1
|
Fan HL, Chen JL, Liu ST, Lee JT, Huang SM, Wu ZF, Lai HC. Remimazolam induced cytotoxicity mediated through multiple stress pathways and acted synergistically with tyrosine kinase inhibitors in hepatocellular carcinoma. Redox Rep 2025; 30:2475696. [PMID: 40053437 PMCID: PMC11892054 DOI: 10.1080/13510002.2025.2475696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The primary treatment for hepatocellular carcinoma (HCC) involves surgical removal of the primary tumor, but this creates a favorable environment for the proliferation and spread of residual and circulating cancer cells. The development of remimazolam-based balanced anesthesia is crucial for future antitumor applications. It is important to understand the mechanisms of cytotoxicity for HCC in detail. We performed cell viability analysis, western blotting analysis, reverse transcription-polymerase chain reaction analysis, and flow cytometry analysis in two HCC cell lines, HepG2 and Hep3B cells. Our data demonstrated that remimazolam induced cytotoxicity by suppressing cell proliferation, inhibiting G1 phase progression, and affecting mitochondrial reactive oxygen species (ROS) levels, leading to apoptosis, DNA damage, cytosolic ROS elevation, lipid peroxidation, autophagy, mitochondrial depolarization, and endoplasmic reticulum stress. Inhibitors of apoptosis, autophagic cell death, and ferroptosis and a ROS scavenger failed to rescue cell death caused by remimazolam besylate. Our combination index revealed that remimazolam besylate has the potential to act as a sensitizer for targeted tyrosine kinase inhibitor therapy for HCC. Our findings open up new possibilities for combinatory HCC therapy using remimazolam, leveraging its dual functional roles in surgery and drug therapy for liver cancers.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Lin Chen
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Jia-Tong Lee
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Zhi-Fu Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Li Y, Tan AP, Zhong YS. Anti-cancer effect of midazolam via downregulating YWHAH in papillary thyroid cancer cells. Discov Oncol 2025; 16:72. [PMID: 39836297 PMCID: PMC11751264 DOI: 10.1007/s12672-025-01807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The work is aimed to investigate whether midazolam functions in thyroid cancer and reveal the potential mechanism of action. Cell viability was detected by CCK-8 method when treated by varying doses of midazolam to detect the cytotoxicity of midazolam on human thyroid follicular epithelial cell line and thyroid cancer cell lines. In thyroid cancer cells, EDU staining, wound healing and transwell assays were respectively used to detect cell proliferation, migration and invasion. Western blot was used to detect the expressions of matrix metalloproteinases (MMPs). Flow cytometry assay, western blot and immunofluorescence staining were used to detect cell apoptosis. CB-Dock2 server predicted midazolam-tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) interaction and western blot was also used to detect YWHAH expression. Midazolam dose-dependently decreased the viability of thyroid cancer cells and demonstrated no cytotoxicity on Nthy-ori-3-1 cells. In addition, increasing concentrations of midazolam or silencing of YWHAH significantly inhibited thyroid cancer cell proliferation, migration and invasion and induced cell apoptosis. Midazolam had a molecular binding with YWHAH and midazolam downregulated YWHAH expression. YWHAH partially reversed the impacts of midazolam on the cellular events in thyroid cancer. Collectively, midazolam may act as an anti-thyroid cancer agent via its interrelation with YWHAH.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, The People's Hospital of SND, Suzhou, Jiangsu, 215129, People's Republic of China
| | - Ai-Ping Tan
- Department of Anesthesiology, The People's Hospital of SND, Suzhou, Jiangsu, 215129, People's Republic of China
| | - Yu-Shan Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.1367 Wenyi West Road, Yuhang District, Hangzhou, 311100, People's Republic of China.
