1
|
Kumar D, Pandey S, Shivhare B, Bala M, Kumar M, Kumar P, Gupta J. Natural polysaccharide-based nanodrug delivery systems for targeted treatment of rheumatoid arthritis: A review. Int J Biol Macromol 2025; 310:143408. [PMID: 40274161 DOI: 10.1016/j.ijbiomac.2025.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation of the joints, leading to pain, disability, and systemic complications. Conventional treatments often exhibit limitations, including adverse effects and suboptimal bioavailability. To address these challenges, natural polysaccharides-mediated nano drug delivery is a promising vehicle for RA management. This review explores the potential of natural polysaccharides in RA, including chitosan, cellulose, albumin, hyaluronic acid, polylactic acid, alginate, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for RA applications. These properties facilitate targeted delivery, improved cellular uptake, and sustained release of therapeutic agents, enhancing their pharmacological effects while minimizing systemic toxicity. Recent advances in nanotechnology have enabled the formulations of polysaccharides that can encapsulate a range of therapeutic agents, including conventional anti-inflammatory drugs and novel biologics. The review also highlights various formulation strategies to optimize the physicochemical properties of polysaccharide-based nano drug delivery systems, including surface modification and combinatorial therapies. Overall, natural polysaccharides represent a versatile and effective approach for developing innovative nano drug delivery systems, offering a promising strategy for the effective treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Mazumdar Marg, Timarpur, Delhi 110054, India; Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Brijesh Shivhare
- Department of Botany, Faculty of Science, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana 124021, India
| | - Madhu Bala
- Gautam college of pharmacy, Hamirpur, Himachal Pradesh, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India; Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Prajapati P, Doshi G. Nitazoxanide alleviates CFA-induced rheumatoid arthritis in Wistar rats by modulating the STAT-3 and NF-κB pathways. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2025; 6:29-41. [PMID: 40191469 PMCID: PMC11966199 DOI: 10.1515/rir-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 04/09/2025]
Abstract
Background and Objective Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by joint pain and inflammation. RA involves elevated expression of nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), which drive synovial inflammation and joint destruction primarily through the STAT-3 signalling pathway. Nitazoxanide (NTZ) has been shown in previous studies to inhibit the signalling of STAT-3. Methods This study evaluated the anti-arthritic effects of NTZ in a rat model of complete Freund's adjuvant (CFA) induced arthritis. NTZ was administered orally at doses of 400, 200, and 100 mg/kg over 28 days. Various parameters, including changes in paw swelling, body weight, arthritic index, haematological measurements, levels of inflammatory cytokines, and histopathological analysis, were monitored. Results NTZ treatment significantly improved body weight and reduced paw swelling, edema, and the arthritic index in CFA-induced arthritic rats. The treatment also decreased white blood cell counts while increasing red blood cell and haemoglobin levels. NTZ effectively modulated inflammatory cytokine levels and showed improvement in the histopathology of the ankle joints. Conclusion NTZ exhibited significant anti-arthritic activity through the inhibition of the STAT-3 and NF-κB pathways, emphasizing its potential as a therapeutic option for rheumatoid arthritis.
Collapse
Affiliation(s)
- Pradyuman Prajapati
- Department of Pharmacology, SVKM’s Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM’s Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
3
|
Wróbel-Biedrawa D, Kubacka M, Kotańska M, Bednarski M, Grabowska K, Podolak I. Comparative Evaluation of Vasorelaxant and Antiplatelet Activity of Two Plant-Derived Benzoquinones: Rapanone and Embelin. Molecules 2025; 30:845. [PMID: 40005155 PMCID: PMC11858406 DOI: 10.3390/molecules30040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Vasorelaxant and antiplatelet agents play an important role in preventing and combating endothelial dysfunction, atherosclerosis and a plethora of associated cardiovascular diseases (CVDs). CVDs are the leading cause of death worldwide and nowadays occur not only in developed but also in developing societies. They include, among others, coronary heart disease, cerebrovascular disease and peripheral artery disease. Due to their high prevalence, it is important to seek efficient preventive measures, such as lifestyle changes and the implementation of appropriate herbal dietary supplementation and treatment alternatives. Plant-derived quinones have recently drawn researchers' attention due to their interesting biological potential. Embelin and rapanone are two plant-derived benzoquinones with anti-inflammatory and antioxidant properties. Embelin has already been shown to have vasorelaxant and antiplatelet activity, but little is known about rapanone in the context of CVDs. Therefore, we decided to comparatively evaluate their activity in a specially designed experimental protocol. Following the isolation of both benzoquinones from plant sources (rapanone from Ardisia crenata leaves; embelin from Lysimachia punctata roots), their effects were comparatively assessed in a biofunctional study on isolated rat aorta (precontracted with phenylephrine) and in vitro on platelet aggregation. Both benzoquinones showed 50% vasorelaxation in an NO-dependent manner. Interestingly, rapanone was slightly more effective as an antiplatelet agent than embelin. The antiplatelet effect of both benzoquinones was specific, as no cytotoxicity towards platelets was observed at the concentrations tested. This is the first report on the vasorelaxant and antiplatelet activity of rapanone.
