1
|
Yan F, Gunay G, Valerio TI, Wang C, Wilson JA, Haddad MS, Watson M, Connell MO, Davidson N, Fung KM, Acar H, Tang Q. Characterization and quantification of necrotic tissues and morphology in multicellular ovarian cancer tumor spheroids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3352-3371. [PMID: 34221665 PMCID: PMC8221959 DOI: 10.1364/boe.425512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
The three-dimensional (3D) tumor spheroid model is a critical tool for high-throughput ovarian cancer research and anticancer drug development in vitro. However, the 3D structure prevents high-resolution imaging of the inner side of the spheroids. We aim to visualize and characterize 3D morphological and physiological information of the contact multicellular ovarian tumor spheroids growing over time. We intend to further evaluate the distinctive evolutions of the tumor spheroid and necrotic tissue volumes in different cell numbers and determine the most appropriate mathematical model for fitting the growth of tumor spheroids and necrotic tissues. A label-free and noninvasive swept-source optical coherence tomography (SS-OCT) imaging platform was applied to obtain two-dimensional (2D) and 3D morphologies of ovarian tumor spheroids over 18 days. Ovarian tumor spheroids of two different initial cell numbers (5,000- and 50,000- cells) were cultured and imaged (each day) over the time of growth in 18 days. Four mathematical models (Exponential-Linear, Gompertz, logistic, and Boltzmann) were employed to describe the growth kinetics of the tumor spheroids volume and necrotic tissues. Ovarian tumor spheroids have different growth curves with different initial cell numbers and their growths contain different stages with various growth rates over 18 days. The volumes of 50,000-cells spheroids and the corresponding necrotic tissues are larger than that of the 5,000-cells spheroids. The formation of necrotic tissue in 5,000-cells numbers is slower than that in the 50,000-cells ones. Moreover, the Boltzmann model exhibits the best fitting performance for the growth of tumor spheroids and necrotic tissues. Optical coherence tomography (OCT) can serve as a promising imaging modality to visualize and characterize morphological and physiological features of multicellular ovarian tumor spheroids. The Boltzmann model integrating with 3D OCT data of ovarian tumor spheroids provides great potential for high-throughput cancer research in vitro and aiding in drug development.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Jayla A Wilson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Majood S Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Maegan Watson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Michael O Connell
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Noah Davidson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| |
Collapse
|
2
|
Huang Y, Zou J, Badar M, Liu J, Shi W, Wang S, Guo Q, Wang X, Kessel S, Chan LLY, Li P, Liu Y, Qiu J, Zhou C. Longitudinal Morphological and Physiological Monitoring of Three-dimensional Tumor Spheroids Using Optical Coherence Tomography. J Vis Exp 2019. [PMID: 30799861 DOI: 10.3791/59020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tumor spheroids have been developed as a three-dimensional (3D) cell culture model in cancer research and anti-cancer drug discovery. However, currently, high-throughput imaging modalities utilizing bright field or fluorescence detection, are unable to resolve the overall 3D structure of the tumor spheroid due to limited light penetration, diffusion of fluorescent dyes and depth-resolvability. Recently, our lab demonstrated the use of optical coherence tomography (OCT), a label-free and non-destructive 3D imaging modality, to perform longitudinal characterization of multicellular tumor spheroids in a 96-well plate. OCT was capable of obtaining 3D morphological and physiological information of tumor spheroids growing up to about 600 µm in height. In this article, we demonstrate a high-throughput OCT (HT-OCT) imaging system that scans the whole multi-well plate and obtains 3D OCT data of tumor spheroids automatically. We describe the details of the HT-OCT system and construction guidelines in the protocol. From the 3D OCT data, one can visualize the overall structure of the spheroid with 3D rendered and orthogonal slices, characterize the longitudinal growth curve of the tumor spheroid based on the morphological information of size and volume, and monitor the growth of the dead-cell regions in the tumor spheroid based on optical intrinsic attenuation contrast. We show that HT-OCT can be used as a high-throughput imaging modality for drug screening as well as characterizing biofabricated samples.
