1
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Serebryany E, Zhao VY, Park K, Bitran A, Trauger SA, Budnik B, Shakhnovich EI. Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins. Mol Cell 2023; 83:1936-1952.e7. [PMID: 37267908 PMCID: PMC10281453 DOI: 10.1016/j.molcel.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/29/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sunia A Trauger
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Budnik
- Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
4
|
Samuel PP, Case DA. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Biochemistry 2020; 59:4093-4107. [PMID: 32945658 DOI: 10.1021/acs.biochem.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/βCD1 phenylalanine residue. These interactions are less important in the β than in α subunits due to a more flexible β subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.
Collapse
Affiliation(s)
- Premila P Samuel
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
6
|
Malagrinò F, Troilo F, Bonetti D, Toto A, Gianni S. Mapping the allosteric network within a SH3 domain. Sci Rep 2019; 9:8279. [PMID: 31164678 PMCID: PMC6547694 DOI: 10.1038/s41598-019-44656-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
SH3 domains are very abundant protein-protein interactions modules, involved in the regulation of several cellular processes. Whilst they have been associated to allosteric communication pathways between contiguous domains in multi-domain proteins, there is lack of information regarding the intra-domain allosteric cross-talk within the SH3 moiety. Here we scrutinize the presence of an allosteric network in the C-terminal SH3 domain of Grb2 protein, upon binding the Grb2-associated binding 2 protein. To explore allostery, we performed double mutant cycle analysis, a powerful quantitative approach based on mutagenesis in conjunction with kinetic experiments. Data reveal the presence of an unexpected allosteric sparse network that modulates the affinity between the SH3 domain and its physiological partner.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
7
|
Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2−-induced damage. Mol Cell Biochem 2018; 454:57-66. [DOI: 10.1007/s11010-018-3452-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
|
8
|
The nitrite reductase activity of ferrous human hemoglobin:haptoglobin 1-1 and 2-2 complexes. J Inorg Biochem 2018; 187:116-122. [DOI: 10.1016/j.jinorgbio.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
9
|
Ascenzi P, De Simone G, Polticelli F, Gioia M, Coletta M. Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2. J Biol Inorg Chem 2018; 23:437-445. [PMID: 29605886 DOI: 10.1007/s00775-018-1551-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
Haptoglobin (Hp) sequesters hemoglobin (Hb) preventing the Hb-based damage occurring upon its physiological release into plasma. Here, reductive nitrosylation of ferric human hemoglobin [Hb(III)] bound to human haptoglobin (Hp) 1-1 and 2-2 [Hp1-1:Hb(III) and Hp2-2:Hb(III), respectively] has been investigated between pH 7.5 and 9.5, at T=20.0 °C. Over the whole pH range explored, only one process is detected reflecting NO binding to Hp1-1:Hb(III) and Hp2-2:Hb(III). Values of the pseudo-first-order rate constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) nitrosylation (k) do not depend linearly on the ligand concentration but tend to level off. The conversion of Hp1-1:Hb(III)-NO to Hp1-1:Hb(II)-NO and of Hp2-2:Hb(III)-NO to Hp2-2:Hb(II)-NO is limited by the OH-- and H2O-based catalysis. In fact, bimolecular NO binding to Hp1-1:Hb(III), Hp2-2:Hb(III), Hp1-1:Hb(II), and Hp2-2:Hb(II) proceeds very rapidly. The analysis of data allowed to determine the values of the dissociation equilibrium constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) nitrosylation [K = (1.2 ± 0.1) × 10-4 M], which is pH-independent, and of the first-order rate constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) conversion to Hp1-1:Hb(II)-NO and Hp2-2:Hb(II)-NO, respectively (k'). From the dependence of k' on [OH-], values of hOH- [(4.9 ± 0.6) × 103 M-1 s-1 and (6.79 ± 0.7) × 103 M-1 s-1, respectively] and of [Formula: see text] [(2.6 ± 0.3) × 10-3 s-1] were determined. Values of kinetic and thermodynamic parameters for Hp1-1:Hb(III) and Hp2-2:Hb(III) reductive nitrosylation match well with those of the Hb R-state, which is typical of the αβ dimers of Hb bound to Hp.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via Della Vasca Navale 79, 00146, Rome, Italy.