Collapse
Affiliation(s)
- Dagmara Wróbel-Biedrawa
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland;
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (M.K.); (M.B.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (M.K.); (M.B.)
| | - Karolina Grabowska
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| | - Irma Podolak
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (D.W.-B.); (K.G.)
| |
Collapse
|
4
|
Tahir M, Saleem A, Akhtar MF. Diosgenin loaded-chitosan biodegradable nanoparticles ameliorate adjuvant-induced arthritis, pain, and peripheral neuropathy through moderation of inflammatory and oxidative stress biomarkers. Int J Biol Macromol 2025; 290:138926. [PMID: 39706407 DOI: 10.1016/j.ijbiomac.2024.138926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This research work was designed to develop efficient Diosgenin (DGN) loaded biodegradable nanoparticles (DGN-NPs) for treating rheumatoid arthritis. The DGN-NPs were synthesized by ionic-gelation method using chitosan as a biodegradable polymer and in-vitro release study was performed followed by kinetics study. DGN-NPs had an average size of 290 nm, zeta potential of +11.5 mV with 72 % entrapment efficiency, and PDI of 0.398. XRD analysis of DGN-NPs indicated the crystallographic nature while SEM analysis showed the spherical morphology and smooth surface. The release of DGN from NPs occurred by diffusion and erosion mechanism. The anti-arthritic potential of DGN-NPs was investigated by injecting 0.1 ml Complete Freund's adjuvant in the left hind paw of Wistar rats on day 1 while oral therapy with DGN 15 mg/kg, and DGN-NPs at 5, 10, and 15 mg/kg was carried daily. Methotrexate (1 mg/kg) served as standard and was started on day 8 and continued till the 28th day by oral route. The DGN-NPs notably (p < 0.05-0.0001) reduced paw edema, pain, arthritic scoring, and improved body weight in contrast to DGN and standard therapy. The oxidative stress biomarkers were restored by GDN-NPs in the liver and sciatic nerve homogenates along with restoration of altered blood parameters as compared to disease control. The level of serotonin and nor-adrenaline in sciatic nerve homogenates was also profoundly elevated in DGN-NPs-treated arthritic rats. Treatment with DGN-NPs significantly (p < 0.01-0.0001) downregulated NF-κβ, IL-6, IL-1β, COX-2, and TNF-α while upregulated IL-4 in contrast to disease control which resulted in the improvement of the histological lesions in ankle joints and sciatic nerve. It can be inferred from the current study that DGN-NPs especially at 15 mg/kg exhibited notable anti-arthritic, and analgesic activity in contrast to DGN. Moreover, DGN-NPs are also effective against peripheral neuropathy.