| |
Collapse
|
3
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Amin Doustvandi M, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P, Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene 2023; 888:147803. [PMID: 37716587 DOI: 10.1016/j.gene.2023.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with high invasive and metastatic capability. Although significant advances have been made in the treatment of HCC, the overall survival rate of patients is still low. It is essential to explore accurate biomarkers for early diagnosis and prognosis along with therapeutic procedures to increase the survival rate of these patients. Anticancer therapies can contribute to induce apoptosis for the elimination of cancerous cells. However, dysregulated apoptosis and proliferation signaling pathways lead to treatment resistance, a significant challenge in improving efficient therapies. MiRNAs, short non-coding RNAs, play crucial roles in the progression of HCC, which regulate gene expression through post-transcriptional inhibition and targeting mRNA degradation in cancers. Dysregulated expression of multiple miRNAs is associated with numerous biological processes, including cell proliferation, apoptosis, invasion and metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug resistance in HCC. This review summarizes the role and potential efficacy of miRNAs in promoting and inhibiting cell proliferation and apoptosis in HCC, as well as the role of miRNAs in therapy resistance in HCC.
Collapse
Affiliation(s)
- Masoumeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Ghaffarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khadijeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Yaghoubi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Pegah Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sethi A, Rezk A, Couban R, Chowdhury T. Role of midazolam on cancer progression/survival - An updated systematic review. Indian J Anaesth 2023; 67:951-961. [PMID: 38213688 PMCID: PMC10779977 DOI: 10.4103/ija.ija_731_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background and Aims Cancer is a leading cause of mortality worldwide. Despite advancements in cancer management, cancer progression remains a challenge, requiring the development of novel therapies. Midazolam is a commonly used adjunct to anaesthesia care for various surgeries, including cancer. Recently, there has been a growing interest in exploring the potential role of midazolam as an anticancer agent; however, the exact mechanism of this linkage is yet to be investigated thoroughly. Methods Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, this systematic review presented aggregated evidence (till November 2022) of the effects of midazolam on cancer progression and survival. All primary research article types where midazolam was administered in vivo or in vitro on subjects with cancers were included. No restrictions were applied on routes of administration or the type of cancer under investigation. Narrative synthesis depicted qualitative findings, whereas frequencies and percentages presented numerical data. Results Of 1720 citations, 19 studies were included in this review. All articles were preclinical studies conducted either in vitro (58%, 11/19) or both in vivo and in vitro (42%, 8/19). The most studied cancer was lung carcinoma (21%, 4/19). There are two main findings in this review. First, midazolam delays cancer progression (89%, 17/19). Second, midazolam reduces cancer cell survival (63%, 12/19). The two major mechanisms of these properties can be explained via inducing apoptosis (63%, 12/19) and inhibiting cancer cell proliferation (53%, 10/19). In addition, midazolam demonstrated antimetastatic properties via inhibition of cancer invasion (21%, 4/19), migration (26%, 5/19), or epithelial-mesenchymal transition (5%, 1/19). These anticancer properties of midazolam were demonstrated through different pathways when midazolam was used alone or in combination with traditional cancer chemotherapeutic agents. Conclusion This systematic review highlights that midazolam has the potential to impede cancer progression and decrease cancer cell survival. Extrapolation of these results into human cancer necessitates further investigation.
