1
|
Mortada WI, El-Naggar A, Mosa A, Palansooriya KN, Yousaf B, Tang R, Wang S, Cai Y, Chang SX. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. CHEMOSPHERE 2023; 331:138804. [PMID: 37137390 DOI: 10.1016/j.chemosphere.2023.138804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium (VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
2
|
Leese E, Jones K, Bocca B, Bousoumah R, Castaño A, Galea KS, Iavicoli I, López ME, Leso V, Ndaw S, Porras SP, Ruggieri F, Scheepers PT, Santonen T, Cattaneo A, Cavallo DM, De Palma G, Forte G, Lehtinen R, Lovreglio P, Melczer M, Senofonte M, Spankie S, van Dael M. HBM4EU chromates study - the measurement of hexavalent and trivalent chromium in exhaled breath condensate samples from occupationally exposed workers across Europe. Toxicol Lett 2023; 375:59-68. [PMID: 36535516 PMCID: PMC9887428 DOI: 10.1016/j.toxlet.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the practicability of exhaled breath condensate (EBC) as a biological matrix to detect and measure hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) in workers occupationally exposed to Cr(VI). EBC samples were collected from workers in France, Finland, Italy, The Netherlands and the United Kingdom from three different target activities: chrome platers, stainless steel welders and surface treatment workers. Pre and post working week EBC samples were collected from 177 exposed workers and 98 unexposed workers (control group). Hyphenated chromatography systems with inductively coupled plasma - mass spectrometry (ICP-MS) were for the analysis. The results showed that the occupationally exposed workers had significantly higher levels of Cr(VI) and Cr(III) than the control group. Chrome platers exhibited the highest Cr(VI) levels in their EBC samples, with a significant increase from their pre to post samples for both Cr(VI) and Cr(III). A significant difference was also found between pre and post EBC samples for Cr(III) in welders. This study has shown that EBC has the potential to be a valid, non-invasive biological matrix to assess occupational exposure to Cr(VI) and Cr(III) for biological monitoring assessment, with the ability to detect low level inhalation exposures.
Collapse
Affiliation(s)
- Elizabeth Leese
- Health & Safety Executive, Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
| | - Kate Jones
- Health & Safety Executive, Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | | | | | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Sophie Ndaw
- French National Research & Safety Institute, France
| | - Simo P. Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Paul T.J Scheepers
- Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - HBM4EU chromates study teamAnzionRobiCattaneoAndreajCavalloDomenico MariajDe PalmaGiuseppekForteGiovannilLehtinenRistomLovreglioPieronMelczerMathieuoSenofonteMartalSpankieSallypvan DaelMauriceiRadboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the NetherlandsDepartment of Science and High Technology, University of Insubria, Como, ItalyDepartment of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, ItalyIstituto Superiore di Sanità, Rome, ItalyFinnish Institute of Occupational Health, Helsinki, FinlandInterdisciplinary Department of Medicine, University of Bari, Bari, ItalyFrench National Research & Safety Institute, FranceInstitute of Occupational Medicine (IOM), Edinburgh, EH14 4AP, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Monnot AD, Kovochich M, Bandara SB, Wilsey JT, Christian WV, Eichenbaum G, Perkins LEL, Hasgall P, Taneja M, Connor K, Sague J, Nasseri-Aghbosh B, Marcello S, Vreeke M, Katz LB, Reverdy EE, Thelen H, Unice K. A hazard evaluation of the reproductive/developmental toxicity of cobalt in medical devices. Regul Toxicol Pharmacol 2021; 123:104932. [PMID: 33872739 DOI: 10.1016/j.yrtph.2021.104932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Cobalt (Co) is an essential element with human exposure occurring from the diet, supplement ingestion, occupational sources, and medical devices. The European Chemical Agency (ECHA) recently voted to classify Co metal as a Reproductive Hazard Category 1B; presumed human reproductive toxicant due to adverse testicular effects in male rodents. A weight of evidence evaluation of the preclinical reproductive and developmental toxicity studies and available clinical data was performed to critically evaluate the relevance of this proposed classification for Co in medical devices. Reproductive responses to Co are limited to the male testes and sperm function following high systemic exposure in rodents, only at Co concentrations/doses that result in overt toxicity (i.e., above the maximum tolerable dose (MTD)). The potential mechanisms of Co reproductive/developmental toxicity, including its indirect mode of action in the testes and relevance to humans, are discussed. The available preclinical and clincial evidence suggests that it would be more appropriate to classify Co as a Reproductive Hazard Category 2 compound: suspected human reproductive toxicant and, in the case of Co-containing medical devices, it should not be considered a reproductive hazard.
