1
|
Liu G, Li X, Guan J, Tai C, Weng Y, Chen X, Ou HY. oriTDB: a database of the origin-of-transfer regions of bacterial mobile genetic elements. Nucleic Acids Res 2025; 53:D163-D168. [PMID: 39373502 PMCID: PMC11701681 DOI: 10.1093/nar/gkae869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Conjugation and mobilization are two important pathways of horizontal transfer of bacterial mobile genetic elements (MGEs). The origin-of-transfer (oriT) region is crucial for this process, serving as a recognition site for relaxase and containing the DNA nicking site (nic site), which initiates the conjugation or mobilization. Here, we present a database of the origin-of-transfer regions of bacterial MGEs, oriTDB (https://bioinfo-mml.sjtu.edu.cn/oriTDB2/). Incorporating data from text mining and genome analysis, oriTDB comprises 122 experimentally validated and 22 927 predicted oriTs within bacterial plasmids, Integrative and Conjugative Elements, and Integrative and Mobilizable Elements. Additionally, oriTDB includes details about associated relaxases, auxiliary proteins, type IV coupling proteins, and a gene cluster encoding the type IV secretion system. The database also provides predicted secondary structures of oriT sequences, dissects oriT regions into pairs of inverted repeats, nic sites, and their flanking conserved sequences, and offers an interactive visual representation. Furthermore, oriTDB includes an enhanced oriT prediction pipeline, oriTfinder2, which integrates a functional annotation module for cargo genes in bacterial MGEs. This resource is intended to support research on bacterial conjugative or mobilizable elements and promote an understanding of their cargo gene functions.
Collapse
Affiliation(s)
- Guitian Liu
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Weng
- Department of Pulmonary and Critical Care Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong- Yu Ou
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Gao FZ, Hu LX, Liu YS, Qiao LK, Chen ZY, Su JQ, He LY, Bai H, Zhu YG, Ying GG. Unveiling the overlooked small-sized microbiome in river ecosystems. WATER RESEARCH 2024; 265:122302. [PMID: 39178591 DOI: 10.1016/j.watres.2024.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Enriching microorganisms using a 0.22-μm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 μm (large-sized) and between 0.22 μm and 0.1 μm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical, Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
3
|
Huang Y, Hu H, Zhang T, Wang W, Liu W, Tang H. Meta-omics assisted microbial gene and strain resources mining in contaminant environment. Eng Life Sci 2024; 24:2300207. [PMID: 38708415 PMCID: PMC11065330 DOI: 10.1002/elsc.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 05/07/2024] Open
Abstract
Human activities have led to the release of various environmental pollutants, triggering ecological challenges. In situ, microbial communities in these contaminated environments are usually assumed to possess the potential capacity of pollutant degradation. However, the majority of genes and microorganisms in these environments remain uncharacterized and uncultured. The advent of meta-omics provided culture-independent solutions for exploring the functional genes and microorganisms within complex microbial communities. In this review, we highlight the applications and methodologies of meta-omics in uncovering of genes and microbes from contaminated environments. These findings may assist in future bioremediation research.
Collapse
Affiliation(s)
- Yiqun Huang
- State Key Laboratory of Microbial Metabolismand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolismand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Tingting Zhang
- China Tobacco Henan Industrial Co. Ltd.ZhengzhouPeople's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolismand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Wenzhao Liu
- China Tobacco Henan Industrial Co. Ltd.ZhengzhouPeople's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolismand School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
4
|
Yadav R, Dharne M. Utility of metagenomics for bioremediation: a comprehensive review on bioremediation mechanisms and microbial dynamics of river ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18422-18434. [PMID: 38367110 DOI: 10.1007/s11356-024-32373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Global industrialization has contributed substantial amounts of chemical pollutants in rivers, resulting in an uninhabitable state and impacting different life forms. Moreover, water macrophytes, such as water hyacinths, are abundantly present in polluted rivers, significantly affecting the overall water biogeochemistry. Bioremediation involves utilizing microbial metabolic machinery and is one of the most viable approaches for removing toxic pollutants. Conventional techniques generate limited information on the indigenous microbial population and their xenobiotic metabolism, failing the bioremediation process. Metagenomics can overcome these limitations by providing in-depth details of microbial taxa and functionality-related information required for successful biostimulation and augmentation. An in-depth summary of the findings related to pollutant metabolizing genes and enzymes in rivers still needs to be collated. The present study details bioremediation genes and enzymes functionally mined from polluted river ecosystems worldwide using a metagenomic approach. Several studies reported a wide variety of pollutant-degrading enzymes involved in the metabolism of dyes, plastics, persistent organic pollutants, and aromatic hydrocarbons. Additionally, few studies also noted a shift in the microbiome of the rivers upon exposure to contaminants, crucially affecting the ecological determinant processes. Furthermore, minimal studies have focused on the role of water-hyacinth-associated microbes in the bioremediation potentials, suggesting the need for the bioprospecting of these lesser-studied microbes. Overall, our study summarizes the prospects and utilities of the metagenomic approach and proposes the need to employ it for efficient bioremediation.