Collapse
Affiliation(s)
- Maria Tahir
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 38000, Pakistan.
| |
Collapse
|
5
|
Pouyanfar N, Anvari Z, Davarikia K, Aftabi P, Tajik N, Shoara Y, Ahmadi M, Ayyoubzadeh SM, Shahbazi MA, Ghorbani-Bidkorpeh F. Machine learning-assisted rheumatoid arthritis formulations: A review on smart pharmaceutical design. MATERIALS TODAY COMMUNICATIONS 2024; 41:110208. [DOI: 10.1016/j.mtcomm.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Noor L, Hafeez A, Rahman MA, Vishwakarma KK, Kapoor A, Ara N, Aqeel R. Demystifying the Potential of Embelin-Loaded Nanoformulations: a Comprehensive Review. AAPS PharmSciTech 2024; 25:249. [PMID: 39433611 DOI: 10.1208/s12249-024-02968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Phytoconstituent based therapies have the potential to reduce the adverse effects and enhance overall patient compliance for different diseased conditions. Embelin (EMB) is a natural compound extracted from Embelia ribes that has demonstrated high therapeutic potential, particularly as anti-inflammatory and anticancer therapeutic applications. However, its poor water solubility and low oral bioavailability limitations make it challenging to use in biomedical applications. Nanostructure-based novel formulations have shown the potential to improve physicochemical and biological characteristics of active pharmaceutical ingredients obtained from plants. Different nanoformulations that have been utilized to encapsulate/entrap EMB for various therapeutic applications are nanoliposomes, nanostructured lipid carriers, niosomes, polymeric nanoparticles, nanosuspensions, phytosomes, self nanoemulsifying drug delivery system, silver nanoparticles, microparticles, solid lipid nanoparticle, gold nanoparticles and nanomicelles. The common methods reported for the preparation of EMB nanoformulations are thin film hydration, nanoprecipitation, ethanol injection, emulsification followed by sonication. The size of nanoformulations ranged in between 50 and 345 nm. In this review, the mentioned EMB loaded nanocarriers are methodically discussed for size, shape, drug entrapment, zeta potential, in vitro release & permeation and in vivo studies. Potential of EMB with other drugs (dual drug approach) incorporated in nanocarriers are also discussed (physicochemical and preclinical characteristics). Patents related to EMB nanoformulations are also presented which showed the clinical translation of this bioactive for future utilization in different indications.
Collapse
Affiliation(s)
- Layba Noor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Md Azizur Rahman
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | | - Archita Kapoor
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
7
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
8
|
An S, Yan X, Chen H, Zhou X. Investigation of the Mechanism of Action of Periploca forrestii Schltr. Extract on Adjuvant Collagen Rats Based on UPLC-Q-Orbitrap-HRMS Non-Targeted Lipidomics. Molecules 2023; 28:6751. [PMID: 37836594 PMCID: PMC10574421 DOI: 10.3390/molecules28196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Periploca forrestii Schltr. (P. forrestii) is a classical medicinal plant and is commonly used in traditional medicine for the treatment of rheumatoid arthritis, soft tissue injuries, and traumatic injuries. The aim of this study was to evaluate the anti-arthritic effects of three fractions of P. forrestii alcoholic extracts (PAE), P. forrestii water extracts (PWE), and total flavonoids from P. forrestii (PTF) on Freund's complete adjuvant (FCA)-induced arthritis in rats, and to use a non-targeted lipidomic method to investigate the mechanism of action of the three fractions of P. forrestii in the treatment of rheumatoid arthritis. To assess the effectiveness of anti-rheumatoid arthritis, various indicators were measured, including joint swelling, histopathological changes in the joints, serum cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)), and the joint inflammatory substance prostaglandin E2 (PGE2). Finally, ultra-performance liquid chromatography-quadrupole-orbitrap-high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) was used to determine the non-targeted lipid histology of the collected rat serum and urine samples to investigate the possible mechanism of action. PWE, PAE, and PTF were all effective in treating FCA-induced rheumatoid arthritis. The administered groups all reduced joint swelling and lowered serum inflammatory factor levels in rats. In the screening of lipid metabolite differences between serum and urine of the rat model group and the normal group, a total of 52 different metabolites were screened, and the levels of lipid metabolites in PWE, PAE, and PTF were significantly higher than those in the normal group after administration. In addition, PWE, PAE, and PTF may have significant therapeutic effects on FCA-induced arthritis by modulating nicotinic acid, nicotinamide, and histidine metabolic pathways.
