1
|
Martin LJ, Touaibia M. Prevention of Male Late-Onset Hypogonadism by Natural Polyphenolic Antioxidants. Nutrients 2024; 16:1815. [PMID: 38931170 PMCID: PMC11206339 DOI: 10.3390/nu16121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen production primarily occurs in Leydig cells located in the interstitial compartment of the testis. In aging males, testosterone is crucial for maintaining muscle mass and strength, bone density, sexual function, metabolic health, energy levels, cognitive function, as well as overall well-being. As men age, testosterone production by Leydig cells of the testes begins to decline at a rate of approximately 1% per year starting from their 30s. This review highlights recent findings concerning the use of natural polyphenolics compounds, such as flavonoids, resveratrol, and phenolic acids, to enhance testosterone production, thereby preventing age-related degenerative conditions associated with testosterone insufficiency. Interestingly, most of the natural polyphenolic antioxidants having beneficial effects on testosterone production tend to enhance the expression of the steroidogenic acute regulatory protein (Star) gene in Leydig cells. The STAR protein facilitates the entry of the steroid precursor cholesterol inside mitochondria, a rate-limiting step for androgen biosynthesis. Natural polyphenolic compounds can also improve the activities of steroidogenic enzymes, hypothalamus-pituitary gland axis signaling, and testosterone bioavailability. Thus, many polyphenolic compounds such as luteolin, quercetin, resveratrol, ferulic acid phenethyl ester or gigantol may be promising in delaying the initiation of late-onset hypogonadism accompanying aging in males.
Collapse
Affiliation(s)
- Luc J. Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada;
| |
Collapse
|
2
|
Ying Y, Wang S, Han L, Li H, Wang Y, Lv J, Ge RS, Tang Y. Perfluorotetradecanoic acid exposure to adult male rats stimulates corticosterone biosynthesis but inhibits aldosterone production. ENVIRONMENTAL TOXICOLOGY 2024; 39:2610-2622. [PMID: 38205621 DOI: 10.1002/tox.24135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a novel perfluoroalkyl substance that ubiquitously exists in the environment. However, whether PFTeDA affects adrenal cortex function remains unclear. Male Sprague-Dawley rats (age of 60 days) were daily administered with PFTeDA (0, 1, 5, and 10 mg/kg body weight) through gavage for 28 days. PFTeDA did not change body and adrenal gland weights. PFTeDA markedly elevated serum corticosterone level at 10 mg/kg but lowering serum aldosterone level at this dosage without influencing serum adrenocorticotropic hormone level. PFTeDA thickened zona fasciculata without affecting zona glomerulosa. PFTeDA remarkably upregulated the expression of corticosterone biosynthetic genes (Mc2r, Scarb1, Star, Cyp21, Cyp11b1, and Hsd11b1) and their proteins, whereas downregulating aldosterone biosynthetic enzyme Cyp11b2 and its protein, thereby distinctly altering their serum levels. PFTeDA markedly downregulated the expression of antioxidant genes (Sod1 and Sod2) and their proteins at 10 mg/kg. PFTeDA significantly decreased SIRT1/PGC1α and AMPK signaling while stimulating AKT1/mTOR signaling. Corticosterone significantly inhibited testosterone production by adult Leydig cells at >0.1 μM in vitro; however aldosterone significantly stimulated testosterone production at 0.1 nM. In conclusion, exposure to PFTeDA at male rat adulthood causes corticosterone excess and aldosterone deficiency via SIRT1/PGC1α, AMPK, and AKT1/mTOR signals, which in turn additively leads to testosterone deficiency.
Collapse
Affiliation(s)
- Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
4
|
Guillot E, Lemay A, Allouche M, Vitorino Silva S, Coppola H, Sabatier F, Dignat-George F, Sarre A, Peyter AC, Simoncini S, Yzydorczyk C. Resveratrol Reverses Endothelial Colony-Forming Cell Dysfunction in Adulthood in a Rat Model of Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:ijms24119747. [PMID: 37298697 DOI: 10.3390/ijms24119747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 μM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5'-bromo-2'-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16ink4a (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR.
Collapse
Affiliation(s)
- Estelle Guillot
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anna Lemay
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Manon Allouche
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sara Vitorino Silva
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Hanna Coppola
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Florence Sabatier
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Françoise Dignat-George
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Alexandre Sarre
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stéphanie Simoncini
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Catherine Yzydorczyk
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Hashemi Taheri AP, Moradi B, Radmard AR, Sanginabadi M, Qorbani M, Mohajeri-Tehrani MR, Shirzad N, Hosseini S, Hekmatdoost A, Asadi S, Samadi M, Mansour A. Effect of resveratrol administration on ovarian morphology, determined by transvaginal ultrasound for the women with polycystic ovary syndrome (PCOS). Br J Nutr 2022; 128:211-216. [PMID: 34467834 DOI: 10.1017/s0007114521003330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intake of resveratrol has been associated with improved ovarian morphology under in vitro and in the animal models; however, this finding has not been confirmed in trials. The aim of our study was, therefore, to use a placebo-controlled approach with the detailed assessment of the ovarian morphology by applying transvaginal ultrasound to examine the effectiveness of this therapeutic approach in this group of women. The mean age of all participants was 28·61 (sd 4·99) years, with the mean BMI of 28·26 (sd 5·62) kg/m2. Resveratrol therapy, as compared with placebo, was associated with a significantly higher rate of improvement in the ovarian morphology (P = 0·02). Women who received resveratrol had a more dominant follicle than those getting placebo, with a significant reduction in the ovarian volume (P < 0·05). However, the number of follicle count per ovary (FNPO), stromal area (SA), ovarian echogenicity and distribution of follicles were not significantly altered (P > 0·05). Forty-one women with polycystic ovary syndrome (PCOS) were randomly assigned (1:1) to 3 months of daily 1000 mg resveratrol or placebo. Random assignment was done by blocked randomisation. Our primary endpoints were the change in the ovarian volume, SA and antral FNPO from the baseline to 3 months. Secondary endpoints were improvement in the distribution of follicles and ovarian echogenicity. Differences between the resveratrol and control groups were evaluated by Chi-square, Fisher's exact test and repeated-measures ANOVA. Treatment with resveratrol significantly reduced the ovarian volume and polycystic ovarian morphology, thus suggesting a disease-modifying effect in PCOS.