Collapse
Affiliation(s)
- Ansh Sethi
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Amal Rezk
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Rachel Couban
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tumul Chowdhury
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Zhang X, Han Z, Li Z, Wang T. Midazolam impedes lung carcinoma cell proliferation and migration via EGFR/MEK/ERK signaling pathway. Open Med (Wars) 2023; 18:20230730. [PMID: 37305523 PMCID: PMC10251164 DOI: 10.1515/med-2023-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a dominating type of lung cancer with high morbidity and mortality. Midazolam has been reported to promote cell apoptosis in NSCLC, but the molecular mechanism of midazolam remains to be further explored. In the current work, cell viability, proliferation, migration, and apoptosis rates of NSCLC cells treated with midazolam were measured using cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays, transwell, and flow cytometry assay, respectively, to evaluate the malignant behaviors. Western blot was applied to access EGFR/MEK/ERK pathway-related protein levels. The results demonstrated midazolam significantly declined the viability of NSCLC cells. Furthermore, midazolam restrained cell proliferation and migration and contributed to cell apoptosis in NSCLC. Midazolam exerted suppressive function to EGFR pathway during NSCLC development. Moreover, the activation of EGFR/MEK/ERK pathway abrogated the effects of midazolam on NSCLC cell proliferation, apoptosis, and migration. Taken together, midazolam exhibited anti-tumor effects hallmarked by EGFR pathway inhibition, providing a novel insight into the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiangchao Zhang
- Department of Anesthesiology, Shengyang Chest Hospital, Shenyang City, Liaoning 110044, China
| | - Zhe Han
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang City, Liaoning 110015, China
| | - Zhengjun Li
- Department of Thoracic Surgery, Shengyang Chest Hospital, Shenyang City, Liaoning 110044, China
| | - Tao Wang
- Department of Anesthesiology, Shengyang Chest Hospital, No. 11 Beihai Street, Dadong District, Shenyang City, Liaoning 110044, China
| |
Collapse
|
6
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
7
|
Zhao R, Xu X, Sun L, Zhang G. Long-term effect of anesthesia choice on patients with hepatocellular carcinoma undergoing open liver resection. Front Oncol 2023; 12:960299. [PMID: 36713494 PMCID: PMC9880263 DOI: 10.3389/fonc.2022.960299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Clinical and experimental evidence suggested that anesthesia choice can influence cancer progression and patients' outcomes by modulating tumor microenvironment and tumorigenic pathways. Curative resection is the mainstay of therapy for hepatocellular carcinoma (HCC), which is an intractable disease due to high recurrence and poor prognosis. However, different anesthetics may play different roles in alleviating surgery-induced stress response and inflammatory cytokines release that are considered to be closely associated with proliferation, invasion and metastasis of tumor cells. Propofol, sevoflurane, non-steroidal anti-inflammatory drugs and local anesthetics have shown to exert anti-tumor effect on HCC mainly through regulating microRNAs or signaling pathways, while other inhalational agents, dexmedetomidine and opioids have the potential to promote tumor growth. In terms of anesthetic methods and analgesia strategies, propofol based total intravenous anesthesia and thoracic epidural analgesia could be preferred for HCC patients undergoing open liver resection rather than inhalational anesthesia. Local anesthesia techniques have great potential to attenuate perioperative stress response, hence they may contribute to more favorable outcomes. This review summarized the relations between different anesthesia choices and HCC patients' long-term outcomes as well as their underlying mechanisms. Due to the complexity of molecules interactions and signaling pathways, further studies are warranted to confirm these results so as to optimize anesthesia strategy for HCC patients.
Collapse
Affiliation(s)
- Runzhi Zhao
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiyuan Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China,*Correspondence: Li Sun, ; Guohua Zhang,
| | - Guohua Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China,*Correspondence: Li Sun, ; Guohua Zhang,
| |
Collapse
|
8
|
Debel W, Ramadhan A, Vanpeteghem C, Forsyth RG. Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice. Cancers (Basel) 2022; 15:cancers15010209. [PMID: 36612205 PMCID: PMC9818147 DOI: 10.3390/cancers15010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, there has been an increasing scientific interest in the interaction between anaesthesia and cancer development. Retrospective studies show that the choice of anaesthetics may influence cancer outcome and cancer recurrence; however, these studies show contradictory results. Recently, some large randomized clinical trials have been completed, yet they show no significant effect of anaesthetics on cancer outcomes. In this scoping review, we compiled a body of in vivo and in vitro studies with the goal of evaluating the biological effects of anaesthetics on cancer cells in comparison to clinical effects as described in recent studies. It was found that sevoflurane, propofol, opioids and lidocaine are likely to display direct biological effects on cancer cells; however, significant effects are only found in studies with exposure to high concentrations of anaesthetics and/or during longer exposure times. When compared to clinical data, these differences in exposure and dose-effect relation, as well as tissue selectivity, population selection and unclear anaesthetic dosing protocols might explain the lack of outcome.