Collapse
Affiliation(s)
- Andrew D Monnot
- Cardno ChemRisk, 235 Pine Street, Suite 2300, San Francisco, CA, 94104, USA.
| | - Michael Kovochich
- Cardno ChemRisk, 30 North LaSalle Street, Suite 3910, Chicago, IL, 60602, USA
| | - Suren B Bandara
- Cardno ChemRisk, 235 Pine Street, Suite 2300, San Francisco, CA, 94104, USA
| | - Jared T Wilsey
- Smith & Nephew, 1450 E Brooks Rd, Memphis, TN, 3811, USA
| | | | - Gary Eichenbaum
- Johnson and Johnson, 410 George St, New Brunswick, NJ, 08901, USA
| | | | | | | | - Kevin Connor
- Boston Scientific, 100 Boston Scientific Way, Marlborough, MA, 01752, USA
| | - Jorge Sague
- Stryker, 2825 Airview Boulevard, Kalamazoo, MI, 49002, USA
| | | | - Stephen Marcello
- Johnson and Johnson, 410 George St, New Brunswick, NJ, 08901, USA
| | - Mark Vreeke
- Edwards, One Edwards Way, Irvine, CA, 92614, USA
| | - Laurence B Katz
- LifeScan Global Corporation, 20 Valley Stream Parkway, Malvern, PA, 19355, USA
| | | | | | - Kenneth Unice
- Cardno ChemRisk, 20 Stanwix Street, Suite 505, Pittsburgh, PA, 15222, USA
| |
Collapse
|
4
|
Unice KM, Kovochich M, Monnot AD. Cobalt-containing dust exposures: Prediction of whole blood and tissue concentrations using a biokinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137968. [PMID: 32217403 DOI: 10.1016/j.scitotenv.2020.137968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Biokinetic models estimating cobalt (Co) tissue burden can help assess the potential for systemic effects. Such models, however, have not been used to estimate remote tissue concentrations associated with inhalation exposure to Co-containing dust in general environments, work spaces, or animal toxicity tests. We have therefore updated a Co biokinetic model previously developed for oral dosing to include the inhalation pathway by incorporating the International Commission on Radiological Protection (ICRP) Human Respiratory Tract Model. Further, data from animal studies allowed for characterization of testes Co tissue concentration supplementing previous predictions for the liver, heart and blood. Reasonable agreement (within a factor of two) was found between modeled and measured blood, liver, testes and tissue concentrations when animal doses were modeled using human equivalent concentrations to account for species differences in regional lung deposition. We applied the updated model to occupational inhalation exposure scenarios, and found that upper-bound plausible human systemic body burden associated with Co ingestion is much higher than the burden associated with Co inhalation. Chronic ingestion of Co at a previously proposed oral reference dose (RfD) of 0.03 mg/kg-day resulted in predicted tissue levels of 22-54 μg/L (blood), 0.05-0.1 μg/g (heart), 0.01-0.02 μg/g (testes), and 0.2-0.5 μg/g (liver), which were at least 5-fold more than the systemic burden associated with various Co inhalation occupational exposure limits (OELs) of 0.1 mg/m3 or less (for 8 h/d and 5 d/w). Overall, our analysis indicated that Co-metal or dust induced systemic health effects, including myocardial damage, are unlikely for the inhalation pathway when personal exposures levels are below concentrations associated with local respiratory effects such as pulmonary fibrosis.