Collapse
Affiliation(s)
| | - Behnaz Moradi
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Radmard
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Sanginabadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology, Vali-Asr Hospital, Endocrinology and Metabolism Research Center, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sedigheh Asadi
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Samadi
- Radiology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
7
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
The Role of Resveratrol in Mammalian Reproduction. Molecules 2020; 25:molecules25194554. [PMID: 33027994 PMCID: PMC7582294 DOI: 10.3390/molecules25194554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most investigated natural polyphenolic compounds and is contained in more than 70 types of plants and in red wine. The widespread interest in this polyphenol derives from its antioxidant, anti-inflammatory and anti-aging properties. Several studies have established that resveratrol regulates animal reproduction. However, the mechanisms of action and the potential therapeutic effects are still unclear. This review aims to clarify the role of resveratrol in male and female reproductive functions, with a focus on animals of veterinary interest. In females, resveratrol has been considered as a phytoestrogen due to its capacity to modulate ovarian function and steroidogenesis via sirtuins, SIRT1 in particular. Resveratrol has also been used to enhance aged oocyte quality and as a gametes cryo-protectant with mainly antioxidant and anti-apoptotic effects. In males, resveratrol enhances testes function and spermatogenesis through activation of the AMPK pathway. Furthermore, resveratrol has been supplemented to semen extenders, improving the preservation of sperm quality. In conclusion, resveratrol has potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
|
9
|
Qasem RJ. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit Rev Toxicol 2020; 50:439-462. [DOI: 10.1080/10408444.2020.1762538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rani J. Qasem
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC) and King Abdulaziz Medical City, National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Greifová H, Jambor T, Tokárová K, Speváková I, Knížatová N, Lukáč N. Resveratrol attenuates hydrogen peroxide-induced oxidative stress in TM3 Leydig cells in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:585-595. [PMID: 32178576 DOI: 10.1080/10934529.2020.1717899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The objective of present study was to investigate in vitro protective potential of resveratrol in TM3 Leydig cells with induced oxidative stress using hydrogen peroxide (H2O2). Leydig cells experiencing oxidative stress exhibit reduced activities in androgens production, and become hypofunctional with age, which is also related to growing oxidative stress, while resveratrol has received growing attention as a cytoprotective agent. TM3 mouse Leydig cells were cultivated during 24 h in the presence of resveratrol (5, 10, 25, 50 and 100 μM) alone, or in combination with H2O2 (300/600 μM) to induce oxidative stress. Mitochondrial activity was evaluated using MTT test, triple assay was used in order to assess cell viability parameters, intracellular generation of superoxide was determined by the nitroblue-tetrazolium assay, and quantification of steroid hormones was performed by the enzyme- linked immunosorbent assay. Resveratrol alone treatment led to the most significantly improved values of all tested parameters in the cells of experimental group with addition of 10 μM of resveratrol in comparison to the control group. In the case of cells with induced oxidative stress (300 μM H2O2) resveratrol administration resulted in significantly increased (P < 0.05) metabolic activity, as well as cell membrane integrity at concentration 10 μM. Significantly improved (P < 0.001) lysosomal activity showed cells treated with 5 and 10 μM of resveratrol, and the level of both measured hormones was significantly higher (P < 0.05) in cells supplemented with 10 μM of resveratrol. Significant decline of superoxide radical production was observed in all experimental groups in comparison to the control exposed to H2O2 alone. With respect to cells exposed to higher concentration of H2O2 (600 μM), results showed positive effect of resveratrol only in biosynthesis of both androgens with significant increased values in experimental group treated with 5 μM (P < 0.05) and 10 μM (P < 0.01) of resveratrol, in addition, in the case of testosterone we recorded significant higher (P < 0.05) values in cells with addition of 25 and 50 μM resveratrol when compared to H2O2 control. More specific and systematic research focused especially on androgen biosynthesis is necessary related to the biological activity of resveratrol in male reproductive system due to inconsistent results of studies.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomáš Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Ivana Speváková
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
11
|
Wu K, Li Y, Liu J, Mo J, Li X, Ge RS. Long-term triphenyltin exposure disrupts adrenal function in adult male rats. CHEMOSPHERE 2020; 243:125149. [PMID: 31765896 DOI: 10.1016/j.chemosphere.2019.125149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Triphenyltin is an organotin, which is widely used as a fungicide in agriculture. Here, we reported the effects of triphenyltin on adrenal function in adult male rats. Adult male Sprague Dawley rats were daily gavaged with triphenyltin (0, 0.5, 1, and 2 mg/kg body weight) from postnatal day 56-86. Triphenyltin significantly decreased serum corticosterone levels at 1 and 2 mg/kg without affecting serum levels of aldosterone and adrenocorticotropic hormone. Triphenyltin increased thickness of zona glomerulosa without affecting that of zona fasciculata. Triphenyltin did not affect cell number in zona fasciculata and zona glomerulosa. Triphenyltin down-regulated the expression of Scarb1, Star, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, and Hsd11b1 at 1 and/or 2 mg/kg while it up-regulated the expression of At1, Nr4a2, and Hsd11b2 at 2 mg/kg. Triphenyltin activated the phosphorylation of AMPKα while suppressed the phosphorylation of AKT1 and SIRT1/PGC-1α in rat adrenals in vivo and H295R cells in vitro. In vitro, triphenyltin also induced ROS production in H295R cells at 100 nM, a concentration at which no apoptosis was induced. In conclusion, triphenyltin disrupts glucocorticoid synthesis in rat adrenal cortex via several mechanisms: 1) lowering AKT1 phosphorylation and SIRT1/PGC-1α levels; 2) activating AMPKα; and 3) possibly inducing ROS production.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianpeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
