1
|
Jumabay M, Abud EM, Okamoto K, Dutta P, Chiang AWT, Li H, Manresa MC, Zhu YP, Frederick D, Kurten R, Croker B, Lewis NE, Kennedy JL, Dohil R, Croft M, Ay F, Wechsler JB, Aceves SS. Eosinophilic esophagitis drives tissue fibroblast regenerative programs toward pathologic dysfunction. J Allergy Clin Immunol 2025; 155:1333-1345. [PMID: 39617290 PMCID: PMC11980045 DOI: 10.1016/j.jaci.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pathologic tissue remodeling with scarring and tissue rigidity has been demonstrated in inflammatory, autoimmune, and allergic diseases. Eosinophilic esophagitis (EoE) is an allergic disease that is diagnosed and managed by repeated biopsy procurement, allowing an understanding of tissue fibroblast dysfunction. While EoE-associated tissue remodeling causes clinical dysphagia, food impactions, esophageal rigidity, and strictures, molecular mechanisms driving these complications remain under investigation. OBJECTIVE We hypothesized that chronic EoE inflammation induces pathogenic fibroblasts with dysfunctional tissue regeneration and motility. METHODS We used single-cell RNA sequencing, fluorescence-activated cell sorting analysis, and fibroblast differentiation and migration assays to decipher the induced and retained pathogenic dysfunctions in EoE versus healthy esophageal fibroblasts. RESULTS Differentiation assays demonstrated that active EoE fibroblasts retain regenerative programs for rigid cells such as chondrocytes (P < .05) but lose healthy fibroblast capacity for soft cells such as adipocytes (P < .01), which was reflected in biopsy sample immunostaining (P < .01). EoE, but not healthy, fibroblasts show proinflammatory and prorigidity transcriptional programs on single-cell RNA sequencing. In vivo, regenerative fibroblasts reside in perivascular regions and near the epithelial junction, and during EoE, they have significantly increased migration (P < .01). Flow analysis and functional assays demonstrated that regenerative EoE fibroblasts have decreased surface CD73 expression and activity (both P < .05) compared to healthy controls, indicating aberrant adenosine triphosphate handling. EoE fibroblast dysfunctions were induced in healthy fibroblasts by reducing CD73 activity and rescued in EoE using adenosine repletion. CONCLUSION A normalization of perturbed extracellular adenosine triphosphate handling and CD73 could improve pathogenic fibroblast dysfunction and tissue regeneration in type 2 inflammatory diseases.
Collapse
Affiliation(s)
- Medet Jumabay
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Edsel M Abud
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif; Scripps Research Translational Institute, San Diego, Calif
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | | | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, Calif; Department of Bioengineering, University of California, San Diego, Calif
| | - Haining Li
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | - Mario C Manresa
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif
| | - Yanfang P Zhu
- Department of Pediatrics, University of California, San Diego, Calif
| | | | - Richard Kurten
- Department of Bioengineering, University of California, San Diego, Calif
| | - Ben Croker
- Department of Pediatrics, University of California, San Diego, Calif
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, Calif; Scripps Clinic, San Diego, Calif
| | | | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Ferhat Ay
- Department of Pediatrics, University of California, San Diego, Calif; La Jolla Institute, La Jolla, Calif
| | | | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, Calif; Division of Allergy Immunology, University of California, San Diego, Calif; Division of Gastroenterology, University of California, San Diego, Calif; Department of Medicine, University of California, San Diego, Calif; Lurie Children's Hospital, Northwestern University, Chicago, Ill.
