1
|
König C, Ivanisenko NV, Ivanisenko VA, Kulms D, Lavrik IN. Pharmacological targeting of caspase-8/c-FLIP L heterodimer enhances complex II assembly and elimination of pancreatic cancer cells. Commun Biol 2025; 8:4. [PMID: 39753884 PMCID: PMC11698904 DOI: 10.1038/s42003-024-07409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Extrinsic apoptotic network is driven by Death Ligand (DL)-mediated activation of procaspase-8. Recently, we have developed the first-in class small molecule, FLIPinB, which specifically targets the key regulator of extrinsic apoptosis, the protein c-FLIPL, in the caspase-8/c-FLIPL heterodimer. We have shown that FLIPinB enhances DL-induced caspase-8 activity and apoptosis. However, the effects of FLIPinB action in combination with other cell death inducers have only just begun to be elucidated. Here, we show that FLIPinB enhances the cell death in pancreatic cancer cells induced by combinatorial treatment with DL, gemcitabine and Mcl-1 inhibitor S63845. Further, we found that these effects are mediated via an increase in the complex II assembly. Collectively, our study shows that targeting the caspase-8/c-FLIPL heterodimer in combination with the other drugs in pancreatic cancer cells is a promising direction that may provide a basis for further therapeutic strategies.
Collapse
Affiliation(s)
- Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University (OvGU), Magdeburg, Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University (OvGU), Magdeburg, Magdeburg, Germany
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Novosibirsk, Russia
- State Novosibirsk University, Novosibirsk, Russia
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, Dresden, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University (OvGU), Magdeburg, Magdeburg, Germany.
| |
Collapse
|
2
|
König C, Ivanisenko NV, Hillert-Richter LK, Namjoshi D, Natu K, Espe J, Reinhold D, Kolchanov NA, Ivanisenko VA, Kähne T, Bose K, Lavrik IN. Targeting type I DED interactions at the DED filament serves as a sensitive switch for cell fate decisions. Cell Chem Biol 2024; 31:1969-1985.e6. [PMID: 39053461 DOI: 10.1016/j.chembiol.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.
Collapse
Affiliation(s)
- Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Deepti Namjoshi
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Kalyani Natu
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical immunology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikolai A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; State Novosibirsk University, Novosibirsk, Russia
| | - Thilo Kähne
- Institute of Experimental and Internal Medicine (iEIM), Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
4
|
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, Del Gaudio N, Megchelenbrink WL, Caraglia M, Benedetti R, Altucci L, Carafa V. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers (Basel) 2024; 16:1657. [PMID: 38730609 PMCID: PMC11083363 DOI: 10.3390/cancers16091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.
Collapse
Affiliation(s)
- Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Federica Donnarumma
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Asmat Nawaz
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Francesco Grimaldi
- Dipartimento di Medicina Clinica e Chirurgia, Divisione di Ematologia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | | | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), 80131 Napoli, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
5
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Garciaz S, Miller T, Collette Y, Vey N. Targeting regulated cell death pathways in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:151-168. [PMID: 37065864 PMCID: PMC10099605 DOI: 10.20517/cdr.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML patients, particularly those resistant to intrinsic apoptosis.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Hematology Department, Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Thomas Miller
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Yves Collette
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Norbert Vey
- Hematology Department, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| |
Collapse
|
7
|
Yu H, Lv W, Tan Y, He X, Wu Y, Wu M, Zhang Q. Immunotherapy landscape analyses of necroptosis characteristics for breast cancer patients. J Transl Med 2022; 20:328. [PMID: 35864548 PMCID: PMC9306193 DOI: 10.1186/s12967-022-03535-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
Necroptosis plays a major role in breast cancer (BC) progression and metastasis. Besides, necroptosis also regulates inflammatory response and tumor microenvironment. Here, we aim to explore the predictive signature based on necroptosis-related genes (NRGs) for predicting the prognosis and response to therapies. Using Lasso multivariate cox analysis, we firstly established the NRG signature based on TCGA database. A total of 6 NRGs (FASLG, IPMK, FLT3, SLC39A7, HSP90AA1, and LEF1), which were associated with the prognosis of BC patients, were selected to establish our signature. Next, CIBERSORT algorithm was utilized to evaluate immune cell infiltration levels. We compare the response to immunotherapy using IMvigor 210 database, and also compared immune indicators in two risk groups via multiple methods. The biological function of IPMK was explored via in vitro verification. Finally, our results indicated that the signature was an independent prognostic indicator for BC patients with better efficiency than other reported signatures. The immune cell infiltration levels were higher, and the response to immunotherapy and chemotherapy was better in the low-risk groups. Besides, other immunotherapy-related factors, including TMB, TIDE, and expression of immune checkpoints were also increased in the low-risk group. Clinical sample validation showed that CD206 and IPMK in clinical samples were both up-regulated in the high-risk group. In vitro assay showed that IPMK promoted BC cell proliferation and migration, and also enhanced macrophage infiltration and M2 polarization. In summary, we successfully established the NRG signature, which could be used to evaluate BC prognosis and identify patients who will benefit from immunotherapy.