Collapse
|
5
|
Wang M, Yan W, Chu M, Li T, Liu Z, Yu Y, Huang Y, Zhu T, Wan M, Mao C, Shi D. Erythrocyte Membrane-Wrapped Magnetic Nanotherapeutic Agents for Reduction and Removal of Blood Cr(VI). ACS APPLIED MATERIALS & INTERFACES 2020; 12:28014-28023. [PMID: 32525652 DOI: 10.1021/acsami.0c06437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hazard of hexavalent chromium (Cr(VI)) from environmental pollution and medical implanted metal has been recognized widely. However, removal of trace amount of Cr(VI) in the blood circumstance faces tremendous difficulties for that most of Cr(VI) located in erythrocytes, thus there is almost no literature to report the removal of Cr(VI) in blood. Herein, a removal strategy, named as reduction-adsorption-separation, is proposed to realize the removal of Cr(VI) in blood. First, magnetic core-shell mesoporous nanocomposite is fabricated by using Fe3O4 nanoparticles as magnetic core and mesoporous silica (MS) as shell, hyperbranched polyamide (HPA) as mesoporous channel modifier and ascorbic acid (ASC) as the reductant drug loaded in the mesoporous channels, which is also denoted as Fe/MS/HPA/ASC. Then, on the basis of the bionic idea, the erythrocyte membrane (EM)-wrapped Fe/MS/HPA/ASC to protect ASC from deactivation is obtained and named as the therapeutic agent (Fe/MS/HPA/ASC@EM). During removal process, the therapeutic agent can enter in erythrocytes to use ASC to reduce Cr(VI) to Cr(III) and HPA in mesoporous channels to adsorb Cr(III) and can then be recollected from blood by magnetic separation. Finally, an animal model of blood Cr(VI) poisoning is constructed and used to test the removal ability of Cr(VI) from pig blood in vivo, verifying the effectiveness of this blood Cr(VI) removal strategy, providing a possible way to design more efficient and biosafe therapeutic agents for blood purification.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
6
|
Cobalt Administration Causes Reduced Contractility with Parallel Increases in TRPC6 and TRPM7 Transporter Protein Expression in Adult Rat Hearts. Cardiovasc Toxicol 2020; 19:276-286. [PMID: 30523498 PMCID: PMC6505488 DOI: 10.1007/s12012-018-9498-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to circulating cobalt (Co2+) in patients with metal-on-metal orthopaedic hip implants has been linked to cardiotoxicity but the underlying mechanism(s) remain undefined. The aim of the current study was to examine the effects of Co2+ on the heart in vivo and specifically on cardiac fibroblasts in vitro. Adult male rats were treated with CoCl2 (1 mg/kg) for either 7 days or 28 days. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure Co2+ uptake into various organs of the body. Co2+ accumulated in the heart over time with significant levels evident after only 7 days of treatment. There was no evidence of cardiac remodelling following Co2+ treatment as assessed by heart weight:body weight and left ventricular weight:body weight. However, a decrease in fractional shortening, as measured using echocardiography, was observed after 28 days of Co2+ treatment. This was accompanied by increased protein expression of the ion transient receptor potential (TRP) channels TRPC6 and TRPM7 as assessed by quantitative immunoblotting of whole cardiac homogenates. Uptake of Co2+ specifically into rat cardiac fibroblasts was measured over 72 h and was shown to dramatically increase with increasing concentrations of applied CoCl2. Expression levels of TRPC6 and TRPM7 proteins were both significantly elevated in these cells following Co2+ treatment. In conclusion, Co2+ rapidly accumulates to significant levels in the heart causing compromised contractility in the absence of any overt cardiac remodelling. TRPC6 and TRPM7 expression levels are significantly altered in the heart following Co2+ treatment and this may contribute to the Co2+-induced cardiotoxicity observed over time.
Collapse
|
7
|
Boşgelmez Iİ, Güvendik G. Beneficial Effects of N-Acetyl-L-cysteine or Taurine Pre- or Post-treatments in the Heart, Spleen, Lung, and Testis of Hexavalent Chromium-Exposed Mice. Biol Trace Elem Res 2019; 190:437-445. [PMID: 30417263 DOI: 10.1007/s12011-018-1571-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Hexavalent chromium[Cr(VI)] compounds may induce toxic effects, possibly via reactive intermediates and radicals formed during Cr(VI) reduction. In this study, we probed the possible effects of N-acetyl-L-cysteine (NAC) and taurine pre- or post-treatments on Cr(VI)-induced changes in lipid peroxidation and nonprotein thiols (NPSH) in mice heart, lung, spleen, and testis tissues. The mice were randomly assigned to six groups, consisting of control, Cr(VI)-exposed (20 mg Cr/kg, intraperitoneal ,ip), NAC (200 mg/kg, ip) as pre-treatment and post-treatment, and taurine (1 g/kg, ip) pre-treatment and post-treatment groups. Lipid peroxidation and NPSH levels were determined and the results were compared with regard to tissue- and antioxidant-specific basis. Exposure to Cr(VI) significantly increased lipid peroxidation in all tissues as compared to the control (p < 0.05); and consistent with this data, NPSH levels were significantly decreased (p < 0.05). Notably, administration of NAC and taurine, either before or after Cr(VI) exposure, was able to ameliorate the lipid peroxidation (p < 0.05) in all tissues. In the case of NPSH content, while the decline could be alleviated by both NAC and taurine pre- and post-treatments in the spleen, diverging results were obtained in other tissues. The effects of Cr(VI) on the lung thiols were abolished by pre-treatment with NAC and taurine; however, post-treatments could not exert significant effect. While thiol depletion in the heart was totally replenished by NAC and taurine administrations, NAC pre-treatment was partially more effective than post-treatment. In contrast with lipid peroxidation data, NAC treatment could not provide a statistically significant beneficial effect on NPSH content of the testis, whereas the effect in this tissue by taurine was profound. Thus, these data highlight the importance of tissue-specific factors and the critical role of administration time. Overall, our data suggest that NAC and taurine may have potential in prevention of Cr(VI)-induced toxicity in the heart, lung, spleen, and testis tissues.