Collapse
Affiliation(s)
- Silan An
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xiaoting Yan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| |
Collapse
|
9
|
Radu AF, Negru PA, Radu A, Tarce AG, Bungau SG, Bogdan MA, Tit DM, Uivaraseanu B. Simulation-Based Research on Phytoconstituents of Embelia ribes Targeting Proteins with Pathophysiological Implications in Rheumatoid Arthritis. Life (Basel) 2023; 13:1467. [PMID: 37511842 PMCID: PMC10381729 DOI: 10.3390/life13071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a heterogeneous inflammatory disease with an autoimmune origin and an incompletely elucidated pathophysiological mechanism. RA pharmacotherapy is based on chemically or biologically active substances that provide clinical alleviation and remission, but the disease is still incurable. As a result, there remains a need for significant therapeutic development, and adjuvant therapies may play an essential role in the search for novel RA treatment strategies. The aim of the present study was to investigate potential phytocompounds and phytocompound derivates as RA treatment agents, using in silico methodologies. In this regard, five phytoconstituents identified in different structures of Embelia ribes were evaluated by in silico methods for their potential action on target proteins of therapeutic interest in RA. The methodology involved identifying the phytocompound with the highest binding toward the target protein via molecular docking using AutoDock Vina 1.5.7, followed by a ligand-based virtual screening based on the structure of the most promising phytocompound using SwissSimilarity. This process led to the identification of ligands that are not currently utilized in medical practice, but that might have the potential to be used in the management of RA after further extensive experimental endorsements. ZINC000004024651 showed the highest binding affinity for the Bruton's tyrosine kinase protein, followed by ZINC000000434197 for p38 mitogen-activated protein kinases, ZINC000087606977 for interleukin-1 receptor-associated kinase 4, and ZINC000014728393 for matrix metallopeptidase 9, the latter two showing higher affinity than the co-crystallized compound. The relatively high affinities to target proteins and the pharmacokinetic data obtained by in silico studies using SwisADME suggest a first step for the inclusion of promising new compounds in various more advanced studies, leading to the evaluation of efficacy and safety profiles.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ada Radu
- Ducfarm Pharmacy, 410514 Oradea, Romania;
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Bogdan Uivaraseanu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (D.M.T.); (B.U.)
- Department of Surgery Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
10
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
11
|
Ullah N, Khan D, Ahmed N, Zafar A, Shah KU, ur Rehman A. Lipase-sensitive fusidic acid polymeric nanoparticles based hydrogel for on-demand delivery against MRSA-infected burn wounds. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Hassan SSU, Abbas SQ, Muhammad I, Wu JJ, Yan SK, Ali F, Majid M, Jin HZ, Bungau S. Metals-triggered compound CDPDP exhibits anti-arthritic behavior by downregulating the inflammatory cytokines, and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies. Front Pharmacol 2022; 13:1053744. [PMID: 36506587 PMCID: PMC9727203 DOI: 10.3389/fphar.2022.1053744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Triggering through abiotic stress, including chemical triggers like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metal Nickel on actinobacteria Streptomyces sp. SH-1327 to obtain a stress-derived compound was firstly investigated. A new compound cyclo-(D)-Pro-(D)-Phe (CDPDP) was triggered from the actinobacteria strain SH-1327 with the addition of nickel ions 1 mM. The stress compound was further evaluated for its anti-oxidant, analgesic, and anti-inflammatory activity against rheumatoid arthritis through in-vitro and in-vivo assays in albino mice. A remarkable in-vitro anti-oxidant potential of CDPDP was recorded with the IC50 value of 30.06 ± 5.11 μg/ml in DPPH, IC50 of 18.98 ± 2.91 against NO free radicals, the IC50 value of 27.15 ± 3.12 against scavenging ability and IC50 value of 28.40 ± 3.14 μg/ml for iron chelation capacity. Downregulation of pro-inflammatory mediators (NO and MDA), suppressed levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-Iβ) and upregulation of expressions of anti-oxidant enzymes (GSH, catalase, and GST) unveiled its anti-inflammatory potential. CDPDP was analyzed in human chondrocyte cell line CHON-001 and the results demonstrated that CDPDP significantly increased cell survival, and inhibited apoptosis of IL-1β treated chondrocytes and IL-1β induced matrix degrading markers. In addition, to evaluate the mitochondrial fitness of CHON-001 cells, CDPDP significantly upregulated pgc1-α, the master regulator of mitochondrial biogenesis, indicating that CDPDP provides protective effects in CHON-001 cells. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of the CDPDP showed that CDPDP is safe in cases of hepatotoxicity, cardiotoxicity, and cytochrome inhibition. Furthermore, docking results showed good binding of CDPDP with IL-6-17.4 kcal/mol, and the simulation studies proved the stability between ligand and protein. Therefore, the findings of the current study prospect CDPDP as a potent anti-oxidant and a plausible anti-arthritic agent with a strong pharmacokinetic and pharmacological profile.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Jia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Kai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan,*Correspondence: Muhammad Majid, ; Hui-Zi Jin,