Collapse
Affiliation(s)
- Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiao He
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Xin S, Mao J, Duan C, Wang J, Lu Y, Yang J, Hu J, Liu X, Guan W, Wang T, Wang S, Liu J, Song W, Song X. Identification and Quantification of Necroptosis Landscape on Therapy and Prognosis in Kidney Renal Clear Cell Carcinoma. Front Genet 2022; 13:832046. [PMID: 35237304 PMCID: PMC8882778 DOI: 10.3389/fgene.2022.832046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in recent years, and the rate of progression once relapsed is high. At present, owing to lack of effective prognosis predicted markers and post-recurrence drug selection guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a regulated form of cell necrosis in a way that is independent of caspase. Induced necroptosis is considered an effective strategy in chemotherapy and targeted drugs, and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA) database and divided them into two distinct necroptosis-related patterns (C1 and C2) through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed the differences in clinicopathological characteristics and tumor immune microenvironment (TIME). Then, we constructed the NRG prognosis signature (NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore could be used as an independent prognostic marker for KIRC patients and performed excellent stability and accuracy. A nomogram model was also established to provide a more beneficial prognostic indicator for the clinic. We found that NRGscore was significantly correlated with clinicopathological characteristics, TIME, and tumor mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective guiding significance for immunotherapy, chemotherapy, and targeted drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wen Song
- *Correspondence: Wen Song, ; Xiaodong Song,
| | | |
Collapse
|
9
|
Rucker AJ, Chan FKM. Tumor-intrinsic and immune modulatory roles of receptor-interacting protein kinases. Trends Biochem Sci 2022; 47:342-351. [PMID: 34998669 PMCID: PMC8917977 DOI: 10.1016/j.tibs.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are signaling adaptors that critically regulate cell death and inflammation. Tumors have adapted to subvert RIPK-dependent cell death, suggesting that these processes have key roles in tumor regulation. Moreover, RIPK-driven cancer cell death might bolster durable antitumor immunity. By contrast, there are examples in which RIPKs induce inflammation and aid tumor progression. Furthermore, the RIPKs can exert their effects on tumor growth through regulating the activity of immune effectors in the tumor microenvironment, thus highlighting the context-dependent roles of RIPKs. Here, we review recent advances in the regulation of RIPK activity in tumors and immune cells and how these processes coordinate with each other to control tumorigenesis.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA.
| |
Collapse
|
10
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Hillert LK, Ivanisenko NV, Busse D, Espe J, König C, Peltek SE, Kolchanov NA, Ivanisenko VA, Lavrik IN. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIP L heterodimer. Cell Death Differ 2020; 27:2117-2130. [PMID: 31959913 DOI: 10.1038/s41418-020-0489-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 11/09/2022] Open
Abstract
Pharmacological targeting via small molecule-based chemical probes has recently acquired an emerging importance as a valuable tool to delineate molecular mechanisms. Induction of apoptosis via CD95/Fas and TRAIL-R1/2 is triggered by the formation of the death-inducing signaling complex (DISC). Caspase-8 activation at the DISC is largely controlled by c-FLIP proteins. However molecular mechanisms of this control have just started to be uncovered. In this study we report the first-in-class chemical probe targeting c-FLIPL in the heterodimer caspase-8/c-FLIPL. This rationally designed small molecule was aimed to imitate the closed conformation of the caspase-8 L2' loop and thereby increase caspase-8 activity after initial processing of the heterodimer. In accordance with in silico predictions, this small molecule enhanced caspase-8 activity at the DISC, CD95L/TRAIL-induced caspase activation, and subsequent apoptosis. The generated computational model provided further evidence for the proposed effects of the small molecule on the heterodimer caspase-8/c-FLIPL. In particular, the model has demonstrated that boosting caspase-8 activity by the small molecule at the early time points after DISC assembly is crucial for promoting apoptosis induction. Taken together, our study allowed to target the heterodimer caspase-8/c-FLIPL and get new insights into molecular mechanisms of its activation.
Collapse
Affiliation(s)
- Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Denise Busse
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Sergey E Peltek
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Nikolai A Kolchanov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
12
|
Hu L, Gao Y, Shi Z, Liu Y, Zhao J, Xiao Z, Lou J, Xu Q, Tong X. DNA methylation-based prognostic biomarkers of acute myeloid leukemia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:737. [PMID: 32042753 DOI: 10.21037/atm.2019.11.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous clonal disease that prevents normal myeloid differentiation with its common features. Its incidence increases with age and has a poor prognosis. Studies have shown that DNA methylation and abnormal gene expression are closely related to AML. Methods The methylation array data and mRNA array data are from the Gene Expression Omnibus (GEO) database. Through the GEO data, we identified differential genes from tumors and normal samples. Then we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on these differential genes. Protein-protein interaction (PPI) network construction and module analysis were performed to screen the highest-scoring modules. Next, we used SurvExpress software to analyze the genes in the highest-scoring module and selected potential prognostic genes by univariate and multivariate Cox analysis. Finally, the three genes screened by SurvExpress software were analyzed using the methylation analysis site MethSurv to explore AML associated methylation biomarkers. Results We found three genes that can be used as independent prognostic factors for AML. These three genes are the low expression/methylation genes ATP11A and ITGAM, and the high expression/low methylation gene ZNRF2. Conclusions In this study, we performed a comprehensive analysis of DNA methylation and gene expression to identify key epigenetic genes in AML.
Collapse
Affiliation(s)
- Linjun Hu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Yuling Gao
- Department of Genetic Laboratory, Shaoxing Women and Children Hospital, Shaoxing 312030, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310014, China
| | - Jiayin Lou
- Department of Clinical Laboratory, Da jiang dong Hospital, Hangzhou, 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Xiangmin Tong
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|