1
|
Chuckran PF, Estera-Molina K, Nicolas AM, Sieradzki ET, Dijkstra P, Firestone MK, Pett-Ridge J, Blazewicz SJ. Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil. Proc Natl Acad Sci U S A 2025; 122:e2413032122. [PMID: 39805015 PMCID: PMC11761963 DOI: 10.1073/pnas.2413032122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with 18O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil. We found that codon bias in ribosomal protein genes was the strongest predictor of growth rate. We also found higher growth rates in bacteria with smaller genomes, suggesting that reduced genome size enables a faster response to pulses in soil bacteria. Faster transcriptional upregulation of ribosomal protein genes was associated with high codon bias and increased nucleotide skew. We found that several of these relationships existed within phyla, indicating that these associations between genomic traits and activity could be generalized characteristics of soil bacteria. Finally, we used publicly available metagenomes to assess the distribution of codon bias across a pH gradient and found that microbial communities in higher pH soils-which are often more water limited and pulse driven-have higher codon usage bias in their ribosomal protein genes. Together, these results provide evidence that genomic characteristics affect soil microbial activity during rewetting and pose a potential fitness advantage for soil bacteria where water and nutrient availability are episodic.
Collapse
Affiliation(s)
- Peter F. Chuckran
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Katerina Estera-Molina
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Alexa M. Nicolas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Ella T. Sieradzki
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Laboratoire Ampère, École Centrale de Lyon, Lyon69134, France
| | - Paul Dijkstra
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ86011
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
- Life and Environmental Sciences Department, University of California, Merced, CA95343
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| |
Collapse
|
2
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
3
|
Zhang H, Liu H, Han X. Traits-based approach: leveraging genome size in plant-microbe interactions. Trends Microbiol 2024; 32:333-341. [PMID: 37925351 DOI: 10.1016/j.tim.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Trait-based approaches have gained growing interest in studying plant-microbe interactions. However, current traits normally considered (e.g., morphological, physiological, or chemical traits) are biased towards those showing large intraspecific variations, necessitating the identification of fewer plastic traits that differ between species. Here, we propose using genome size (the amount of DNA in the nucleus of a cell) as a suitable trait for studying plant-microbiome interactions due to its relatively stable nature, minimally affected by external environmental variations. Emerging evidence suggests that plant genome size affects the plant-associated microbial community, and tissue-specific environments select microbes based on their genome size. These findings pinpoint environmental selection in genome size as an emerging driver of plant-microbiome interactions, potentially impacting ecosystem functions and productivity.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Life Sciences, Hebei University, Baoding, China.
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
5
|
Piton G, Allison SD, Bahram M, Hildebrand F, Martiny JBH, Treseder KK, Martiny AC. Life history strategies of soil bacterial communities across global terrestrial biomes. Nat Microbiol 2023; 8:2093-2102. [PMID: 37798477 DOI: 10.1038/s41564-023-01465-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023]
Abstract
The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities. The emerging patterns show a triangle of life history strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and expanded metabolic capacities. As metabolic capacities expand, bacterial communities increasingly differentiate along a second dimension that reflects a trade-off between increasing capacities for environmental responsiveness or for nutrient recycling. Random forest analyses show that soil pH, C:N ratio and precipitation patterns together drive the dominant life history strategy of soil bacterial communities and their biogeographic distribution. Our findings provide a trait-based framework to compare life history strategies of soil bacteria.
Collapse
Affiliation(s)
- Gabin Piton
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA.
- Eco&Sols, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - Steven D Allison
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, UK
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|