12
|
Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS. 4-Bromodiphenyl Ether Causes Adrenal Gland Dysfunction in Rats during Puberty. Chem Res Toxicol 2019; 32:1772-1779. [PMID: 31423765 DOI: 10.1021/acs.chemrestox.9b00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Jiaying Mo
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Song Zhang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xiaoheng Li
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tongliang Huang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Qiqi Zhu
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Songxue Wang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xianwu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Ren-Shan Ge
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
13
|
Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS One 2019; 14:e0217519. [PMID: 31163038 PMCID: PMC6548379 DOI: 10.1371/journal.pone.0217519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Fluoxetine (FLX), a widely used antidepressant primarily acting as a selective serotonin reuptake inhibitor (SSRI), has been shown to exhibit other mechanisms of action in various cell types. Consequently, it might have unexpected adverse effects not related to its intended use, possibly in the endocrine regulation of reproduction. We show in the present report that after a 1-hour preincubation of MLTC-1 Leydig cells with FLX, the intracellular cyclic adenosine monophosphate (cAMP) responses to Luteinizing Hormone (LH) and forskolin (FSK) are reduced through AMPK-dependent and -independent pathways respectively. FLX at low concentrations (12.5μM and 25μM) induced this inhibition without triggering AMPK phosphorylation, while higher FLX concentrations (50μM and 100μM) induced AMPK phosphorylation and lowered ATP concentration similarly to Metformin. Pretreatment with the specific AMPK inhibitor Compound C (CpdC), significantly diminished the inhibition of cAMP synthesis caused by high concentration of FLX. Moreover, as expected FLX also caused a decline of steroidogenesis which is under the control of cAMP. Taken together, these findings demonstrate that the inhibition of cAMP synthesis by FLX is dose-dependent and occurs in MLTC-1 cells through two mechanisms, AMPK-independent and AMPK-dependent, at low and high concentrations, respectively. FLX also inhibited hormone-induced steroidogenesis in MLTC-1 cells and mouse testicular Leydig cells, suggesting similar mechanisms in both cell types.
Collapse
|
14
|
Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. C R Biol 2018; 342:1-6. [PMID: 30580936 DOI: 10.1016/j.crvi.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key enzyme involved in linking the energy sensing to metabolic pathways. As such, it plays a central role at the whole-body level to translate endocrine communications into adapted responses aimed either at saving energy when food is scarce or at allocating it to various functions, particularly reproduction, when food is available. AMPK also plays major roles in the energy individual cells use in order to realize their specific functions. This is of course especially true for all cells involved in the reproductive function (gonads, gametes) or in its control (hypothalamus, pituitary). In the present review, I report a survey of the various roles of AMPK functions in reproduction, either directly in reproductive organs, or indirectly in organs controlling reproduction, particularly at hypothalamus level.
Collapse
|
15
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
16
|
Empl MT, Cai H, Wang S, Junginger J, Kostka T, Hewicker-Trautwein M, Brown K, Gescher AJ, Steinberg P. Effects of a Grapevine Shoot Extract Containing Resveratrol and Resveratrol Oligomers on Intestinal Adenoma Development in Mice: In Vitro and In Vivo Studies. Mol Nutr Food Res 2018; 62. [PMID: 29125219 DOI: 10.1002/mnfr.201700450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022]
Abstract
SCOPE Evidence suggests that the dietary consumption of plant extracts containing polyphenols might help prevent the onset of cancers of the gastrointestinal tract. In the present study, the chemopreventive and antiproliferative efficacy of a grapevine shoot extract (Vineatrol®30) containing resveratrol and resveratrol oligomers is investigated in vivo and in vitro. METHODS AND RESULTS The in vivo study is performed using ApcMin mice on a high-fat diet, which represents a model of human adenomatous polyposis, while the potential of the extract as well as some of its isolated constituents to inhibit intestinal adenoma cell proliferation in vitro is investigated using APC10.1 cells derived from an ApcMin mouse. Vineatrol®30 at a low (2.3 mg kg-1 diet) or high dose (476 mg kg-1 diet) reduces the adenoma number in male and adenoma volume in female animals. Furthermore, Vineatrol®30 as well as resveratrol and two resveratrol tetramers compromise the expansion of APC10.1 cells by reducing cell number, inducing cell cycle arrest, cellular senescence, and apoptosis. However, except for the extract, none of the isolated resveratrol oligomers is more efficacious than resveratrol in these cells. CONCLUSION Vineatrol®30 may merit further investigation as a potential dietary gastrointestinal cancer chemopreventive agent in humans.