Collapse
Affiliation(s)
- Wiebrecht Debel
- Department of Anesthesiology, University Hospital Ghent, 9000 Ghent, Belgium
| | - Ali Ramadhan
- Department of Pathological Anatomy, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | | | - Ramses G. Forsyth
- Department of Pathological Anatomy, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Laboratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-(2)-4775084
| |
Collapse
|
9
|
Zhang S, Gao T, Fang B. Immune cells affected by midazolam through the translocator protein in tumour immune microenvironments. Br J Anaesth 2022; 129:e142-e144. [PMID: 36116977 DOI: 10.1016/j.bja.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shaoqiong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tianqi Gao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
11
|
Shen Q, Xia Y, Yang L, Wang B, Peng J. Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813521. [PMID: 35309842 PMCID: PMC8926537 DOI: 10.1155/2022/2813521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a significant cause of human death in the world. Recently, it is found that midazolam can modulate miRs to participate in HCC progression. This research project was designed to elucidate the impacts of midazolam and miR-217 on HCC cell metastasis and apoptosis. Methods Human HCC cell strains (Hep3B and SK-HEP-1) were selected and intervened by midazolam at different concentrations in our research. miR-217-inhibitor intervened in the two HCC cell strains to observe the alterations of cell migration, invasiveness, and apoptosis. The miR-217 level in HCC cells was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results As midazolam concentration was elevated, Hep3B and SK-HEP-1 viabilities were more obviously suppressed. The 10 μg/mL concentration was selected for analysis since Hep3B and SK-HEP-1 had an IC50 of 10.57 μg/mL and 9.35 μg/m, respectively. The qRT-PCR results showed the decreased of miR-217 in HCC cells, which was enhanced notably by midazolam intervention. Compared with the blank group, the invasiveness and migration (Transwell assay) of miR-217-inhibitor-transfected HCC cells were distinctly enhanced and the apoptosis rate (flow cytometry) was noticeably reduced. Conclusion Midazolam can upregulate miR-217 in HCC cells, thus inhibiting HCC cell metastasis and apoptosis.
Collapse
Affiliation(s)
- Qian Shen
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Yanqiong Xia
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Leilei Yang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Bo Wang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Jian Peng
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| |
Collapse
|
12
|
Oshima Y, Sano M, Kajiwara I, Ichimaru Y, Itaya T, Kuramochi T, Hayashi E, Kim J, Kitajima O, Masugi Y, Masamune A, Ijichi H, Ishii Y, Suzuki T. Midazolam exhibits antitumour and anti-inflammatory effects in a mouse model of pancreatic ductal adenocarcinoma. Br J Anaesth 2022; 128:679-690. [PMID: 35120712 DOI: 10.1016/j.bja.2021.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anaesthesia and perioperative management contribute to long-term outcomes of patients with cancer, including pancreatic ductal adenocarcinoma. We assessed the antitumour, anti-inflammatory, and analgesic effects of midazolam on LSL-KrasG12D/+;Trp53flox/flox;Pdx-1cre/+ transgenic mice with pancreatic ductal adenocarcinoma. METHODS Six-week-old transgenic mice were administered midazolam 30 mg kg-1 day-1 p.o. (n=13); midazolam 30 mg kg-1 day-1 with 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-isoquinoline carboxamide (PK11195) 3 mg kg-1 day-1 i.p., a peripheral benzodiazepine receptor antagonist (n=10); or vehicle (water; n=14) until the humane endpoint. Cancer-associated pain was evaluated using hunching score and mouse grimace scale. Tumour stage and immuno-inflammatory status were determined histopathologically. Anti-proliferative and apoptotic potentials of midazolam were investigated using mouse pancreatic ductal adenocarcinoma cell lines. RESULTS Midazolam significantly inhibited tumour size and proliferative index of Ki-67 and cyclins in pancreatic ductal adenocarcinoma, which was blocked by administration of PK11195. Local myeloperoxidase+ tumour-associated neutrophils, arginase-1+ M2-like tumour-associated macrophages, and CD11b+Ly-6G+ polymorphonuclear myeloid-derived suppressor cells were reduced by midazolam, which was antagonised by administration of PK11195. Hunching and mouse grimace scale were improved by midazolam, whereas the scores increased with midazolam+PK11195 treatment. Plasma pro-inflammatory cytokines, such as interleukin-6 and CC chemokine ligand (CCL)2, CCL3, and CCL5, were reduced by midazolam, whereas these cytokines increased with PK11195. Midazolam inhibited pancreatic ductal adenocarcinoma proliferation through downregulation of cyclins and cyclin-dependent kinases and induced apoptosis in vitro. CONCLUSIONS These results suggest that midazolam inhibits pancreatic ductal adenocarcinoma proliferation and local infiltration of tumour-associated neutrophils, tumour-associated macrophages, and polymorphonuclear myeloid-derived suppressor cells, thereby inhibiting pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Yukino Oshima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Sano
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan.