| |
Collapse
|
2
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Chakrabarti A, Goldstein DR, Sutton NR. Age-associated arterial calcification: the current pursuit of aggravating and mitigating factors. Curr Opin Lipidol 2020; 31:265-272. [PMID: 32773466 PMCID: PMC7891872 DOI: 10.1097/mol.0000000000000703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW The incidence of arterial calcification increases with age, can occur independently of atherosclerosis and hyperlipidemia, contributes to vessel stiffening, and is associated with adverse cardiovascular outcomes. Here, we provide an up-to-date review of how aging leads to arterial calcification and discuss potential therapies. RECENT FINDINGS Recent research suggests that mitochondrial dysfunction (impaired efficiency of the respiratory chain, increased reactive oxygen species production, and a high mutation rate of mitochondrial DNA), cellular senescence, ectonucleotidases, and extrinsic factors such as hyperglycemia promote age-determined calcification. We discuss the future potential impact of antilipidemics, senolytics, and poly(ADP-ribose)polymerases inhibitors on age-associated arterial calcification. SUMMARY Understanding how mechanisms of aging lead to arterial calcification will allow us to pinpoint prospective strategies to mitigate arterial calcification, even after the effects of aging have already begun to occur.
Collapse
Affiliation(s)
- Apurba Chakrabarti
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
4
|
Xie J, Zhang L, Chen Z, Hu A, Liu S, Lu D, Xia Y, Qian J, Yang P, Shen H. Protein-protein correlations based variable dimension expansion algorithm for high efficient serum biomarker discovery. Anal Chim Acta 2020; 1119:25-34. [PMID: 32439051 DOI: 10.1016/j.aca.2020.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023]
Abstract
In this study, we constructed a high specific and efficient serum biomarker discovery pipeline. We utilized dysregulated proteins identified in primary tissue and potentially secreted into the blood as biomarker candidates. The scheduled multiple reaction monitoring method was performed to accurately quantify and verify these candidates directly in serum, thus circumventing the effects of high-abundance proteins. We then generated new variables through assigning values to protein-protein correlations to extend the dimensionality of the dataset (PPC-VDE), and the specificity of disease classification. We successfully applied this pipeline for biomarker discovery of dilated cardiomyopathy and achieved 88.6% accurate classification of dilated cardiomyopathy, ischemic cardiomyopathy and healthy controls with machine learning. This pipeline is straightforward for biomarker discovery in broad clinical field.
Collapse
Affiliation(s)
- Juanjuan Xie
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Anqi Hu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Shanshan Liu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University. Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Pengyuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China; Department of Chemistry, Fudan University, Shanghai, 200032, China; Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, PR China.
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China; Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Joolharzadeh P, St Hilaire C. CD73 (Cluster of Differentiation 73) and the Differences Between Mice and Humans. Arterioscler Thromb Vasc Biol 2020; 39:339-348. [PMID: 30676071 DOI: 10.1161/atvbaha.118.311579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As vascular disease is complex and the various manifestations are influenced by differences in vascular bed architecture, exposure to shear and mechanical forces, cell types involved, and inflammatory responses, in vivo models are necessary to recapitulate the complex physiology and dynamic cellular interactions during pathogenesis. Murine knockout models are commonly used tools for investigators to study the role of a specific gene or pathway in multifaceted disease traits. Although valuable, these models are not perfect, and this is particularly true in regard to CD73 (cluster of differentiation 73), the extracellular enzyme that generates adenosine from AMP. At baseline, CD73-deficient mice do not present with an overt phenotype, whereas CD73-deficient humans present with the complex phenotype of vascular calcification, arteriomegaly and tortuosity, and calcification in small joints. In this review, we highlight the differences between the mouse and human systems and discuss the potential to leverage findings in mice to inform us on the human conditions.