Collapse
Affiliation(s)
- Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hong Cai
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Shan Wang
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Karen Brown
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Andreas J Gescher
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Ranawat P, Bakshi N. Naringenin; a bioflavonoid, impairs the reproductive potential of male mice. Toxicol Mech Methods 2017; 27:417-427. [DOI: 10.1080/15376516.2017.1296048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pavitra Ranawat
- Department of Biophysics, Panjab University, South Campus, Sector-25, Chandigarh, India
| | - Nikita Bakshi
- Department of Biophysics, Panjab University, South Campus, Sector-25, Chandigarh, India
| |
Collapse
|
18
|
Nguyen TMD. Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions. Front Cell Dev Biol 2017; 5:25. [PMID: 28386541 PMCID: PMC5362614 DOI: 10.3389/fcell.2017.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Physiologie de la Reproduction et des Comportements, INRANouzilly, France; Quy Nhon UniversityQuy Nhon, Vietnam
| |
Collapse
|
19
|
Marti N, Bouchoucha N, Sauter KS, Flück CE. Resveratrol inhibits androgen production of human adrenocortical H295R cells by lowering CYP17 and CYP21 expression and activities. PLoS One 2017; 12:e0174224. [PMID: 28323907 PMCID: PMC5360261 DOI: 10.1371/journal.pone.0174224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/05/2017] [Indexed: 12/22/2022] Open
Abstract
Resveratrol, a natural compound found in grapes, became very popular for its suggested protective effects against aging. It was reported to have similar positive effects on the human metabolism as caloric restriction. Recently, positive effects of resveratrol on steroid biosynthesis in cell systems and in humans suffering from polycystic ovary syndrome have also been reported, but the exact mechanism of this action remains unknown. Sirtuins seem targeted by resveratrol to mediate its action on energy homeostasis. In this study, we investigated the mechanisms of action of resveratrol on steroidogenesis in human adrenal H295R cells. Resveratrol was found to inhibit protein expression and enzyme activities of CYP17 and CYP21. It did not alter CYP17 and CYP21 mRNA expression, nor protein degradation. Only SIRT3 mRNA expression was found to be altered by resveratrol, but SIRT1, 3 and 5 overexpression did not result in a change in the steroid profile of H295R cells, indicating that resveratrol may not engage sirtuins to modulate steroid production. Previous studies showed that starvation leads to a hyperandrogenic steroid profile in H295R cells through inhibition of PKB/Akt signaling, and that resveratrol inhibits steroidogenesis of rat ovarian theca cells via the PKB/Akt pathway. Therefore, the effect of resveratrol on PKB/Akt signaling was tested in H295R cells and was found to be decreased under starvation growth conditions, but not under normal growth conditions. Overall, these properties of action together with recent clinical findings make resveratrol a candidate for the treatment of hyperandrogenic disorders such as PCOS.
Collapse
Affiliation(s)
- Nesa Marti
- Division of Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
- Graduate School of Bern, University of Bern, Bern, Switzerland
| | - Nadia Bouchoucha
- Division of Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Christa E. Flück
- Division of Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Savchuk I, Morvan ML, Søeborg T, Antignac JP, Gemzell-Danielsson K, Le Bizec B, Söder O, Svechnikov K. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Iuliia Savchuk
- Department of Women's and Children's Health; Pediatric Endocrinology Unit; Karolinska Institutet & Karolinska University Hospital; Stockholm Sweden
| | - Marie-Line Morvan
- LUNAM Université; École nationale vétérinaire; agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris); Laboratoire d’Étude des Résidus et Contaminants dans les aliments (LABERCA); USC INRA; Nantes France
| | - Tue Søeborg
- Department of Growth and Reproduction; Rigshospitalet; Copenhagen University Hospital; Faculty of Health and Medical Sciences; University of Copenhagen; Novo Nordisk A/S Måløv Denmark
| | - Jean-Philippe Antignac
- LUNAM Université; École nationale vétérinaire; agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris); Laboratoire d’Étude des Résidus et Contaminants dans les aliments (LABERCA); USC INRA; Nantes France
| | | | - Bruno Le Bizec
- LUNAM Université; École nationale vétérinaire; agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris); Laboratoire d’Étude des Résidus et Contaminants dans les aliments (LABERCA); USC INRA; Nantes France
| | - Olle Söder
- Department of Women's and Children's Health; Pediatric Endocrinology Unit; Karolinska Institutet & Karolinska University Hospital; Stockholm Sweden
| | - Konstantin Svechnikov
- Department of Women's and Children's Health; Pediatric Endocrinology Unit; Karolinska Institutet & Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
21
|
Mansour A, Hosseini S, Larijani B, Mohajeri-Tehrani MR. Nutrients as novel therapeutic approaches for metabolic disturbances in polycystic ovary syndrome. EXCLI JOURNAL 2016; 15:551-564. [PMID: 28096785 PMCID: PMC5225686 DOI: 10.17179/excli2016-422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women. This disease is characterized by infertility, menstrual dysfunction, and hyperandrogenism. Also, PCOS is often associated with hyperlipidemia and impaired glucose tolerance, conditions that are associated with cardiovascular disorder, type 2 diabetes, cancer and hypertension. Evidence supports that some nutrients may affect the hormonal and metabolic disturbances of PCOS. Here in this study, we aimed to review the available literature that assessed the nutrients such as inostol, isoflavonids, resveratrol, vitamin D, and PUFA (polyunsaturated fatty acids), known to influence the hormonal and metabolic disturbances of PCOS, along with the strategies and future directions of nutrient supplementations in such patients.
Collapse
Affiliation(s)
- Asieh Mansour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Burghardt RC. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol Appl Pharmacol 2016; 303:65-78. [PMID: 27129868 PMCID: PMC5830085 DOI: 10.1016/j.taap.2016.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022]
Abstract
Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in >50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50ppm potassium dichromate) from postpartum days 1-21 through drinking water with or without RVT (10mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E2) biosynthesis and enhancing metabolic clearance of E2, increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E2. This is the first study to report the protective effects of RVT against any toxicant in the ovary.
Collapse
Affiliation(s)
- Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Faure M, Guibert E, Alves S, Pain B, Ramé C, Dupont J, Brillard JP, Froment P. The insulin sensitiser metformin regulates chicken Sertoli and germ cell populations. Reproduction 2016; 151:527-38. [DOI: 10.1530/rep-15-0565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
Abstract
Metformin, an insulin sensitiser from the biguanide family of molecules, is used for the treatment of insulin resistance in type 2 diabetes individuals. It increases peripheral glucose uptake and may reduce food intake. Based on the tight link between metabolism and fertility, we investigated the role of metformin on testicular function using in vitro culture of Sertoli cells and seminiferous tubules, complemented by in vivo data obtained following metformin administration to prepubertal chickens. In vitro, metformin treatment reduced Sertoli cell proliferation without inducing apoptosis and morphological changes. The metabolism of Sertoli cells was affected because lactate secretion by Sertoli cells increased approximately twofold and intracellular free ATP was negatively impacted. Two important pathways regulating proliferation and metabolism in Sertoli cells were assayed. Metformin exposure was not associated with an increased phosphorylation of AKT or ERK. There was a 90% reduction in the proportion of proliferating germ cells after a 96-h exposure of seminiferous tubule cultures to metformin. In vivo, 6-week-old chickens treated with metformin for 3 weeks exhibited reduced testicular weight and a 50% decrease in testosterone levels. The expression of a marker of undifferentiated germ cells was unchanged in contrast to the decrease in expression of ‘protamine’, a marker of differentiated germ cells. In conclusion, these results suggest that metformin affects the testicular energy content and the proliferative ability of Sertoli and germ cells.