| | - Ichie Kajiwara
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimi Ichimaru
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Tomoaki Itaya
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoya Kuramochi
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Emiko Hayashi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Jinsuk Kim
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Osamu Kitajima
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Clinical Nutrition Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukimoto Ishii
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother 2021; 144:112309. [PMID: 34653761 DOI: 10.1016/j.biopha.2021.112309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are extensively used during cancer surgeries. The progression of cancer can be influenced by perioperative events such as exposure to general or local anesthesia. However, whether they inhibit cancer or act as a causative factor for metastasis and exert deleterious effects on cancer growth differs based on the type of cancer and the therapy administration. Recent experimental data suggested that many of the most commonly used anesthetics in surgical oncology, whether general or local agents, can alter gene expression and cause epigenetic changes via modulating miRNAs. miRNAs are single-stranded non-coding RNAs that regulate gene expression at various levels, and their dysregulation contributes to the pathogenesis of cancers. However, anesthetics via regulating miRNAs can concurrently target several effectors of cellular signaling pathways involved in cell differentiation, proliferation, and viability. This review summarized the current research about the effects of different anesthetics in regulating cancer, with a particular emphasis on the role of miRNAs. A significant number of studies conducted in this area of research illuminate the effects of anesthetics on the regulation of miRNA expression; therefore, we hope that a thorough understanding of the underlying mechanisms involved in the regulation of miRNA in the context of anesthesia-induced cancer regulation could help to define optimal anesthetic regimens and provide better perspectives for further studies.
Collapse
|
14
|
Midazolam increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via the miR-194-5p/HOOK3 axis. Cancer Cell Int 2021; 21:401. [PMID: 34321010 PMCID: PMC8317376 DOI: 10.1186/s12935-021-02104-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02104-6.
Collapse
|
15
|
Howell L, Jenkins RE, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol 2021; 95:2413-2430. [PMID: 34050779 PMCID: PMC8241807 DOI: 10.1007/s00204-021-03075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
Hepatic organoids are a recent innovation in in vitro modeling. Initial studies suggest that organoids better recapitulate the liver phenotype in vitro compared to pre-existing proliferative cell models. However, their potential for drug metabolism and detoxification remains poorly characterized, and their global proteome has yet to be compared to their tissue of origin. This analysis is urgently needed to determine what gain-of-function this new model may represent for modeling the physiological and toxicological response of the liver to xenobiotics. Global proteomic profiling of undifferentiated and differentiated hepatic murine organoids and donor-matched livers was, therefore, performed to assess both their similarity to liver tissue, and the expression of drug-metabolizing enzymes and transporters. This analysis quantified 4405 proteins across all sample types. Data are available via ProteomeXchange (PXD017986). Differentiation of organoids significantly increased the expression of multiple cytochrome P450, phase II enzymes, liver biomarkers and hepatic transporters. While the final phenotype of differentiated organoids is distinct from liver tissue, the organoids contain multiple drug metabolizing and transporter proteins necessary for liver function and drug metabolism, such as cytochrome P450 3A, glutathione-S-transferase alpha and multidrug resistance protein 1A. Indeed, the differentiated organoids were shown to exhibit increased sensitivity to midazolam (10–1000 µM) and irinotecan (1–100 µM), when compared to the undifferentiated organoids. The predicted reduced activity of HNF4A and a resulting dysregulation of RNA polymerase II may explain the partial differentiation of the organoids. Although further experimentation, optimization and characterization is needed relative to pre-existing models to fully contextualize their use as an in vitro model of drug-induced liver injury, hepatic organoids represent an attractive novel model of the response of the liver to xenobiotics. The current study also highlights the utility of global proteomic analyses for rapid and accurate evaluation of organoid-based test systems.