Collapse
Affiliation(s)
- Yongyang Huang
- Department of Electrical and Computer Engineering, Lehigh University
| | - Jinyun Zou
- Department of Electrical and Computer Engineering, Lehigh University
| | - Mudabbir Badar
- Department of Electrical and Computer Engineering, Lehigh University
| | - Junchao Liu
- Department of Electrical and Computer Engineering, Lehigh University
| | - Wentao Shi
- Department of Bioengineering, Lehigh University
| | | | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology
| | - Xiaofang Wang
- Department of Electrical and Computer Engineering, Lehigh University
| | - Sarah Kessel
- Department of Technology R&D, Nexcelom Bioscience LLC
| | | | - Peter Li
- Department of Technology R&D, Nexcelom Bioscience LLC
| | - Yaling Liu
- Department of Mechanical Engineering, Lehigh University; Department of Bioengineering, Lehigh University
| | - Jean Qiu
- Department of Technology R&D, Nexcelom Bioscience LLC
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University; Department of Bioengineering, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University;
| |
Collapse
|
3
|
Huang Y, Wang S, Guo Q, Kessel S, Rubinoff I, Chan LLY, Li P, Liu Y, Qiu J, Zhou C. Optical Coherence Tomography Detects Necrotic Regions and Volumetrically Quantifies Multicellular Tumor Spheroids. Cancer Res 2017; 77:6011-6020. [PMID: 28904062 DOI: 10.1158/0008-5472.can-17-0821] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) tumor spheroid models have gained increased recognition as important tools in cancer research and anticancer drug development. However, currently available imaging approaches used in high-throughput screening drug discovery platforms, for example, bright-field, phase contrast, and fluorescence microscopies, are unable to resolve 3D structures deep inside (>50 μm) tumor spheroids. In this study, we established a label-free, noninvasive optical coherence tomography (OCT) imaging platform to characterize 3D morphologic and physiologic information of multicellular tumor spheroids (MCTS) growing from approximately 250 to 600 μm in height over 21 days. In particular, tumor spheroids of two cell lines, glioblastoma (U-87MG) and colorectal carcinoma (HCT116), exhibited distinctive evolutions in their geometric shapes at late growth stages. Volumes of MCTS were accurately quantified using a voxel-based approach without presumptions of their geometries. In contrast, conventional diameter-based volume calculations assuming perfect spherical shape resulted in large quantification errors. Furthermore, we successfully detected necrotic regions within these tumor spheroids based on increased intrinsic optical attenuation, suggesting a promising alternative of label-free viability tests in tumor spheroids. Therefore, OCT can serve as a promising imaging modality to characterize morphologic and physiologic features of MCTS, showing great potential for high-throughput drug screening. Cancer Res; 77(21); 6011-20. ©2017 AACR.