Reproduction (2016) 151 527–538
Collapse
|
24
|
Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10. [PMID: 26254606 DOI: 10.1016/j.steroids.2015.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. Consequently, the process of steroid hormone biosynthesis is finely regulated. In the testis, the main steroidogenic cells are the Leydig cells. There are two distinct populations of Leydig cells that arise during development: fetal and adult Leydig cells. Fetal Leydig cells are responsible for masculinizing the male urogenital tract and inducing testis descent. These cells atrophy shortly after birth and do not contribute to the adult Leydig cell population. Adult Leydig cells derive from undifferentiated precursors present after birth and become fully steroidogenic at puberty. The differentiation of both Leydig cell populations is controlled by locally produced paracrine factors and by endocrine hormones. In fully differentially and steroidogenically active Leydig cells, androgen production and hormone-responsiveness involve various signaling pathways and downstream transcription factors. This review article focuses on recent developments regarding the origin and function of Leydig cells, the regulation of their differentiation by signaling molecules, hormones, and structural changes, the signaling pathways, kinases, and transcription factors involved in their differentiation and in mediating LH-responsiveness, as well as the fine-tuning mechanisms that ensure adequate production steroid hormones.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec G1V 4G2, Canada; Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada.
| |
Collapse
|
25
|
Kjaer TN, Ornstrup MJ, Poulsen MM, Jørgensen JOL, Hougaard DM, Cohen AS, Neghabat S, Richelsen B, Pedersen SB. Resveratrol reduces the levels of circulating androgen precursors but has no effect on, testosterone, dihydrotestosterone, PSA levels or prostate volume. A 4-month randomised trial in middle-aged men. Prostate 2015; 75:1255-63. [PMID: 25939591 DOI: 10.1002/pros.23006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Resveratrol is a naturally occurring polyphenol with purported inhibitory effects on prostate growth and cancer development. A number of studies have demonstrated that resveratrol reduces prostate growth in animal models and reduces prostate cell growth in vitro. Based on these pre-clinical findings, interest in resveratrol is increasing in relation to the management of benign prostate hyperplasia (BPH) and prostate cancer. So far, no human trials have evaluated the effects of resveratrol on circulating androgens, prostate size, or biochemical markers of prostate size. METHODS In a randomized placebo controlled clinical study using two doses of resveratrol (150 mg or 1,000 mg resveratrol daily) for 4 months, we evaluated the effects on prostate size, prostate specific antigen (PSA) and sex steroid hormones in 66 middle-aged men suffering from the metabolic syndrome(MetS). RESULTS At baseline, prostate size and PSA were positively correlated (R = 0.34, P < 0.007) as was prostate size and age (R = 0.37, P < 0.003). Prostate size did not correlate with testosterone, free testosterone, dihydrotestosterone (DHT), or any other androgen precursor at baseline. The highest dose of resveratrol lowered the serum level of androstenedione 24% (P = 0.052), dehydroepiandrosterone (DHEA) 41% (P < 0.01), and dehydroepiandrosterone-sulphate (DHEAS) 50% (p<0.001), compared to the control group. However, prostate size and levels of PSA, testosterone, free testosterone and DHT remained unchanged. CONCLUSION In this population of middle-aged men suffering from MetS, high dose resveratrol (1,000 mg daily) administration for 4 months significantly lowered serum levels of the androgen precursors androstenedione, DHEA and DHEAS, whereas prostate size and circulating levels of PSA, testosterone, free testosterone, and dihydrotestosterone were unaffected. The present study suggests that resveratrol does not affect prostate volume in healthy middle-aged men as measured by PSA levels and CT acquired prostate volumes. Consequently, we find no support for the use of resveratrol in the treatment of benign prostate hyperplasia.
Collapse
Affiliation(s)
- Thomas Nordstrøm Kjaer
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Morten Møller Poulsen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - David Michael Hougaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Arieh Sierra Cohen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
| | - Shadman Neghabat
- Department of Radiology, Aarhus University Hospital, Aarhus C, Denmark
| | - Bjørn Richelsen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine MEA, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
26
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
27
|
Oczkowski M, Średnicka-Tober D, Stachoń M, Kołota A, Wolińska-Witort E, Malik A, Hallmann E, Rusaczonek A, Gromadzka-Ostrowska J. The effect of red wine consumption on hormonal reproductive parameters and total antioxidant status in young adult male rats. Food Funct 2015; 5:2096-105. [PMID: 24996445 DOI: 10.1039/c4fo00108g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Very little is known about the effects of red wine consumption on male reproductive functions. Here we report the effect of regular drinking of different types of red wine on hormonal reproductive parameters and total antioxidant status in young adult male rats. Dry red wine (D-RW) exerted higher antioxidant activity and was characterized by higher concentration of phenolic compounds compared to semi-dry (SD-RW), sweet (S-RW) and semi-sweet (SS-RW) wines. No differences in total antioxidant status of rat plasma after six weeks of drinking of the wines were detected. Increased plasma follicle-stimulating hormone levels in S-RW versus control and D-RW (5.26 vs. 3.06 and 3.21 ng mL(-1)) groups were found. The plasma testosterone concentration was lower in D-RW compared to control, SD-RW, S-RW and SS-RW groups (0.25 vs. 1.12, 1.09, 1.54 and 1.25 ng mL(-1)). Higher plasma 17β-estradiol level in S-RW versus SD-RW and SS-RW (10.94 vs. 7.18 and 6.72 pg mL(-1)) group was stated. The prolactin level was higher in plasma of S-RW versus D-RW and SS-RW (17.35 vs. 9.74 and 8.59 ng mL(-1)) rats. The effects of red wine drinking on the hormonal regulation of the male reproductive system depend on the type and the dose of red wine. Chemical compounds naturally occurring in red wines (i.e. phenolics) may modulate the effects of ethyl alcohol, but also directly affect the male reproduction.