Collapse
Affiliation(s)
- Pouya Joolharzadeh
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Cynthia St Hilaire
- From the Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, PA; and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
6
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
7
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Suwanwela J, Hansamuit K, Manokawinchoke J, Sa-Ard-Iam N, Mahanonda R, Pavasant P, Osathanon T. Gene expression profiling of Jagged1-treated human periodontal ligament cells. Oral Dis 2019; 25:1203-1213. [PMID: 30776172 DOI: 10.1111/odi.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Jagged1 regulates several biological functions in human periodontal ligament cells (hPDLs). The present study aimed to evaluate mRNA expression profiling of Jagged1-treated hPDLs using microarray technique. METHODS Notch ligands, Jagged1, were indirectly immobilized on tissue culture surface. Subsequently, hPDLs were seeded on Jagged1 immobilized surface and maintained in growth medium for 48 hr. Total RNA was collected and processed. Gene expression profiling was examined using microarray technique. Real-time polymerase chain reaction and immunofluorescence staining were employed to determine mRNA and protein expression levels, respectively. Cell proliferation and colony-forming unit assay were performed. Cell cycle was evaluated using propidium iodide staining and flow cytometry analysis. RESULTS The isolated cells demonstrated fibroblast-like morphology and exhibited the co-expression of CD44, CD90, and CD105 surface markers. After stimulated with Jagged1, the total of 411 genes was differentially expressed, consisting both coding and non-coding genes. For coding genes, 165 and 160 coding genes were upregulated and downregulated, respectively. Pathway analysis revealed that the upregulated genes were mainly involved in cellular interactions, signal transduction, and collagen formation and degradation while the downregulated genes were in the events and phases in cell cycle. Jagged1 significantly decreased cell proliferation, reduced colony-forming unit ability, and induced G0/G1 cell cycle arrest in hPDLs. CONCLUSION Jagged1 regulates various biological pathways in hPDLs. This gene expression profiling could help to understand the mechanisms potentially involved in the Notch signaling regulation in periodontal homeostasis.
Collapse
Affiliation(s)
- Jaijam Suwanwela
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kanokporn Hansamuit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellencefor Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellencefor Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellencefor Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Wang T, Ouyang H, Zhou H, Xia L, Wang X, Wang T. Pro‑atherogenic activation of A7r5 cells induced by the oxLDL/β2GPI/anti‑β2GPI complex. Int J Mol Med 2018; 42:1955-1966. [PMID: 30085340 PMCID: PMC6108850 DOI: 10.3892/ijmm.2018.3805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
A previous study has revealed that oxidized low‑density lipoprotein (oxLDL)/β2‑glycoprotein I (β2GPI)/anti‑β2‑glycoprotein I (anti‑β2GPI), an immune complex, is able to activate the Toll‑like receptor 4 (TLR4)/nuclear factor κβ (NF‑κβ) inflammatory signaling pathway in macrophages, and consequently enhance foam cell formation and the secretion of prothrombin activators. However, the effects of the oxLDL/β2GPI/anti‑β2GPI complex on vascular smooth muscle cells have yet to be investigated. The present study investigated whether the oxLDL/β2GPI/anti‑β2GPI complex was able to reinforce the pro‑atherogenic activities of a rat thoracic aorta smooth muscle cell line (A7r5) and examined the underlying molecular mechanisms. The results revealed that the oxLDL/β2GPI/anti‑β2GPI complex treatment significantly (P<0.05 vs. the media, oxLDL, oxLDL/β2GPI and β2GPI/anti‑β2GPI groups) enhanced the pro‑atherogenic activation of A7r5 cells, including intracellular lipid loading, Acyl‑coenzyme A cholesterol acyltransferase mRNA expression, migration, matrix metalloproteinase‑9 and monocyte chemoattractant protein 1 secretion, all via TLR4. In addition, the expression of TLR4 and the phosphorylation of NF‑κβ p65, p38 and ERK1/2 were also upregulated in oxLDL/β2GPI/anti‑β2GPI complex‑treated A7r5 cells. Pre‑treatment with TAK‑242, a TLR4 inhibitor, was able to partly attenuate the oxLDL/β2GPI/anti‑β2GPI complex‑induced phosphorylation of NF‑κβ p65; however, it had no effect on the phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and p38. Meanwhile, the NF‑κβ p65 inhibitor ammonium pyrrolidinedithiocarbamate and the ERK1/2 inhibitor U0126, but not the p38 inhibitor SB203580, were able to block oxLDL/β2GPI/anti‑β2GPI complex‑induced foam cell formation and migration in A7r5 cells. Hence, it was demonstrated that the oxLDL/β2GPI/anti‑β2GPI complex is able to enhance the lipid uptake, migration and active molecule secretion of A7r5 cells via TLR4, and finally deteriorate atherosclerosis plaques. Additionally, it was demonstrated that oxLDL/β2GPI/anti‑β2GPI complex‑induced foam cell formation and migration may be partly mediated by the TLR4/NF‑κβ signaling pathway and that ERK1/2 may also participate in the process.