Collapse
Affiliation(s)
- Lawrence Howell
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Rosalind E Jenkins
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Stephen Lynch
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Carrie Duckworth
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - B Kevin Park
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Christopher Goldring
- Department of Pharmacology and Therapeutics, MRC Centre of Drug Safety Science, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
16
|
Xiang H, Luo M, Hou P, Xiao Z, Huang Z, Feng Q, Zhang R, Li Y, Wu L. miR-124-3p combined with miR-506-3p delay hepatic carcinogenesis via modulating sirtuin 1. Biomarkers 2021; 26:196-206. [PMID: 33401967 DOI: 10.1080/1354750x.2020.1854856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Our study aimed at exploring whether miR-124-3p and miR-506-3p collaboratively modulated sirtuin 1 (SIRT1) protein expression in liver cancer. Materials and methods: In this study, cell viability, migration and invasion were assessed using CCK8 and transwell assays, respectively. Immunohistochemical (IHC) staining and immunoblotting analysis were performed to evaluate SIRT1 protein expression levels in tissue specimens and cell lines. Moreover, the nude-mouse transplanted tumour model was used to assess liver cancer cell growth in vivo. Results: Our results showed that SIRT1 protein levels were significantly up-regulated in liver cancer tissues and cancerous cell lines. Conversely, miR-124-3p and miR-506-3p were down-regulated in liver cancer tissues and cell lines. The protein expression of SIRT1 was significantly declined in HepG2 and SMMC7721 cells after transfection with miR-124-3p or miR-506-3p mimics. miR-124-3p and miR-506-3p collaboratively caused a marked inhibition of liver cancer cell growth, migration and invasion, while the phenomena were neutralized by overexpression of SIRT1. In vivo experimental measurements also revealed that miR-124-3p and miR-506-3p synergistically inhibited SIRT1 protein expression and tumour growth in the nude-mouse transplanted tumour model. Conclusion: It was observed that miR-124-3p and miR-506-3p could cooperatively retard liver cancer cell growth via co-inhibiting SIRT1 protein expression.
Collapse
Affiliation(s)
- Huali Xiang
- Department of Health Management and Physical Examination, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ming Luo
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, China
| | - Ping Hou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhouqing Xiao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihao Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Li Q, Liu S, Yan J, Sun MZ, Greenaway FT. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 2021; 48:3579-3591. [PMID: 33877528 DOI: 10.1007/s11033-021-06347-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded noncoding and endogenous RNA molecules with a length of 18-25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson's disease (PD), dementia and Alzheimer's disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.