Collapse
Affiliation(s)
- Yongyang Huang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Shunqiang Wang
- Department of Mechanical Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Qiongyu Guo
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Sarah Kessel
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, Massachusetts
| | - Ian Rubinoff
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, Massachusetts
| | - Peter Li
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, Massachusetts
| | - Yaling Liu
- Department of Mechanical Engineering, Lehigh University, Bethlehem, Pennsylvania.,Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Jean Qiu
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, Massachusetts
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania. .,Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania.,Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
4
|
Thong PSP, Lee K, Toh HJ, Dong J, Tee CS, Low KP, Chang PH, Bhuvaneswari R, Tan NC, Soo KC. Early assessment of tumor response to photodynamic therapy using combined diffuse optical and diffuse correlation spectroscopy to predict treatment outcome. Oncotarget 2017; 8:19902-19913. [PMID: 28423634 PMCID: PMC5386732 DOI: 10.18632/oncotarget.15720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer involves the use of a photosensitizer that can be light-activated to eradicate tumors via direct cytotoxicity, damage to tumor vasculature and stimulating the body's immune system. Treatment outcome may vary between individuals even under the same regime; therefore a non-invasive tumor response monitoring system will be useful for personalization of the treatment protocol. We present the combined use of diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to provide early assessment of tumor response. The relative tissue oxygen saturation (rStO2) and relative blood flow (rBF) in tumors were measured using DOS and DCS respectively before and after PDT with reference to baseline values in a mouse model. In complete responders, PDT-induced decreases in both rStO2 and rBF levels were observed at 3 h post-PDT and the rBF remained low until 48 h post-PDT. Recovery of these parameters to baseline values was observed around 2 weeks after PDT. In partial responders, the rStO2 and rBF levels also decreased at 3 h post PDT, however the rBF values returned toward baseline values earlier at 24 h post-PDT. In contrast, the rStO2 and rBF readings in control tumors showed fluctuations above the baseline values within the first 48 h. Therefore tumor response can be predicted at 3 to 48 h post-PDT. Recovery or sustained decreases in the rBF at 48 h post-PDT corresponded to long-term tumor control. Diffuse optical measurements can thus facilitate early assessment of tumor response. This approach can enable physicians to personalize PDT treatment regimens for best outcomes.
Collapse
Affiliation(s)
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Daegu Gyeongbuk Institute of Science and Technology, Korea
| | - Hui-Jin Toh
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | - Chuan-Sia Tee
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Kar-Perng Low
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Pui-Haan Chang
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Ngian-Chye Tan
- Division of Surgical Oncology, National Cancer Centre, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
5
|
Hung HI, Klein OJ, Peterson SW, Rokosh SR, Osseiran S, Nowell NH, Evans CL. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro. Sci Rep 2016; 6:33234. [PMID: 27686626 PMCID: PMC5043181 DOI: 10.1038/srep33234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/23/2016] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are highly selective against many malignancies and can bypass certain challenging therapeutic resistance mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers induce "dark toxicity" through light-independent mechanisms. In this study, we evaluated the use of nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly reduce EtNBS dark toxicity while completely retaining the molecule's cytotoxicity in both normoxic and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive tumour regions.
Collapse
Affiliation(s)
- Hsin-I Hung
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Oliver J Klein
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sam W Peterson
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sarah R Rokosh
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sam Osseiran
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States.,Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue E25-519, Cambridge, Massachusetts 02139, United States
| | - Nicholas H Nowell
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
6
|
Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT. Sci Rep 2016; 6:27017. [PMID: 27248849 PMCID: PMC4888651 DOI: 10.1038/srep27017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.
Collapse
|
7
|
Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro. Ann Biomed Eng 2016; 44:2737-45. [PMID: 26833036 DOI: 10.1007/s10439-016-1557-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.
Collapse
|
8
|
Getting it right: 3D cell cultures for the assessment of photosensitizers for photodynamic therapy. Future Med Chem 2015; 7:1957-60. [PMID: 26496381 DOI: 10.4155/fmc.15.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Shao P, Chapman DW, Moore RB, Zemp RJ. Monitoring photodynamic therapy with photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106012. [PMID: 26509414 DOI: 10.1117/1.jbo.20.10.106012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Abstract. We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.