Collapse
Affiliation(s)
- Michał Oczkowski
- Chair of Nutritional Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. Mol Cell Biol 2014; 34:4257-71. [PMID: 25225331 DOI: 10.1128/mcb.00734-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.
Collapse
|
29
|
Oskarsson A, Spatafora C, Tringali C, Andersson ÅO. Inhibition of CYP17A1 activity by resveratrol, piceatannol, and synthetic resveratrol analogs. Prostate 2014; 74:839-51. [PMID: 24610083 DOI: 10.1002/pros.22801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/13/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Resveratrol (RSV) and resveratrol analogs have a potential use in prostate cancer chemoprevention due to effects on for example, cell growth, apoptosis, angiogenesis, and metastasis. However, inhibition of CYP17A1, a key enzyme in the androgen biosynthesis and a target for prostate cancer therapy, has not been explored as a possible mechanism behind the effects on prostate cancer. METHODS Human adrenocortical carcinoma cells, H295R, were treated with RSV, piceatannol (PIC), 3,5,4'-triacetylresveratrol (RSVTA), 3,5-diacetylresveratrol (RSVDA), and 3,5,4'-trimethylresveratrol (RSVTM) for 24 hr at concentrations of 1, 5, 10, 25, and 50 µM. Steroid secretion, enzyme activities, and gene expression of key steps in steroidogenesis were investigated. RESULTS Secretion of dihydroepiandrosterone (DHEA), testosterone, and cortisol were drastically decreased by all test compounds at concentrations that did not affect cell viability. Progesterone and aldosterone secretion were increased. This steroid secretion pattern can be explained by the demonstrated inhibition of CYP17A1 enzyme activity. The most efficient CYP17A1 inhibitors were the synthetic analogs RSVTA, RSVDA, and RSVTM. Inhibition by RSVTM was more selective on the 17,20-lyase activity than hydroxylase activity of CYP17A1. Treatment of cells with all compounds, except RSVTM, caused increased estradiol levels, which could be explained by the demonstrated inhibition of estrogen sulfate conjugation, catalyzed by SULT1E1. CONCLUSIONS Our results on CYP17A1 inhibition of RSV and RSV analogs suggest a novel mechanism for chemoprevention of prostate cancer by resveratrol and the analogs. Especially RSVTM, which has a preferential inhibition on the 17,20-lyase activity of CYP17A1, may be a promising candidate for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
30
|
Disrupting androgen production of Leydig cells by resveratrol via direct inhibition of human and rat 3β-hydroxysteroid dehydrogenase. Toxicol Lett 2014; 226:14-9. [PMID: 24472608 DOI: 10.1016/j.toxlet.2014.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/22/2022]
Abstract
Resveratrol is a polyphenol produced by several plants. It has been demonstrated that it has anti-inflammatory, antitumor, and anti-diabetic effects in animal models. However, its side effects are generally unclear. In the present study, we reported that resveratrol inhibited luteinizing hormone-stimulated androgen production in rat immature Leydig cells. Further analysis demonstrated that it was a competitive inhibitor of rat and human 3β-hydroxysteroid dehydrogenase with IC₆₀ values of 3.87 ± 0.06 and 8.48 ± 0.04 μM, respectively. The inhibition on 3β-hydroxysteroid dehydrogenase was specific since it did not inhibit another hydroxysteroid dehydrogenase 17β-hydroxysteroid dehydrogenase 3 at the highest concentration (100 μM) tested. In conclusion, resveratrol potentially interferes with androgen biosynthesis of rat Leydig cells.
Collapse
|
31
|
Barone R, Macaluso F, Catanese P, Marino Gammazza A, Rizzuto L, Marozzi P, Lo Giudice G, Stampone T, Cappello F, Morici G, Zummo G, Farina F, Di Felice V. Endurance exercise and conjugated linoleic acid (CLA) supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis. PLoS One 2013; 8:e79686. [PMID: 24223995 PMCID: PMC3818175 DOI: 10.1371/journal.pone.0079686] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
A new role for fat supplements, in particular conjugated linoleic acid (CLA), has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C) supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramalho-Santos J, Amaral S. Mitochondria and mammalian reproduction. Mol Cell Endocrinol 2013; 379:74-84. [PMID: 23769709 DOI: 10.1016/j.mce.2013.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.
Collapse
Affiliation(s)
- João Ramalho-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal.