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Muhammad Majid, ; Hui-Zi Jin,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
14
|
Lv M, Liang Q, Luo Z, Han B, Ni T, Wang Y, Tao L, Lyu W, Xiang J, Liu Y. UPLC-LTQ-Orbitrap-Based Cell Metabolomics and Network Pharmacology Analysis to Reveal the Potential Antiarthritic Effects of Pristimerin: In Vitro, In Silico and In Vivo Study. Metabolites 2022; 12:metabo12090839. [PMID: 36144243 PMCID: PMC9505172 DOI: 10.3390/metabo12090839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by systemic inflammation and synovial hyperplasia. Pristimerin, a natural triterpenoid isolated from plants belonging to the Celastraceae and Hippocrateaceae families, has been reported to exhibit anti-inflammation and anti-proliferation activities. Our study aims to reveal the antiarthritic effects of pristimerin and explore its potential mechanism using in vitro, in silico, and in vivo methods. In the present study, pristimerin treatment led to a dose-dependent decrease in cell viability and migration in TNF-α stimulated human rheumatoid arthritis fibroblast-like synoviocytes MH7A. Moreover, UPLC-LTQ-Orbitrap-based cell metabolomics analysis demonstrated that phospholipid biosynthesis, fatty acid biosynthesis, glutathione metabolism and amino acid metabolic pathways were involved in TNF-α induced MH7A cells after pristimerin treatment. In addition, the adjuvant–induced arthritis (AIA) rat model was employed, and the results exhibited that pristimerin could effectively relieve arthritis symptoms and histopathological damage as well as reduce serum levels of TNF-α, NO and synovial expressions of p-Akt and p-Erk in AIA rats. Furthermore, network pharmacology analysis was performed to visualize crucial protein targets of pristimerin for RA treatment, which showed that the effects were mediated through the MAPK/Erk1/2, PI3K/Akt pathways and directing binding with TNF-α. Taken together, our study not only offered new insights into the biochemical mechanism of natural compounds for RA treatment, but also provided a strategy that integrated in vitro, in silico and in vivo studies to facilitate screening of new anti-RA drugs.
Collapse
Affiliation(s)
- Mengying Lv
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| | - Qiaoling Liang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Zhaoyong Luo
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, School of Pharmacy, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Tengyang Ni
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Li Tao
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Weiting Lyu
- Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Jie Xiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| |
Collapse
|
15
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
16
|
Arunsi UO, Chioma OE, Etusim PE, Owumi SE. Indigenous Nigeria medicinal herbal remedies: A potential source for therapeutic against rheumatoid arthritis. Exp Biol Med (Maywood) 2022; 247:1148-1178. [PMID: 35708153 PMCID: PMC9335509 DOI: 10.1177/15353702221102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating disease associated with locomotion impairment, and conventional therapeutic drugs are not optimal for managing RA. There is an avalanche of medications used for the management of RA. Still, studies have shown that they are associated with severe side effects, including hepatotoxicity, retinopathy, and cardiotoxicity disorders of the central nervous system (CNS), skin, blood, and infections. Complementary and alternative medicine (CAM) is currently gaining attention as a novel panacea for managing debilitating diseases, such as RA. Nigerian folk herbal remedies are replete with a plethora of curative medicine, albeit unvalidated scientifically but with seemingly miraculous provenance. Studies of the identification of bioactive compounds present in these botanicals using advanced spectral analytical techniques have enhanced our understanding of the role of Nigerian herbal remedies in the treatment and management of RA. Interestingly, experimental studies abound that the bioactive compounds present in the extracts of plant botanicals protected animals from the development of RA in different experimental models and reduced the toxicity associated with conventional therapeutics. Validated mechanisms of RA amelioration in human and animal models include suppression of the expression of NF-κB, IL-1β, TNF-α, IL-6, IL-8, IL-17, IL-23, chemokines, TGF-β, RANKL, RANK, iNOS, arginase, COX-2, VEGFA, VEGFR, NFATC1, and TRAP in the synoviocytes. Decreased ROS, NO, MDA, carbonyl groups, and PGE2 in the synovial fluid increased the expression of PPARα/γ; antioxidant and anti-inflammatory molecules also improve RA etiology. In this mini-review, we discuss the global burden of RA, the novel role of plant-based botanicals as potential therapeutics against signaling pathways in RA. Also addressed is the possible repurposing/reprofiling of plant botanicals to increase their therapeutic index among RA patients that patronize traditional healers in Nigeria with a global projection.