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.,Roma Tre Section, National Institute of Nuclear Physics, Via Della Vasca Navale 84, 00146, Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
10
|
Ascenzi P, di Masi A, Leboffe L, Fanali G, Fasano M. The drug-dependent five- to six-coordination transition of the heme-Fe atom modulates allosterically human serum heme-albumin reactivity. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0562-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Di Muzio E, Polticelli F, di Masi A, Fanali G, Fasano M, Ascenzi P. All- trans -retinoic acid and retinol binding to the FA1 site of human serum albumin competitively inhibits heme-Fe(III) association. Arch Biochem Biophys 2016; 590:56-63. [DOI: 10.1016/j.abb.2015.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
|
12
|
Affiliation(s)
- P Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Roma I-00146, Italy
| | - A di Masi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Roma I-00146, Italy
- Department of Sciences, Roma Tre University, Roma I-00146, Italy
| | - G Fanali
- Department of Theoretical and Applied Sciences, Biomedical Research Division, University of Insubria, Busto Arsizio I-21052, Italy
| | - M Fasano
- Department of Theoretical and Applied Sciences, Biomedical Research Division, University of Insubria, Busto Arsizio I-21052, Italy
- Center of Neuroscience, University of Insubria, Busto Arsizio I-21052, Italy
| |
Collapse
|
13
|
Ascenzi P, di Masi A, Fanali G, Fasano M. Heme-based catalytic properties of human serum albumin. Cell Death Discov 2015; 1:15025. [PMID: 27551458 PMCID: PMC4991842 DOI: 10.1038/cddiscovery.2015.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Human serum albumin (HSA): (i) controls the plasma oncotic pressure, (ii) modulates fluid distribution between the body compartments, (iii) represents the depot and carrier of endogenous and exogenous compounds, (iv) increases the apparent solubility and lifetime of hydrophobic compounds, (v) affects pharmacokinetics of many drugs, (vi) inactivates toxic compounds, (vii) induces chemical modifications of some ligands, (viii) displays antioxidant properties, and (ix) shows enzymatic properties. Under physiological and pathological conditions, HSA has a pivotal role in heme scavenging transferring the metal-macrocycle from high- and low-density lipoproteins to hemopexin, thus acquiring globin-like reactivity. Here, the heme-based catalytic properties of HSA are reviewed and the structural bases of drug-dependent allosteric regulation are highlighted.
Collapse
Affiliation(s)
- P Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University , 00146 Roma, Italy
| | - A di Masi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, 00146 Roma, Italy; Department of Sciences, Roma Tre University, 00146 Roma, Italy
| | - G Fanali
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria , 21052 Busto Arsizio, Italy
| | - M Fasano
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, 21052 Busto Arsizio, Italy; Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
14
|
Ascenzi P, Leboffe L, di Masi A, Trezza V, Fanali G, Gioia M, Coletta M, Fasano M. Ligand binding to the FA3-FA4 cleft inhibits the esterase-like activity of human serum albumin. PLoS One 2015; 10:e0120603. [PMID: 25790235 PMCID: PMC4366387 DOI: 10.1371/journal.pone.0120603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022] Open
Abstract
The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe) and decanoate (NphODe) by human serum albumin (HSA) at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe) match very well each other; moreover, the deacylation step turns out to be the rate limiting step in catalysis (i.e., k+3 << k+2). The pH dependence of the kinetic parameters for the hydrolysis of NphOHe and NphODe can be described by the acidic pKa-shift of a single amino acid residue, which varies from 8.9 in the free HSA to 7.6 and 7.0 in the HSA:NphOHe and HSA:NphODe complex, respectively; the pK>a-shift appears to be correlated to the length of the fatty acid tail of the substrate. The inhibition of the HSA-Tyr411-catalyzed hydrolysis of NphOHe, NphODe, and 4-nitrophenyl myristate (NphOMy) by five inhibitors (i.e., diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol) has been investigated at pH 7.5 and 22.0°C, resulting competitive. The affinity of diazepam, diflunisal, ibuprofen, 3-indoxyl-sulfate, and propofol for HSA reflects the selectivity of the FA3-FA4 cleft. Under conditions where Tyr411 is not acylated, the molar fraction of diazepam, diflunisal, ibuprofen, and 3-indoxyl-sulfate bound to HSA is higher than 0.9 whereas the molar fraction of propofol bound to HSA is ca. 0.5.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Viviana Trezza
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Gabriella Fanali
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Mauro Fasano
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy
| |
Collapse
|
15
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
16
|
Imatinib binding to human serum albumin modulates heme association and reactivity. Arch Biochem Biophys 2014; 560:100-12. [DOI: 10.1016/j.abb.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/09/2023]
|