Collapse
Affiliation(s)
- I İpek Boşgelmez
- Department of Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey.
| | - Gülin Güvendik
- Department of Toxicology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
8
|
Lin TJ, Huang YL, Chang JS, Liu KT, Yen MC, Chen FW, Shih YL, Jao JC, Huang PC, Yeh IJ. Optimal dosage and early intervention of L-ascorbic acid inhibiting K 2Cr 2O 7-induced renal tubular cell damage. J Trace Elem Med Biol 2018; 48:1-7. [PMID: 29773167 DOI: 10.1016/j.jtemb.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
Chromium poisoning can cause renal failure and death. Chromium intoxication may be managed using L-ascorbic acid (vitamin C) therapy. However, the evidence supporting the effectiveness of this treatment is insufficient, and the mechanism of action has not been clarified in renal cells. In this study, our results showed that the optimal regimen of L-ascorbic acid therapy in human epithelial renal proximal tubule cells, HK-2 cells, was 30 μg/mL. Supplementation of L-ascorbic acid with 30 μg/mL and within 8 h of chromium intoxication (K2Cr2O7, Cr6+) was effective to inhibit renal tubular cell damage by blocking generation of free radicals, cell apoptosis, and autophagy. Intracellular chromium concentrations were estimated using electrothermal atomic absorption spectrometry. Treatment of L-ascorbic acid within 8 h of chromium intoxication significantly decreased the entry of chromium into the cells. Moreover, concomitant administration of L-ascorbic acid with repeatedly dosing at 8-hourly intervals had a better protective effect at lower concentration of L-ascorbic acid when compared to single dosing of L-ascorbic acid at an early time point of chromium intoxication. These findings might help physicians develop effective therapy strategies in renal failure.
Collapse
Affiliation(s)
- Tzeng-Jih Lin
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Family Medicine Department, Taoyuan Branch, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Ting Liu
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chi Yen
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fen-Wei Chen
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yueh-Lun Shih
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jo-Chi Jao
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chi Huang
- Department of Pathology, Taipei City Hospital, Taipei, Taiwan
| | - I-Jeng Yeh
- Emergency Department, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Ray RR. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol 2017; 9:55-65. [PMID: 28652847 PMCID: PMC5458105 DOI: 10.1515/intox-2016-0007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/10/2015] [Accepted: 01/17/2016] [Indexed: 01/09/2023] Open
Abstract
Workers of tanneries, welding industries, factories manufacturing chromate containing paints are exposed to hexavalent chromium that increases the risk of developing serious adverse health effects. This review elucidates the mode of action of hexavalent chromium on blood and its adverse effects. Both leukocyte and erythrocyte counts of blood sharply decreased in Swiss mice after two weeks of intraperitoneal treatment with Cr (VI), with the erythrocytes transforming into echinocytes. The hexavalent chromium in the blood is readily reduced to trivalent form and the reductive capacity of erythrocytes is much greater than that of plasma. Excess Cr (VI), not reduced in plasma, may enter erythrocytes and lymphocytes and in rodents it induces microcytic anemia. The toxic effects of chromium (VI) include mitochondrial injury and DNA damage of blood cells that leads to carcinogenicity. Excess Cr (VI) increases cytosolic Ca2+ activity and ATP depletion thereby inducing eryptosis. Se, vitamin C, and quercetin are assumed to have some protective effect against hexavalent chromium induced hematological disorders.
Collapse
Affiliation(s)
- Rina Rani Ray
- Postgraduate Department of Zoology, Bethune College, 181, Bidhan Sarani, Kolkata: 700 006, India
| |
Collapse
|
10
|
Afolaranmi GA, Akbar M, Brewer J, Grant MH. Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice. J Biomed Mater Res A 2012; 100:1529-38. [DOI: 10.1002/jbm.a.34091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/10/2011] [Accepted: 01/10/2012] [Indexed: 11/11/2022]
|