| | | |
Collapse
|
33
|
Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, Levenson AS. Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenografts. Prostate 2013; 73:1135-46. [PMID: 23657951 DOI: 10.1002/pros.22657] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/30/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Resveratrol (Res) is recognized as a promising cancer chemoprevention dietary polyphenol with antioxidative, anti-inflammatory, and anticancer properties. However, the role of its analogues in prostate cancer (PCa) chemoprevention is unknown. METHODS We synthesized several natural and synthetic analogues of Res and characterized their effects on PCa cells in vitro using a cell proliferation assay. A colony formation assay and in vitro validation of luciferase (Luc) activity was done for LNCaP-Luc cells that were consequently used for in vivo studies. The efficacy of Res, trimethoxy-resveratrol (3M-Res) and piceatannol (PIC) was studied in a subcutaneous (s.c.) model of PCa using oral gavage. Tumor progression was monitored by traditional caliper and bioluminescent imaging. The levels of cytokines in serum were examined by ELISA, and the levels of compounds in serum and tumor tissues were determined by gas chromatography-mass spectrometry. RESULTS We examined the anti-proliferative activities of Res/analogues in three PCa cell lines. We further compared the chemopreventive effects of oral Res, 3M-Res, and PIC in LNCaP-Luc-xenografts. We found that 2 weeks pretreatment with the compounds diminished cell colonization, reduced tumor volume, and decreased tumor growth in the xenografts. Both 3M-Res and PIC demonstrated higher potency in inhibiting tumor progression compared to Res. Notably, 3M-Res was the most active in inhibiting cell proliferation and suppressing colony formation, and its accumulation in both serum and tumor tissues was the highest. CONCLUSIONS Our findings offer strong pre-clinical evidence for the utilization of dietary stilbenes, particularly 3M-Res, as novel, potent, effective chemopreventive agents in PCa.
Collapse
Affiliation(s)
- Steven J Dias
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ranawat P, Khanduja KL, Pathak CM. Resveratrol - an ingredient of red wine abrogates the reproductive capacity in male mice. Andrologia 2013; 46:650-8. [DOI: 10.1111/and.12132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- P. Ranawat
- Department of Biophysics; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - K. L. Khanduja
- Department of Biophysics; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - C. M. Pathak
- Department of Biophysics; Post Graduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
35
|
Ortega I, Villanueva JA, Wong DH, Cress AB, Sokalska A, Stanley SD, Duleba AJ. Resveratrol reduces steroidogenesis in rat ovarian theca-interstitial cells: the role of inhibition of Akt/PKB signaling pathway. Endocrinology 2012; 153:4019-29. [PMID: 22719052 PMCID: PMC3404354 DOI: 10.1210/en.2012-1385] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polycystic ovary syndrome is characterized by theca-interstitial hyperplasia and increased expression of steroidogenic genes, leading to excessive androgen production. Resveratrol, a natural polyphenol, promotes apoptosis and reduces rat theca-interstitial cell growth, in part by inhibiting the mevalonate pathway and decreasing the availability of substrates of isoprenylation [farnesyl-pyrophosphate (FPP) and geranylgeranyl-pyrophosphate (GGPP)]. This study evaluated the effect of resveratrol on rat theca-interstitial cell steroidogenesis. Because resveratrol may activate sirtuins, this study also investigated whether steroidogenesis was affected by sirtuin inhibitors (nicotinamide, sirtinol). Theca-interstitial cells were cultured with or without resveratrol (1-10 μm), GGPP (30 μm), FPP (30 μm), nicotinamide (1 mm), and/or sirtinol (10 μm). Resveratrol did not affect progesterone levels but reduced androgen production in a concentration-dependent fashion (androstenedione by up to 78% and androsterone by up to 76%). This inhibitory effect correlated with a decrease in mRNA expression of genes regulating androgen production, especially Cyp17a1 (by up to 73%). GGPP and FPP had no effect on androgen levels and Cyp17a1 mRNA levels and did not alter the effects induced by resveratrol. Similarly, sirtuin inhibitors did not reverse resveratrol-induced inhibition of steroidogenesis. However, resveratrol decreased activity of serine-threonine kinase/protein kinase B pathway, a cell-signaling pathway involved in ovarian steroidogenesis. The present findings indicate that resveratrol reduces androgen production primarily by inhibiting Cyp17a1 mRNA expression, and this inhibition may be mediated, in part, by blocking the activity of the serine-threonine kinase/protein kinase B pathway. These findings may be of clinical relevance to conditions associated with excessive production of androgens by theca cells, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Israel Ortega
- Department of Obstetrics and Gynecology, University of California, Davis, 4860 Y Street, Sacramento, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tartarin P, Guibert E, Touré A, Ouiste C, Leclerc J, Sanz N, Brière S, Dacheux JL, Delaleu B, McNeilly JR, McNeilly AS, Brillard JP, Dupont J, Foretz M, Viollet B, Froment P. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology 2012; 153:3468-81. [PMID: 22581459 DOI: 10.1210/en.2011-1911] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, is present in metabolic tissues (muscle and liver) and has been identified as a modulator of the female reproductive functions. However, its function in the testis has not yet been clearly defined. We have investigated the potential role of AMPK in male reproduction by using transgenic mice lacking the activity of AMPK catalytic subunit α1 gene [α1AMPK knockout (KO)]. In the testis, the α1AMPK subunit is expressed in germ cells and also in somatic cells (Sertoli and Leydig cells). α1AMPK KO male mice show a decrease in fertility, despite no clear alteration in the testis morphology or sperm production. However, in α1AMPK(-/-) mice, we demonstrate that spermatozoa have structural abnormalities and are less motile than in control mice. These spermatozoa alterations are associated with a 50% decrease in mitochondrial activity, a 60% decrease in basal oxygen consumption, and morphological defects. The α1AMPK KO male mice had high androgen levels associated with a 5- and 3-fold increase in intratesticular cholesterol and testosterone concentrations, respectively. High concentrations of proteins involved in steroid production (3β-hydroxysteroid dehydrogenase, cytochrome steroid 17 alpha-hydroxylase/17,20 lysate, and steroidogenic acute regulatory protein) were also detected in α1AMPK(-/-) testes. In the pituitary, the LH and FSH concentrations tended to be lower in α1AMPK(-/-) male mice, probably due to the negative feedback of the high testosterone levels. These results suggest that total α1AMPK deficiency in male mice affects androgen production and quality of spermatozoa, leading to a decrease in fertility.