Collapse
Affiliation(s)
- Peng Shao
- University of Alberta, Department of Electrical & Computer Engineering, 9107-116 Street, Edmonton T6G 2V4, Canada
| | - David W Chapman
- University of Alberta, Department of Surgery and Oncology, 11560 University Avenue, Edmonton T6G 1Z2, Canada
| | - Ronald B Moore
- University of Alberta, Department of Surgery and Oncology, 11560 University Avenue, Edmonton T6G 1Z2, Canada
| | - Roger J Zemp
- University of Alberta, Department of Electrical & Computer Engineering, 9107-116 Street, Edmonton T6G 2V4, Canada
| |
Collapse
|
10
|
Mallidi S, Spring BQ, Hasan T. Optical Imaging, Photodynamic Therapy and Optically Triggered Combination Treatments. Cancer J 2015; 21:194-205. [PMID: 26049699 PMCID: PMC4459538 DOI: 10.1097/ppo.0000000000000117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical imaging is becoming increasingly promising for real-time image-guided resections, and combined with photodynamic therapy (PDT), a photochemistry-based treatment modality, optical approaches can be intrinsically "theranostic." Challenges in PDT include precise light delivery, dosimetry, and photosensitizer tumor localization to establish tumor selectivity, and like all other modalities, incomplete treatment and subsequent activation of molecular escape pathways are often attributable to tumor heterogeneity. Key advances in molecular imaging, target-activatable photosensitizers, and optically active nanoparticles that provide both cytotoxicity and a drug release mechanism have opened exciting avenues to meet these challenges. The focus of the review is optical imaging in the context of PDT, but the general principles presented are applicable to many of the conventional approaches to cancer management. We highlight the role of optical imaging in providing structural, functional, and molecular information regarding photodynamic mechanisms of action, thereby advancing PDT and PDT-based combination therapies of cancer. These advances represent a PDT renaissance with increasing applications of clinical PDT as a frontline cancer therapy working in concert with fluorescence-guided surgery, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
11
|
Longitudinal, 3D in vivo imaging of sebaceous glands by coherent anti-stokes Raman scattering microscopy: normal function and response to cryotherapy. J Invest Dermatol 2014; 135:39-44. [PMID: 25026458 PMCID: PMC4268001 DOI: 10.1038/jid.2014.293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/10/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
Sebaceous glands perform complex functions, and are centrally involved in the pathogenesis of acne vulgaris. Current techniques for studying sebaceous glands are mostly static in nature, whereas the gland’s main function – excretion of sebum via the holocrine mechanism – can only be evaluated over time. We present a longitudinal, real-time alternative – the in vivo, label-free imaging of sebaceous glands using Coherent Anti-Stokes Raman Scattering (CARS) microscopy, which is used to selectively visualize lipids. In mouse ears, CARS microscopy revealed dynamic changes in sebaceous glands during the holocrine secretion process, as well as in response to damage to the glands caused by cooling. Detailed gland structure, plus the active migration of individual sebocytes and cohorts of sebocytes were measured. Cooling produced characteristic changes in sebocyte structure and migration. This study demonstrates that CARS microscopy is a promising tool for studying the sebaceous gland and its associated disorders in three-dimensions in vivo.
Collapse
|
12
|
Klein OJ, Jung YK, Evans CL. Longitudinal, quantitative monitoring of therapeutic response in 3D in vitro tumor models with OCT for high-content therapeutic screening. Methods 2013; 66:299-311. [PMID: 24013042 DOI: 10.1016/j.ymeth.2013.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/10/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022] Open
Abstract
In vitro three-dimensional models of cancer have the ability to recapitulate many features of tumors found in vivo, including cell-cell and cell-matrix interactions, microenvironments that become hypoxic and acidic, and other barriers to effective therapy. These model tumors can be large, highly complex, heterogeneous, and undergo time-dependent growth and treatment response processes that are difficult to track and quantify using standard imaging tools. Optical coherence tomography is an optical ranging technique that is ideally suited for visualizing, monitoring, and quantifying the growth and treatment response dynamics occurring in these informative model systems. By optimizing both optical coherence tomography and 3D culture systems, it is possible to continuously and non-perturbatively monitor advanced in vitro models without the use of labels over the course of hours and days. In this chapter, we describe approaches and methods for creating and carrying out quantitative therapeutic screens with in vitro 3D cultures using optical coherence tomography to gain insights into therapeutic mechanisms and build more effective treatment regimens.
Collapse
Affiliation(s)
- O J Klein
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA.
| | - Y K Jung
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA.
| | - C L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 40 Blossom St, Boston, MA 02114, USA.
| |
Collapse
|