Rb and MCM7, and further activated the DNA damage response (DDR) pathway. In addition, a novel micro‐RNA, miR‐1227‐5p, directly targeted the 3′‐UTR of Spt16 and regulated the mRNA levels of Spt16. Furthermore, we found that CBL0137, the functional inhibitor of FACT, showed similar effects as loss of Spt16. Together, our data indicated that Spt16 is likely to be an essential regulator for lung cancer malignancy and is negatively regulated by miR‐1227‐5p.
Collapse
Affiliation(s)
- Lu Yang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Wang
- Department of Pathology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Jiao
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bixia Tian
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miao Zhang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Can Zhou
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Wang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - He Chen
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanjun Zhang
- Department of Pathology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Lei X, Ma N, Du L, Liang Y, Zhang P, Han Y, Qu B. PP2A and tumor radiotherapy. Hereditas 2020; 157:36. [PMID: 32847617 PMCID: PMC7450598 DOI: 10.1186/s41065-020-00149-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that serves as a key regulator of cellular physiology in the context of apoptosis, mitosis, and DNA damage responses. Canonically, PP2A functions as a tumor suppressor gene. However, recent evidence suggests that inhibiting PP2A activity in tumor cells may represent a viable approach to enhancing tumor sensitivity to chemoradiotherapy as such inhibition can cause cells to enter a disordered mitotic state that renders them more susceptible to cell death. Indeed, there is evidence that inhibiting PP2A can slow tumor growth following radiotherapy in a range of cancer types including ovarian cancer, liver cancer, malignant glioma, pancreatic cancer, and nasopharyngeal carcinoma. In the present review, we discuss current understanding of the role of PP2A in tumor radiotherapy and the potential mechanisms whereby it may influence this process.
Collapse
Affiliation(s)
- Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Na Ma
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Yanjie Liang
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Yanan Han
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Department of Radiation Oncology, Beijing, P. R. China.
| |
Collapse
|
17
|
Bi L, Xie C, Jiao L, Jin S, Hnit SST, Mu Y, Wang Y, Wang Q, Ge G, Wang Y, Zhao X, Shi X, Kang Y, De Souza P, Liu T, Zhou J, Xu L, Dong Q. CPF impedes cell cycle re-entry of quiescent lung cancer cells through transcriptional suppression of FACT and c-MYC. J Cell Mol Med 2020; 24:2229-2239. [PMID: 31960591 PMCID: PMC7011132 DOI: 10.1111/jcmm.14897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Blockade of cell cycle re‐entry in quiescent cancer cells is a strategy to prevent cancer progression and recurrence. We investigated the action and mode of action of CPF mixture (Coptis chinensis, Pinellia ternata and Fructus trichosanthis) in impeding a proliferative switch in quiescent lung cancer cells. The results indicated that CPF impeded cell cycle re‐entry in quiescent lung cancer cells by reduction of FACT and c‐MYC mRNA and protein levels, with concomitant decrease in H3K4 tri‐methylation and RNA polymerase II occupancy at FACT and c‐MYC promoter regions. Animals implanted with quiescent cancer cells that had been exposed to CPF had reduced tumour volume/weight. Thus, CPF suppresses proliferative switching through transcriptional suppression of FACT and the c‐MYC, providing a new insight into therapeutic target and intervention method in impeding cancer recurrence.
Collapse
Affiliation(s)
- Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Su Su Thae Hnit
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yao Mu
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yilun Wang
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiao Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinglong Shi
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Paul De Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Jia Zhou
- Department of Thoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihan Dong
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|