Collapse
Affiliation(s)
- Pauline Tartarin
- Unité Mixte de Recherche (UMR) 6175, Physiologie de la Reproduction et des Comportements (Institut National dela Recherche Agronomique/Centre National dela Recherche Scientifique/Université Tours/Haras Nationaux), 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kolesarova A, Capcarova M, Maruniakova N, Lukac N, Ciereszko RE, Sirotkin AV. Resveratrol inhibits reproductive toxicity induced by deoxynivalenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1329-1334. [PMID: 22540658 DOI: 10.1080/10934529.2012.672144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this in vitro study was to examine the release of progesterone by porcine ovarian granulosa cells (GCs) after exposure to toxic concentrations of deoxynivalenol (DON), resveratrol (RSV), and their combination (DON with RSV). Ovarian granulosa cells were incubated without (control) or with treatments of natural substances at various doses for 24 h: RSV (10, 30 and 50 μg/mL) / DON (2000, 3000 and 5000 ng/mL), and their combination (10 μg/mL of RSV with 2000 ng/mL of DON; 30 μg/mL of RSV with 3000 ng/mL of DON; 50 μg/mL of RSV with 5000 ng/mL of DON). Progesterone was determined by radioimmunoassay (RIA). Progesterone release was significantly (P < 0.05) stimulated by RSV at the doses 50 μg/mL but not at 30 and 10 μg/mL and by DON treatment at all used doses (2000, 3000 and 5000 ng/mL). RSV in combination with DON stimulated significantly (P < 0.05) the progesterone release by GCs at the highest doses (50 μg/mL of RSV with 5000 ng/mL of DON). On the other hand, the stimulatory effect of RSV in combination with DON was significantly (P < 0.05) lower in comparison with alone DON effect. In conclusion, our results indicate, (1) the dose-depended stimulatory effects of RSV, DON and combination of RSV with DON on release of steroid hormone progesterone and (2) reduction of the stimulatory effect of DON by RSV. Our in vitro results suggest that reproductive toxicity of animals induced by a mycotoxin - deoxynivalenol can be inhibited by a protective natural substance - resveratrol.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
38
|
Sun J, Zhong L, Zhu Y, Liu G. Research on the isolation of mouse Leydig cells using differential digestion with a low concentration of collagenase. J Reprod Dev 2011; 57:433-6. [PMID: 21403421 DOI: 10.1262/jrd.10-123n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to establish a novel method for isolating and purifying Leydig cells from mice testes. Testes of postpuberal mice were harvested and digested in a low concentration of collagenase NB4 for 15 min 2 times. Cells obtained were cultured in low glucose DMEM with 10% FBS. Immunofluorescence was used to detect the expression of Leydig cell biomarkers including 3β-hydroxysteroid dehydrogenase, cholesterol side-chain cleaving enzyme (CYP11A1) and 17α-hydroxylase/17,20-lyase (CYP17A1). It was found that the purity of the isolated Leydig cells was 69.6 ± 4.16%. After 7 days in primary culture, it increased to 90%. The testosterone synthase spectrum could be detected at the primary culture. In conclusion, the application of a low concentration of collagenase for differential digestion allows isolation of large quantities of viable Leydig cells.
Collapse
Affiliation(s)
- Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai, China
| | | | | | | |
Collapse
|
39
|
Izzo G, Söder O, Svechnikov K. The prenylflavonoid phytoestrogens 8-prenylnaringenin and isoxanthohumol diferentially suppress steroidogenesis in rat Leydig cells in ontogenesis. J Appl Toxicol 2010; 31:589-94. [PMID: 21061451 DOI: 10.1002/jat.1602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/09/2022]
Abstract
8-Prenylnaringenin and isoxanthohumol are prenylflavonoids found in the hop plant, Humulus lupulus (Cannabaceae), which is traditionally used to add bitterness and flavor to beer. Flavonoids have previously been reported to exert endocrine disrupting actions. Therefore, we investigated the effects of 8-prenylnaringenin and isoxanthohumol on steroidogenesis activated by human chorionic gonadotropin (hCG) in primary cultures of rat Leydig cells at different stages of their development. The present study is the first to demonstrate that the prenylflavonoids 8-prenylnaringenin and isoxanthohumol exert complex maturation-dependent effects on Leydig cell steroidogenesis. Those compounds inhibited hCG-stimulated androgen production by Leydig cells at all stages of their development, a process that was associated with the reduced ability of the cells to produce cAMP. However, these same compounds up-regulated hCG-activated StAR expression in progenitor (PLC) and immature (ILC) but not adult types of Leydig cells (ALC). Further, 8-prenylnaringenin and isoxanthohumol were not able to suppress androgen production activated by an exogenous analog of cAMP, (Bu)2 cAMP, in ALC and ILC but synergistically stimulated steroidogenesis in PLC. Our data suggest that 8-prenylnaringenin and isoxanthohumol affect cAMP-dependent cellular processes up-stream transport of cholesterol into mitochondria.
Collapse
Affiliation(s)
- Gaia Izzo
- Department of Women's and Children's Health, Pediatric Endocrinology Unit Q2:08, Karolinska Institutet and University Hospital, Q2:08, SE-17176 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Endocrine disruptors and Leydig cell function. J Biomed Biotechnol 2010; 2010. [PMID: 20862379 PMCID: PMC2938463 DOI: 10.1155/2010/684504] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/23/2010] [Accepted: 06/23/2010] [Indexed: 01/18/2023] Open
Abstract
During the past decades, a large body of information concerning the effects of endocrine disrupting compounds (EDCs) on animals and humans has been accumulated. EDCs are of synthetic or natural origin and certain groups are known to disrupt the action of androgens and to impair the development of the male reproductive tract and external genitalia. The present overview describes the effects of the different classes of EDCs, such as pesticides, phthalates, dioxins, and phytoestrogens, including newly synthesized resveratrol analogs on steroidogenesis in Leydig cells. The potential impact of these compounds on androgen production by Leydig cells during fetal development and in the adult age is discussed. In addition, the possible role of EDCs in connection with the increasing frequency of abnormalities in reproductive development in animals and humans is discussed.
Collapse
|