1
|
Zhang H, Zhang D, Wang H, Liu Y, Ding W, Fan G, Meng X. Heme oxygenase 1‑overexpressing bone marrow mesenchymal stem cell‑derived exosomes suppress interleukin‑1 beta‑induced apoptosis and aging of nucleus pulposus cells. Mol Med Rep 2025; 31:116. [PMID: 40052562 PMCID: PMC11905203 DOI: 10.3892/mmr.2025.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) and heme oxygenase 1 (HO‑1) attenuate intervertebral disc degeneration (IVDD). However, whether BMSC‑derived exosomes attenuate IVDD by delivering HO‑1 to nucleus pulposus (NP) cells remains to be elucidated. Mouse BMSCs were characterized by multilineage differentiation and surface marker molecule detection. Exosomes Exo and Exo‑HO‑1 were isolated from BMSCs and HO‑1‑overexpressing BMSCs by ultracentrifugation and characterized by observing their morphology, detecting the exosome marker proteins, tumor susceptibility gene 101 (TSG101) and CD63 and analyzing their particle size. Interleukin‑1 β (IL‑1β)‑stimulated NP cells were used as the IVDD cell model. The influence of Exo or Exo‑HO‑1 on IL‑1β‑urged apoptosis and senescence in NP cells was determined by flow cytometry, western blotting and senescence‑associated β‑galactosidase (SA‑β‑gal) staining. Exo and Exo‑HO‑1 did not vary in size or morphology. Exo‑HO‑1 markedly repressed IL‑1β‑prompted apoptosis in NP cells, accompanied with a prominent increase in Cleaved caspase 3 and Bax protein levels and a marked decrease in Bcl‑2 protein levels. Exo and Exo‑HO‑1 both decreased the number of SA‑β‑gal‑positive NP cells and arrested NP cells in the G1 phase. Exo‑HO‑1 had stronger effects than Exo, suggesting that Exo‑HO‑1 can weaken IL‑1β‑induced NP cell senescence. In addition, Exo and Exo‑HO‑1 repressed IL‑1β mediating the phosphorylation of p65 and nuclear translocation of p65. In conclusion, HO‑1‑overexpressing BMSC‑derived exosomes blocked the nuclear factor‑kappa B signaling in IL‑1β‑stimulated NP cells, thus impairing cell apoptosis and senescence.
Collapse
Affiliation(s)
- Hao Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Di Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Wang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yilei Liu
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Wenyuan Ding
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Guangpu Fan
- Department of Cardiac Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xianzhong Meng
- Spinal Surgery Department 1, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
2
|
Yao J, Li K, Fu Z, Zheng J, Chen Z, Xu J, Lai G, Huang Y, Huang J, You G, Han S, He Z, Liu Q, Li N. Human tau promotes Warburg effect-like glycolytic metabolism under acute hyperglycemia conditions. J Biol Chem 2025; 301:108376. [PMID: 40054691 PMCID: PMC12018107 DOI: 10.1016/j.jbc.2025.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 04/13/2025] Open
Abstract
The neurofilaments formed by hyperphosphorylated tau is a hallmark of tauopathies. However, the biological functions of tau and the physiological significance of its phosphorylation are still not fully understood. By using human tau (441 a.a.) transgenic (hTau) mice, murine tau KO mice, and C57BL/6J (C57) mice, unexpectedly, we found that under acute hyperglycemia conditions, JNK but not previously reported GSK3β mediated tau phosphorylation. Moreover, Akt, the inhibitory kinase upstream of GSK3β, was activated in a tau-dependent manner. Furthermore, under acute high glucose conditions, the presence of human tau significantly augmented Akt activation but inhibited 4E-BP1 phosphorylation simultaneously, indicating that human tau is also involved in regulating the alternative activation of mTORC1/2. By comparing the hippocampal membrane-associated proteome, we found that human tau influenced the homeostasis of protein-membrane association under acute hyperglycemia conditions. Of note, with respect to C57 and Tau KO mice, the membrane association of oxidative phosphorylation-related proteins was impeded by human tau in the hippocampus. In vitro study consistently showed that aerobic glycolysis was promoted in the presence of human tau under high glucose conditions, which maintained the ratio of NAD+/NADH. On the other hand, human tau restricted the level of oxidative phosphorylation, modulated the activity of SDH, and reduced ROS production upon high glucose challenging. In summary, the current study revealed that human tau played an important role in regulating glycolytic metabolism under acute hyperglycemia conditions, which is similar with the Warburg effect, through influencing the homeostasis of protein-membrane association.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Keying Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenli Fu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jingjing Zheng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zicong Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiahao Xu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guoqing Lai