Collapse
Affiliation(s)
- Uche O Arunsi
- Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK,Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, 440001, Nigeria
| | - Ogbuka E Chioma
- Department of Social and Environmental Forestry, Faculty of Renewable Natural Resources, University of Ibadan, Ibadan 200005, Nigeria
| | - Paschal E Etusim
- Department of Animal and Environmental Biology, Faculty of Biological and Physical Sciences, Abia State University, Uturu 200, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria,Solomon Owumi.
| |
Collapse
|
17
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
18
|
Rui Z, Zhang L, Li X, Han J, Yuan Y, Ding H, Liu Y, Ding X. Pterostilbene exert an anti‐arthritic effect by attenuating inflammation, oxidative stress, and alteration of gut microbiota. J Food Biochem 2022; 46:e14011. [PMID: 35060152 DOI: 10.1111/jfbc.14011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Ze Rui
- Department of Foot and Ankle Surgery The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| | - Ling Zhang
- Department of Medical Examination The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| | - Xuefei Li
- Department of Foot and Ankle Surgery The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| | - Jinxue Han
- Department of Foot and Ankle Surgery The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| | - Yufeng Yuan
- Department of Critical Medicine Tai'an Traditional Chinese Medicine Hospital Tai'an City China
| | - Hui Ding
- Shandong Liming Vocational and Technical College Tai'an City China
| | - Yang Liu
- Department of Foot and Ankle Surgery The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| | - Xiaolin Ding
- Department of Foot and Ankle Surgery The Second Affiliated Hospital of Shandong First Medical University Tai'an City China
| |
Collapse
|
19
|
Kumaraswamy HM, Krishna V, Sharath R, Satyanarayan ND, Meghana P, Jain RSK, Prashanth N, Raja Naika H. Potential role of embelin in the prevention of Freund's adjuvant induced inflammation and ROS. 3 Biotech 2022; 12:10. [PMID: 34966633 PMCID: PMC8655053 DOI: 10.1007/s13205-021-03071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
Inflammation is a complex biological response involving immune cells to an infection creating injury to the normal tissues. The anti-inflammatory efficacy of embelin, a benzoquinone from the plant Embelia ribes, was screened for antioxidant and anti-inflammatory activity in carrageenan and Freund's adjuvant-induced inflammation models. Embelin exhibited significant dose-dependent antioxidant potential. In carrageenan-induced inflammation, embelin (20 mg/kg) showed an inhibition of oedema by 71.01 ± 0.12% and 81.91 ± 0.67% in Freund's adjuvant-treated chronic inflammation model and resulted in a noticeable increase in adrenal size and restoration of the weight of spleen. Embelin also demonstrated cytoprotective effects on HEK-293 cells under induced oxidative stress. In silico analysis, embelin demonstrated binding energy of - 7.7 kcal/Mol and - 7.0 kcal/Mol with COX1 and COX2 with two hydrogen bonds. These results further prove that embelin could be a promising anti-inflammatory agent and supports the traditional use of Embelia ribes for rheumatism.