Collapse
Affiliation(s)
- Qian Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China.,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
18
|
Yang K, Zou Z, Wu Y, Hu G. MiR-195 suppression alleviates apoptosis and oxidative stress in CCl4-induced ALI in mice by targeting Pim-1. Exp Mol Pathol 2020; 115:104438. [PMID: 32277959 DOI: 10.1016/j.yexmp.2020.104438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is associated with the oxidative stress and apoptosis in liver. Recent studies have shown that miR-195, a critical member of miR-15 family, has modulated the apoptosis in various organic diseases. However, it is elusive whether miR-195 regulation exert a hepatic ameliorative effect on ALI by the suppression of apoptosis and oxidative stress levels. We aimed to explore the regulated role of miR-195 in acute liver injury via the current study. METHODS C57BL/6 J mice (male, seven-week, 18-20 g) were administrated intraperitoneal injection with tetrachloromethane (CCl4) to induce ALI. miR-195 inhibitor or mimics loaded in lentivirus vectors (miR-195 INH or MMC) and Pim-1 loaded in Adeno-associated viral vectors (AAV-Pim-1) were respectively delivered into mouse tail intravenous to establish silence or overexpression of miR-195 and overexpression of Pim-1. Western blotting, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), enzyme linked immunosorbent assay (ELISA) technique, Immunohistochemistry (IHC) and Hematoxylin-eosin (H&E) staining were conducted to measure miR-195 and Pim-1 expression, apoptosis and oxidative stress levels, histological and functional change. RESULTS We found that the expression of miR-195 markedly increased in CCl4-induced ALI. Besides, we demonstrated that the silence of miR-195 attenuated the apoptosis and oxidative stress via up-regulating Pim-1 in CCl4-induced ALI. Moreover, the inhibition of miR-195 protected the integrity and function of liver tissue. CONCLUSIONS The above results showed that the suppression of miR-195 ameliorated ALI through inhibiting apoptosis and oxidative stress via targeting Pim-1. Our research provided a novel scheme that the miR-195 modulation in process of ALI may be an effective therapy method and verifies a promising target for diagnostic and therapeutic strategy of miRNAs.
Collapse
Affiliation(s)
- Kun Yang
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Zhongyu Zou
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Yucheng Wu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China
| | - Guiju Hu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China..
| |
Collapse
|
19
|
Jiang ZT, Han Y, Liu XY, Lv LY, Pan JH, Liu CD. Tripterine Restrains the Aggressiveness of Hepatocellular Carcinoma Cell via Regulating miRNA-532-5p/CXCL2 Axis. Onco Targets Ther 2020; 13:2973-2985. [PMID: 32308429 PMCID: PMC7152543 DOI: 10.2147/ott.s238074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Triterpene has attracted considerable interests because it exhibits anticancer effects. However, the effects of tripterine on hepatocellular carcinoma (HCC) are not well studied. In the current study, the mechanism of tripterine on HCC cells growth and metastasis was examined. Methods The inhibitory effect on the growth and aggressiveness in HCC cells was analyzed by Cell Counting Kit-8 (CCK-8), wound healing and Transwell assay. The levels of microRNA-532-5p (miR-532-5p) in HCC cells and tissues were measured using qRT-PCR. The expression of chemokine (C-X-C Motif) ligand 2 (CXCL2) was determined by Western blotting and immunohistochemistry (IHC). Luciferase reporter gene assay was used to validate the binding between miR-532-5p and CXCL2. The impact of tripterine on the growth and metastasis of HCC cells in vivo was analyzed using transplanted tumor model and experimental lung metastasis model, respectively. Results We found that tripterine inhibited HCC cells proliferation, migration ability and invasion. Under tripterine treatment, the level of miR-532-5p was strikingly raised, and overexpression of miR‑532-5p reduced cell viability and metastatic-related traits. In addition, we identified CXCL2 as a target of miR-532-5p in HCC. Rescue experiments indicated that overexpression of CXCL2 restored the migration and invasive capacity of HCC cells inhibited by miR-532-5p or tripterine treatment. Finally, the tumor growth and metastatic ability of HCC MHCC97H cell in vivo were also significantly restrained by tripterine. The expression of CXCL2 was distinctly decreased and miR-532-5p level was increased by tripterine in vivo. Conclusion In conclusion, tripterine inhibits the growth, migration ability and invasiveness of HCC cells through intervening miR-532-5p/CXCL2.
Collapse
Affiliation(s)
- Zhi Tao Jiang
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Yi Han
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Xiao Yan Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Ling Yan Lv
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| | - Jin Huo Pan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Chun Di Liu
- Department of Pharmacy Office, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, People's Republic of China
| |
Collapse
|