Collapse
Affiliation(s)
- Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
5
|
Li C, Gillings MR, Zhang C, Chen Q, Zhu D, Wang J, Zhao K, Xu Q, Leung PH, Li X, Liu J, Jin L. Ecology and risks of the global plastisphere as a newly expanding microbial habitat. Innovation (N Y) 2024; 5:100543. [PMID: 38111463 PMCID: PMC10726253 DOI: 10.1016/j.xinn.2023.100543] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Plastic offers a new niche for microorganisms, the plastisphere. The ever-increasing emission of plastic waste makes it critical to understand the microbial ecology of the plastisphere and associated effects. Here, we present a global fingerprint of the plastisphere, analyzing samples collected from freshwater, seawater, and terrestrial ecosystems. The plastisphere assembles a distinct microbial community that has a clearly higher heterogeneity and a more deterministically dominated assembly compared to natural habitats. New coexistence patterns-loose and fragile networks with mostly specialist linkages among microorganisms that are rarely found in natural habitats-are seen in the plastisphere. Plastisphere microbiomes generally have a great potential to metabolize organic compounds, which could accelerate carbon turnover. Microorganisms involved in the nitrogen cycle are also altered in the plastisphere, especially in freshwater plastispheres, where a high abundance of denitrifiers may increase the release of nitrite (aquatic toxicant) and nitrous oxide (greenhouse gas). Enrichment of animal, plant, and human pathogens means that the plastisphere could become an increasingly mobile reservoir of harmful microorganisms. Our findings highlight that if the trajectory of plastic emissions is not reversed, the expanding plastisphere could pose critical planetary health challenges.
Collapse
Affiliation(s)
- Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael R. Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qicheng Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Polly Hangmei Leung
- Department of Health Technology and Informatics and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Department of Health Technology and Informatics and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
6
|
Wang M, Liu G, Liu M, Tai C, Deng Z, Song J, Ou HY. ICEberg 3.0: functional categorization and analysis of the integrative and conjugative elements in bacteria. Nucleic Acids Res 2024; 52:D732-D737. [PMID: 37870467 PMCID: PMC10767825 DOI: 10.1093/nar/gkad935] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
ICEberg 3.0 (https://tool2-mml.sjtu.edu.cn/ICEberg3/) is an upgraded database that provides comprehensive insights into bacterial integrative and conjugative elements (ICEs). In comparison to the previous version, three key enhancements were introduced: First, through text mining and manual curation, it now encompasses details of 2065 ICEs, 607 IMEs and 275 CIMEs, including 430 with experimental support. Secondly, ICEberg 3.0 systematically categorizes cargo gene functions of ICEs into six groups based on literature curation and predictive analysis, providing a profound understanding of ICEs'diverse biological traits. The cargo gene prediction pipeline is integrated into the online tool ICEfinder 2.0. Finally, ICEberg 3.0 aids the analysis and exploration of ICEs from the human microbiome. Extracted and manually curated from 2405 distinct human microbiome samples, the database comprises 1386 putative ICEs, offering insights into the complex dynamics of Bacteria-ICE-Cargo networks within the human microbiome. With the recent updates, ICEberg 3.0 enhances its capability to unravel the intricacies of ICE biology, particularly in the characterization and understanding of cargo gene functions and ICE interactions within the microbiome. This enhancement may facilitate the investigation of the dynamic landscape of ICE biology and its implications for microbial communities.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guitian Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
7
|
Viesi E, Sardina DS, Perricone U, Giugno R. APDB: a database on air pollutant characterization and similarity prediction. Database (Oxford) 2023; 2023:baad046. [PMID: 37450416 PMCID: PMC10348400 DOI: 10.1093/database/baad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
The World Health Organization estimates that 9 out of 10 people worldwide breathe air containing high levels of pollutants. Long-term and chronic exposure to high concentrations of air pollutants is associated with deleterious effects on vital organs, including increased inflammation in the lungs, oxidative stress in the heart and disruption of the blood-brain barrier. For this reason, in an effort to find an association between exposure to pollutants and the toxicological effects observable on human health, an online resource collecting and characterizing in detail pollutant molecules could be helpful to investigate their properties and mechanisms of action. We developed a database, APDB, collecting air-pollutant-related data from different online resources, in particular, molecules from the US Environmental Protection Agency, their associated targets and bioassays found in the PubChem chemical repository and their computed molecular descriptors and quantum mechanics properties. A web interface allows (i) to browse data by category, (ii) to navigate the database by querying molecules and targets and (iii) to visualize and download molecule and target structures as well as computed descriptors and similarities. The desired data can be freely exported in textual/tabular format and the whole database in SQL format. Database URL http://apdb.di.univr.it.
Collapse
Affiliation(s)
- Eva Viesi
- Department of Computer Science, University of Verona, Strada le Grazie 15, Verona 37134, Italy
| | - Davide Stefano Sardina
- Molecular Informatics Unit, Ri.MED Foundation, Via Filippo Marini 14, Palermo 90128, Italy
| | - Ugo Perricone
- Molecular Informatics Unit, Ri.MED Foundation, Via Filippo Marini 14, Palermo 90128, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo 90133, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Strada le Grazie 15, Verona 37134, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo 90133, Italy
| |
Collapse
|