Collapse
Affiliation(s)
- H. M. Kumaraswamy
- grid.440695.a0000 0004 0501 6546Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shimoga, Shankarghatta, Karnataka 577451 India
| | - V. Krishna
- grid.440695.a0000 0004 0501 6546Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shimoga, Shankarghatta, Karnataka 577451 India
| | - R. Sharath
- grid.449028.30000 0004 1773 8378Department of Food Technology, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - N. D. Satyanarayan
- grid.440695.a0000 0004 0501 6546Department of Studies and Research in Pharmaceutical Chemistry, Kuvempu University P.G Centre, Kadur, Karnataka 577548 India
| | - P. Meghana
- grid.440695.a0000 0004 0501 6546Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shimoga, Shankarghatta, Karnataka 577451 India
| | - R. Sandeep Kumar Jain
- grid.440695.a0000 0004 0501 6546Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shimoga, Shankarghatta, Karnataka 577451 India
| | - N. Prashanth
- grid.440695.a0000 0004 0501 6546Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shimoga, Shankarghatta, Karnataka 577451 India
| | - H. Raja Naika
- grid.412825.80000 0004 1756 5761Department of Biotechnology, Tumkur University, Tumkur, Karnataka 572103 India
| |
Collapse
|
20
|
Zeng Z, Yan K, Liu W. Specneuzhenide Ameliorate Complete Freund Adjuvant Induced Arthritis in Rats: Involvement of NF-κB and HO-1/Nrf-2 Pathway. J Oleo Sci 2022; 71:551-561. [DOI: 10.5650/jos.ess21413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhaohui Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Medical University
| | - Kang Yan
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Medical University
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Medical University
| |
Collapse
|
21
|
Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int J Pharm 2021; 610:121242. [PMID: 34737113 DOI: 10.1016/j.ijpharm.2021.121242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The present study aimed to fabricate and evaluate the therapeutic efficacy of pH-responsive Ibuprofen (IB) nanoparticles (NPs) loaded transdermal hydrogel against rheumatoid arthritis (RA). The IB loaded Eudragit® L 100 (EL 100) nanoparticles were formulated through a modified nanoprecipitation technique and optimized using central composite design software. The optimized NPs were loaded into Carbopol® 934-based hydrogel by solvent evaporation method and were analyzed for physicochemical characteristics. The mean particle size of the prepared NPs was 48 nm with an entrapment efficiency of 90%. The transdermal hydrogel showed a pH-responsive sustained drug release and high penetration through the skin. Moreover, the prepared nanocarrier system exhibited therapeutic efficacy at inflamed joints' sites both in acute and chronic RA mice model. The therapeutic efficacy of the prepared formulation was confirmed through the results of various behavioral, biochemical, and cytokines-based assays. Similarly, the assessment of histopathological and radiological images, as well as the skin irritation studies further strengthens the potential use of the prepared formulation through the transdermal route. The current findings suggested that IB loaded pH-responsive NPs based transdermal hydrogel can be used as an efficient agent to manage RA.
Collapse
|
22
|
Devi Daimary U, Girisa S, Parama D, Verma E, Kumar A, Kunnumakkara AB. Embelin: A novel XIAP inhibitor for the prevention and treatment of chronic diseases. J Biochem Mol Toxicol 2021; 36:e22950. [PMID: 34842329 DOI: 10.1002/jbt.22950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1β, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.