Collapse
Affiliation(s)
- Ting Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hang Ouyang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong Zhou
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Longfei Xia
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Jiangsu Key Laboratory of Medicine Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
10
|
Jalkanen J, Hollmén M, Jalkanen S, Hakovirta H. Regulation of CD73 in the development of lower limb atherosclerosis. Purinergic Signal 2016; 13:127-134. [PMID: 27832456 DOI: 10.1007/s11302-016-9545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is an inflammatory process of the arterial wall. CD73 (also known as ecto-5'-nucleotidase) is a key regulator of cell signaling in response to inflammation and hypoxia, and may be important in the development of atherosclerosis. Recently, we have shown that high CD73 activity can be detected in the serum of patients with peripheral arterial disease (PAD). Using this same PAD patient cohort of 226 subjects with 38 femoral artery samples obtained during surgical endarcterectomy and control artery samples taken during autopsy, we explored the association of serum CD73 activity with overall atherosclerotic burden and the expression of CD73 in mature and developing plaques. Interestingly, we found that CD73 activity had a tendency to increase along with more severe presentation of PAD (from 249 nmol/mL/h in moderate disease to 332 nmol/mL/h in severe disease; P = 0.013) and that CD73 expression is elevated in the vasa vasorum of developing plaques, but completely lost in mature occlusive plaques removed during endarcterectomy (P < 0.001). The current findings implicate that as a result of shedding and loss of CD73 from the arterial wall, CD73 activity is elevated in the serum of patients with widespread atherosclerosis. These findings highlight the importance of a better understanding of the local role of CD73 in the development and maturation of arterial atherosclerotic plaques in man.
Collapse
Affiliation(s)
- Juho Jalkanen
- Department of Vascular Surgery, Turku University Hospital, Hämeenkatu 11, 20521, Turku, Finland.
| | - Maija Hollmén
- MediCity Research Laboratory, Department of Microbiology and Immunology, University of Turku, Tykistönkatu 6A, 20520, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, Department of Microbiology and Immunology, University of Turku, Tykistönkatu 6A, 20520, Turku, Finland
| | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, Hämeenkatu 11, 20521, Turku, Finland
| |
Collapse
|
11
|
Apostolova P, Zeiser R. The Role of Purine Metabolites as DAMPs in Acute Graft-versus-Host Disease. Front Immunol 2016; 7:439. [PMID: 27818661 PMCID: PMC5073102 DOI: 10.3389/fimmu.2016.00439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) causes high mortality in patients undergoing allogeneic hematopoietic cell transplantation. An early event in the classical pathogenesis of acute GvHD is tissue damage caused by the conditioning treatment or infection that consecutively leads to translocation of bacterial products [pathogen-associated molecular patterns (PAMPs)] into blood or lymphoid tissue, as well as danger-associated molecular patterns (DAMPs), mostly intracellular components that act as pro-inflammatory agents, once they are released into the extracellular space. A subtype of DAMPs is nucleotides, such as adenosine triphosphate released from dying cells that can activate the innate and adaptive immune system by binding to purinergic receptors. Binding to certain purinergic receptors leads to a pro-inflammatory microenvironment and promotes allogeneic T cell priming. After priming, T cells migrate to the acute GvHD target organs, mainly skin, liver, and the gastrointestinal tract and induce cell damage that further amplifies the release of intracellular components. This review summarizes the role of different purinergic receptors in particular P2X7 and P2Y2 as well as nucleotides in the pathogenesis of GvHD.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Albert Ludwig University of Freiburg , Freiburg , Germany
| |
Collapse
|