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yaomin Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinsheng Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhijun He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
4
|
Zheng C, Guo D, Zhang T, Hu W, Zhang B, Feng H, Gao Y, Yang G. HDAC/H3K27ac-mediated transcription of NDUFA3 exerts protective effects on high glucose-treated human nucleus pulposus cells through improving mitochondrial function. Sci Rep 2024; 14:21165. [PMID: 39256449 PMCID: PMC11387752 DOI: 10.1038/s41598-024-71810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
- Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang City, Henan Province, Xinxiang, 453003, China
| | - Dongshuai Guo
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Tong Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weiran Hu
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Bo Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Hang Feng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Guang Yang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
6
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
7
|
The Effect of Anthocyanins from Dioscorea alata L. on Antioxidant Properties of Perinatal Hainan Black Goats and Its Possible Mechanism in the Mammary Gland. Animals (Basel) 2022; 12:ani12233320. [PMID: 36496841 PMCID: PMC9735849 DOI: 10.3390/ani12233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The mammary glands of the perinatal goats are susceptible to reactive oxygen species (ROS) leading to oxidative injury. Although Dioscorea alata L. is rich in anthocyanins with high safety and excellent free-radical-scavenging ability, the effect and mechanism of Dioscorea alata L. anthocyanins (DAC) on the antioxidant capacity of the black Hainan goat has been the subject of few studies to date; (2) Methods: For this reason, feeding experiments were performed by feeding experimental diets, and the pre-protective capacity of DAC on goat mammary epithelial cells was explored on the basis of the established model of H2O2 injury; (3) Results: As well as altering rumen fermentation parameters in perinatal female goats, dietary challenge also improves antioxidant capacity in their blood and milk. thereby enhancing children's antioxidant capacity and increasing their resistance to oxidative stress. However, we also found that DAC pretreatment was capable of activating both Nrf2 and MAPK/JNK pathways, which results in enhanced antioxidase activity and elimination of ROS; (4) Conclusions: Together, these findings suggest that DAC may have a pre-protective role on perinatal Hainan black goats through the regulation of Nrf2 and MAPK/JNK pathways in GMEC.
Collapse
|
8
|
Wei B, Zhao Y, Li W, Zhang S, Yan M, Hu Z, Gao B. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1023877. [PMID: 36299288 PMCID: PMC9588944 DOI: 10.3389/fbioe.2022.1023877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the basic pathological process of many degenerative diseases of the spine, characterized by series of symptoms, among which low back pain (LBP) is the most common symptom that patients suffer a lot, which not only makes patients and individual families bear a huge pain and psychological burden, but also consumes a lot of medical resources. IDD is usually thought to be relevant with various factors such as genetic predisposition, trauma and aging, and IDD progression is tightly relevant with structural and functional alterations. IDD processes are caused by series of pathological processes, including oxidative stress, matrix decomposition, inflammatory reaction, apoptosis, abnormal proliferation, cell senescence, autophagy as well as sepsis process, among which the oxidative stress and inflammatory response are considered as key link in IDD. The production and clearance of ROS are tightly connected with oxidative stress, which would further simulate various signaling pathways. The phenotype of disc cells could change from matrix anabolism-to matrix catabolism- and proinflammatory-phenotype during IDD. Recent decades, with the relevant reports about oxidative stress and inflammatory response in IDD increasing gradually, the mechanisms researches have attracted much more attention. Consequently, this study focused on the indispensable roles of the oxidative stress and inflammatory response (especially macrophages and cytokines) to illustrate the origin, development, and deterioration of IDD, aiming to provide novel insights in the molecular mechanisms as well as significant clinical values for IDD.
Collapse
Affiliation(s)
- Bingqian Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Basic Medical College, Air Force Medical University, Xi’an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weihang Li
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ming Yan
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| |
Collapse
|
9
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|