Collapse
Affiliation(s)
- Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
23
|
Nano Drug Delivery Platforms for Dental Application: Infection Control and TMJ Management-A Review. Polymers (Basel) 2021; 13:polym13234175. [PMID: 34883678 PMCID: PMC8659450 DOI: 10.3390/polym13234175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The oral cavity is an intricate environment subjected to various chemical, physical, and thermal injuries. The effectiveness of the local and systemically administered drugs is limited mainly due to their toxicities and poor oral bioavailability that leads to the limited effectiveness of the drugs in the target tissues. To address these issues, nanoparticle drug delivery systems based on metals, liposomes, polymeric particles, and core shells have been developed in recent years. Nano drug delivery systems have applications in the treatment of patients suffering from temporomandibular joint disorders such as preventing degeneration of cartilage in patients suffering from rheumatoid arthritis and osteoarthritis and alleviating the pain along with it. The antibacterial dental applications of nano-drug delivery systems such as silver and copper-based nanoparticles include these agents used to arrest dental caries, multiple steps in root canal treatment, and patients suffering from periodontitis. Nanoparticles have been used in adjunct with antifungals to treat oral fungal infections such as candida albicans in denture wearers. Acyclovir being the most commonly used antiviral has been used in combination with nanoparticles against an array of viral infections such as the herpes simplex virus. Nanoparticles based combination agents offer more favorable drug release in a controlled manner along with efficient delivery at the site of action. This review presents an updated overview of the recently developed nanoparticles delivery systems for the management of temporomandibular joint disorders along with the treatment of different oral infections.
Collapse
|
24
|
Quinone-rich fraction of Ardisia crispa (Thunb.) A. DC roots alters angiogenic cascade in collagen-induced arthritis. Inflammopharmacology 2021; 29:771-788. [PMID: 34091811 DOI: 10.1007/s10787-021-00816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic joint disorder, of which, excessive angiogenesis is the well-established factor contributing to synovitis and joint destruction. Ardisia crispa (Primulaceae) is a medicinal herb with evidenced anti-angiogenic properties, attributed to 2-methoxy-6-undecyl-1,4-benzoquinone (BQ) found in its roots. However, it is still unclear how BQ is able to inhibit angiogenesis in RA. Hence, we investigated the anti-arthritic potential of quinone-rich fraction (QRF) separated from Ardisia crispa roots hexane extract (ACRH) by targeting angiogenesis on collagen-induced arthritis (CIA) in rats. The QRF was priorly identified by quantifying the BQ content in the fraction using GC-MS. Male Sprague-Dawley rats (n = 6) were initially immunised with type II collagen (150 µg) subcutaneously at the base of the tail on day 0. QRF (3, 10, and 30 mg/kg/day) and celecoxib (5 mg/kg/day) were orally administered for 13 consecutive days starting from day 14 post-induction, except for the vehicle and arthritic controls. QRF at all dosages moderately ameliorated the arthritic scores, ankle swelling, and hind paw oedema with no significant (p > 0.05) modulation on the bodyweights and organ weights (i.e., liver, kidney, and spleen). Treatment with QRF at 3, 10, and 30 mg/kg, significantly (p < 0.05) attenuated VEGF-A, PI3K, AKT, NF-κB, p38, STAT3, and STAT5 proteins and markedly restored the increased synovial microvessel densities (MVD) to the normal level in arthritic rats in a dose-independent manner. In conclusion, QRF conferred the anti-arthritic effect via angiogenesis inhibition in vivo, credited to the BQ content and synergism, at least in part, by other phytoconstituents.
Collapse
|
25
|
Han D, Chen Q, Chen H. Food-Derived Nanoscopic Drug Delivery Systems for Treatment of Rheumatoid Arthritis. Molecules 2020; 25:E3506. [PMID: 32752061 PMCID: PMC7436204 DOI: 10.3390/molecules25153506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a severe systemic inflammatory disease with no cure at present. Recent developments in the understanding of inflammation and nanomaterial science have led to increased applications of nanostructured drug delivery systems in the treatment of RA. The present review summarizes novel fabrications of nanoscale drug carriers using food components as either the delivered drugs or carrier structures, in order to achieve safe, effective and convenient drug administration. Polyphenols and flavonoids are among the most frequently carried anti-RA therapeutics in the nanosystems. Fatty substances, polysaccharides, and peptides/proteins can function as structuring agents of the nanocarriers. Frequently used nanostructures include nanoemulsions, nanocapsules, liposomes, and various nanoparticles. Using these nanostructures has improved drug solubility, absorption, biodistribution, stability, targeted accumulation, and release. Joint vectorization, i.e., using a combination of bioactive molecules, can bring elevated therapeutic outcomes. Utilization of anti-arthritic chemicals that can self-assemble into nanostructures is a promising research orientation in this field.
Collapse
Affiliation(s)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China;
| |
Collapse
|